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Five new oleanane-type triterpenoid saponins (1–5), together with 24 known saponins
(6–29) were isolated from the fruit of Acanthopanax senticosus. Their structures were
determined by extensive spectroscopic analysis, including 1D, 2D nuclear magnetic
resonance (NMR), and high-resolution electrospray ionization mass spectrometry (HR-
ESI-MS), in combination with chemical methods (acid hydrolysis). The neuroinflammation
model was established by lipopolysaccharide (LPS)-induced BV2 microglia, and the
neuroprotective effects of all compounds (1–29) were evaluated.
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INTRODUCTION

Acanthopanax senticosus (Rupr. & Maxim.) Harms, commonly known as Ci Wu Jia or Siberian
Ginseng, is a well-known traditional Chinese medicine widely distributed in the northeast of China.
With high medicinal value, A. senticosus is popularly used as an “adaptogen” like Panax ginseng.
Modern pharmacology study shows that this plant was used for antifatigue, anti-depression,
anxiolytic, anti-irradiation, anticancer, anti-inflammatory, hypolipidemic, etc. (Huang et al.,
2011; Li et al., 2016a), and these activities may be attributed to triterpenoid saponins.
Insuperably, modern pharmacological studies have confirmed that A. senticosus fruits possess
significant activities of antifatigue (Cong et al., 2010), antioxidant (Kim et al., 2015; Zhao et al.,
2013), hypolipidemic (Yan et al., 2009), anti-obesity (Li et al., 2007; Saito et al., 2016), anti-
inflammatory (Li et al., 2013), and so on. However, for the past few years, most of the phytochemical
studies have beenmainly focused on the root, stem, and leaves ofA. senticosus, and limited researches
have been investigated on its fruits (Ge et al., 2016; Huang et al., 2011; Li et al., 2016b; Li et al., 2017;
Wang et al., 2012; Zhang et al., 2017).

In the present paper, we continue to further explore the active component triterpenoid saponins
from the fruits of A. senticosus. The results found five previously undescribed triterpenoid saponins
(1–5) (Figure 1), together with known 24 triterpenoid saponins (6–29). Their structures were
elucidated mainly by spectroscopic methods including 1D and 2D nuclear magnetic resonance
(NMR) experiments in combination with high-resolution electrospray ionization mass spectrometry
(HR-ESI-MS) and by comparison of their physical and spectral data with literature. Meanwhile, their
neuroprotective effects were evaluated by lipopolysaccharide (LPS)-induced BV2 microglia.
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EXPERIMENTAL SECTION

General Experimental Procedures
The HR-ESI-MS data of the new triterpenoid saponins were
obtained on a Thermo Orbitrap Fusion Lumos Tribrid Mass
Spectrometer. The 1D and 2D NMR spectra were acquired on a
Bruker DPX-600 spectrometer in Pyridine-d5 using TMS as
internal standard. Preparative high-performance liquid
chromatography (HPLC) (LC-20AR, Shimadzu) was
performed on Waters Atlantis® Prep T3 (5 μm, 10 × 250 mm
column) with a RID-20 A detector, with flow rates of 3 ml/min.
Optical rotation measurements were conducted on a JASCO P-
2000 instrument. Gas chromatography-mass spectrometry (GC-
MS) analysis was performed on an Agilent 7890A system with a
DB-5 capillary column. Absorbance (OD) value was detected on a
BioTek Epoch™2 Microplate Reader. The FT-IR data of the new
triterpenoid saponins was performed on Thermo Scientific
Nicolet iS10. Silica gel column chromatography (CC) and
octadecyl silica (ODS) chromatography were used in the
separation of extracts.

Plant Material
The fruit of A. senticosus was collected in October 2018 from the
Yichun, Heilongjiang Province. The plant was identified by the
Professor Rui-Feng Fan of the Heilongjiang University of Chinese
Medicine, and its voucher specimen (NO. 20190330) has been
deposited at Heilongjiang University of Chinese Medicine.

Extraction and Isolation
The dry fruits (20 kg) of A. senticosus were extracted with 70%
EtOH three times, under reflux for 2 h each time to afford a crude
extract (2,216 g). The crude extract was extracted with petroleum
ether, EtOAc, and n-BuOH successively, and the corresponding
extract was obtained after removing the solvent, namely, PE
fraction (320.0 g), EtOAc fraction (470.0 g), and n-BuOH
fraction (510.0 g). The ethyl acetate layer (360.0 g) was
chromatographed on a silica gel column (200–300 mesh)
eluted successively with CH2Cl2/MeOH (100:1–0:1) to obtain
nine fractions. Fr. VI was separated on a silica gel column
(200–300 mesh) eluted successively with CH2Cl2/MeOH (50:
1–0:1) to obtain five fractions (Fr. VI 1–5). Fr. VI 4 was
purified by ODS chromatography to afford 48 fractions. Fr. VI
4–(46) were purified by semi-preparative HPLC (MeOH/H2O
84%) to afford compounds 14 (5.3 mg), 7 (4.9 mg), 15 (5.0 mg), 8
(37.5 mg), 18 (9.7 mg), 16 (45.9 mg), 10 (7.1 mg), and 11
(5.4 mg). Fr. VII was separated on a silica gel column
(200–300 mesh), using solvent system CH2Cl2/MeOH (30:1 to
0:1) to give five fractions (Fr. VII 1–7) based on TLC analysis. Fr.
VII 5 was purified by ODS chromatography to afford sixty-three
fractions. Fr. VII 5–(54) were purified by semi-preparative HPLC
(MeOH/H2O 78%) to afford compounds 5 (5.3 mg) and 6
(3.6 mg). Fr. VIII was separated on a silica gel column
(200–300 mesh, 1 kg), using solvent system CH2Cl2/MeOH
(30:1 to 0:1) to give nine fractions (Fr. VIII 1–9) based on
TLC analysis. Fr. VIII 5 was purified by ODS chromatography

FIGURE 1 | Chemical structures of compounds 1–5.
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to afford fifty fractions. Fr. VIII 5–(47) were purified by semi-
preparative HPLC (MeOH/H2O 84%) to afford compounds 13
(66.4 mg) and 9 (52.8 mg). Fr. VIII 6 was purified by ODS
chromatography to afford forty-two fractions. Fr. VIII 6-(24)
was purified by semi-preparative HPLC (MeOH/H2O 73%) to
afford compound 3 (8.8 mg). Fr. VIII 6–(25) was purified by
semi-preparative HPLC (MeOH/H2O 73%) to afford
compound 12 (5.3 mg). Fr. VIII 6–(27) were purified by
semi-preparative HPLC (MeOH/H2O 68%) to afford
compounds 1 (26.0 mg), 4 (4.2 mg), 17 (147.1 mg), and 22
(26.4 mg). Fr. VIII 6–(29) was purified by semi-preparative
HPLC (MeOH/H2O 73%) to afford compound 25 (42.0 mg).
Fr. VIII 6–(29D) were purified by semi-preparative HPLC
(MeOH/H2O 78%) to afford compound 19 (3.6 mg). Fr. VIII
6–(30) were purified by semi-preparative HPLC (MeOH/H2O

70%) to afford compound 23 (28.1 mg). Fr. VIII 6–(30C) were
purified by semi-preparative HPLC (MeOH/H2O 80%) to afford
compound 2 (8.7 mg). Fr. VIII 6–(32) were purified by semi-
preparative HPLC (MeOH/H2O 80%) to afford compound 26
(5.4 mg). Fr. VIII 6–(33) were purified by semi-preparative
HPLC (MeOH/H2O 81%) to afford compound 24 (9.1 mg).
Fr. VIII 6–(34) were purified by semi-preparative HPLC
(MeOH/H2O 82%) to afford compounds 28 (8.2 mg) and 27
(7.6 mg). Fr. VIII 6–(35) were purified by semi-preparative
HPLC (MeOH/H2O 84%) to afford compounds 29 (2.8 mg),
20 (7.7 mg), and 21 (23.5 mg).

Spectroscopic Data
Acasentrioid A (1): amorphous powder; [α]24D � +14.7, (c = 0.15,
MeOH); HR-ESI-MSm/z: 784.4845 [M +NH4]

+ (calculated to be
784.4842 for C41H70NO13). The

1H (pyridine-d5, 600 MHz) and
13C NMR (pyridine-d5, 150 MHz) data are shown in Tables 1, 2.

Acasentrioid B (2): amorphous powder; [α]24D � +7.5, (c =
0.32, MeOH); HR-ESI-MSm/z: 856.5043 [M + NH4]

+ (calculated
to be 856.5053 for C44H74NO15). The

1H (pyridine-d5, 600 MHz)
and 13C NMR (pyridine-d5, 150 MHz) data are shown in
Tables 1, 2.

Acasentrioid C (3): amorphous powder; [α]24D � +2.1, (c =
0.28, MeOH); HR-ESI-MSm/z: 737.4490 [M + H]+ (calculated to
be 737.4471 for C40H65O12). The

1H (pyridine-d5, 600 MHz) and
13C NMR (pyridine-d5, 150 MHz) data are shown in Tables 1, 2.

Acasentrioid D (4): amorphous powder; [α]24D � +19.1, (c =
0.22, MeOH); HR-ESI-MSm/z: 798.4648 [M + NH4]

+ (calculated
to be 798.4634 for C41H68NO14). The

1H (pyridine-d5, 600 MHz)
and 13C NMR (pyridine-d5, 150 MHz) data are shown in
Tables 1, 2.

Acasentrioid E (5): amorphous powder; [α]24D � −3.5, (c =
0.23, MeOH); HR-ESI-MSm/z: 663.4121 [M + H]+ (calculated to
be 663.4103 for C37H59O10). The

1H (pyridine-d5, 600 MHz) and
13C NMR (pyridine-d5, 150 MHz) data are shown in Tables 1, 2.

Hydrolysis of Compounds 1–5
Monosaccharide was determined by GC (Teng et al., 2018).
Compounds 1–5 (each 1.0 mg) were dissolved in 2 ml of 2 M
HCl (dioxane/H2O, 1:1, v/v), and hydrolyzed at 90°C for 3 h. After
removing dioxane in a vacuum, the solution was diluted with
H2O and extracted with EtOAc (3 × 1 ml). The aqueous layer was
evaporated to dryness. The dried residue was dissolved in
pyridine (200 μl) and treated with L-cysteine methyl ester
hydrochloride (2.0 mg). After stirring the mixture for 1 h at
60°C, 100 μl of N-trimethylsilylimidazole was added, and they
were kept at 60°C for 1 h. The reaction mixture was suspended in
1.0 ml H2O and extracted with n-hexane (3 × 1.0 ml). The layer of
n-hexane was directly analyzed by GC with a DM-5 column
(30 m × 0.25 mm, 0.25 μm) with the elution of N2 as carrier gas.
Other GC conditions are as follows: column temperature:
220–270°C with the rate of 3°C/min; injector and detector
temperature: 250°C; split ratio: 10:1; and injection volume:1 μl.
The configurations of D-glucose, L-arabinose, D-glucuronic acid,
and L-rhamnose in compounds 1–5 were determined by
comparison of their retention times with those of standard
samples.

TABLE 1 | 13C NMR data (δ) for compounds 1–5 (150, MHz in pyridine-d5).

No 1 2 3 4 5

1 38.6 38.6 38.8 38.5 39.0
2 26.6 26.0 26.5 26.3 26.2
3 88.5 82.2 88.7 88.7 82.0
4 39.7 43.4 39.4 39.3 43.5
5 55.7 47.5 55.8 55.6 47.7
6 18.4 18.1 18.4 18.3 18.0
7 33.1 32.7 33.1 33.0 34.6
8 39.5 39.9 39.7 39.6 40.9
9 48.0 48.1 47.9 47.8 51.4
10 37.0 36.8 36.9 36.8 36.9
11 23.7 23.8 23.7 23.6 21.2
12 122.5 122.9 122.6 123.0 26.4
13 144.9 144.1 144.3 144.1 41.6
14 42.0 42.1 42.1 42.4 42.9
15 28.3 28.2 28.2 28.1 29.9
16 23.7 23.3 23.8 23.6 34.3
17 47.0 46.9 46.7 46.5 48.5
18 41.3 41.7 44.3 40.9 138.9
19 41.1 46.1 48.0 40.9 131.9
20 36.5 30.7 69.8 42.0 32.3
21 29.0 33.9 36.2 29.1 34.1
22 32.6 32.5 35.1 32.2 34.1
23 28.0 64.3 28.0 28.0 13.3
24 16.9 13.5 17.0 16.6 64.1
25 15.4 16.0 15.5 15.3 17.3
26 17.3 17.5 17.3 17.2 16.2
27 26.1 26.0 26.0 25.9 15.2
28 180.2 176.4 180.0 180.0 179.4
29 73.8 33.0 – 181.1 30.7
30 19.7 23.6 25.7 19.9 29.2
1′ 107.3 106.4 104.9 104.6 106.4
2′ 71.8 75.4 75.9 80.6 75.4
3′ 84.1 77.9 73.9 73.3 77.8
4′ 69.2 73.1 68.7 68.2 73.1
5′ 67.0 77.4 64.8 64.8 77.2
6′ – 170.2 – – 170.8
7′ – 61.1 – – 51.9
8′ – 14.1 – – –

1″ 106.3 95.6 101.7 105.7 –

2″ 75.6 74.0 72.4 76.2 –

3″ 78.3 78.9 72.6 78.0 –

4″ 71.4 71.1 74.0 71.4 –

5″ 78.6 79.2 69.8 78.0 –

6″ 62.6 62.1 18.5 62.4 –
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Bioassay for Cytotoxicity Activities
In each well of a 96-well plate, 100 μl of logarithmic growth phase
cells (density 1.5 × 105/ml) was inoculated and cultured at 37°C and

5% CO2 until the cells attached to the wall. A drug-containing
medium (0, 50, 100, 200, 400, and 600 μM)was added to eachwell of
the administration group, and an equal volume of medium was also

TABLE 2 | 1H NMR data (δ) for compounds 1–5 (600, MHz in pyridine-d5).

No 1 2 3 4 5

1 0.94 o 0.95 o 0.90 t (13.7) 0.86 t (13.2) 0.93 o
1.50 o 1.47 dt (3.5, 13.1) 1.47 br s 1.46 o 1.60 d (11.8)

2 1.88 o 1.98 dd (3.5, 13.1) 1.82 o 1.80 t (13.9) 1.99 t (12.9)
2.14 o 2.22 m 2.07 o 2.05 m 2.24 m

3 3.33 dd (3.8, 11.5) 4.30 dd (4.3, 12.3) 3.25 dd (4.1, 11.5) 3.17 dd (4.2, 11.8) 4.32 dd (4.3, 12.1)
4 – – – – –

5 0.80 d (11.8) 1.64 o 0.75 d (11.3) 0.67 d (11.8) 1.60 d (11.8)
6 1.30 o 1.31 br s 1.28 o 1.22 o 1.30 m

1.48 o 1.66 o 1.44 br s 1.42 o 1.67 d (12.1)
7 1.31 o 1.30 br s 1.28 o 1.22 o 1.41 br s

1.47 o 1.58 t (11.9) 1.42 br d (14.2) 1.36 m 1.49 o
8 – – – – –

9 1.65 t (8.8) 1.72 o 1.60 o 1.57 t (8.6) 1.39 br s
10 – – – – –

11 1.91 o 1.90 m 1.87 o 1.87 m 1.17 d (11.1)
– – – – 1.46 o

12 5.51 br s 5.41 t (3.1) 5.53 br s 5.51 t (2.9) 1.28 o
– – – – 1.67 d (12.1)

13 – – – – 2.69 d (11.9)
14 – – – – –

15 1.20 o 1.10 o 1.21 br s 1.18 o 1.24 o
2.20 o 2.32 td (4.3, 13.6) 2.17 t (13.1) 2.15 m 1.99 t (12.9)

16 2.00 br d (10.7) 1.92 br s 2.03 o 2.00 br d (11.7) 1.41 br s
2.23 o 2.03 td (3.7, 13.6) 2.26 t (13.1) 2.22 t (12.8) 2.51 br d (13.2)

17 – – – – –

18 3.42 dd (3.3, 13.7) 3.18 dd (4.0, 13.6) 3.35 br d (13.7) 3.41 dd (3.7, 13.7) –

19 1.52 o 1.22 m 1.91 o 1.91 o 5.27 s
2.18 o 1.70 o 2.44 t (13.7) 2.57 t (13.7) –

20 – – – – –

21 1.40 br d (12.2) 1.07 m 1.82 o 1.80 t (13.9) 1.51 o
1.85 m 1.33 m 2.03 o 2.30 td (4.3, 13.9) 1.74 t (9.3)

22 1.94 br d (13.6) 1.74 o 2.07 o 1.94 o 1.74 t (9.3)
2.16 o 1.81 td (4.1, 13.8) – 2.10 m 2.30 m

23 1.29 s 3.70 d (10.9) 1.17 s 1.18 s 0.92 s
– 4.34 d (10.9) – – –

24 0.96 s 0.93 s 1.06 s 1.00 s 3.70 d (11.0)
– – – – 4.34 d (11.0)

25 0.83 s 0.92 s 0.82 s 0.80 s 0.83 s
26 1.00 s 1.11 s 0.99 s 0.96 s 1.02 s
27 1.31 s 1.19 s 1.26 s 1.25 s 0.89 s
28 – – – – –

29 3.61 s 0.88 s – – 1.11 s
30 1.22 s 0.87 s 1.58 s 1.55 s 1.04 s
1′ 4.74 d (7.3) 5.20 d (7.7) 4.91 d (5.1) 4.93 d (5.7) 5.22 d (7.7)
2′ 4.58 t (7.3) 4.09 t (7.7) 4.57 o 4.58 t (5.7) 4.10 t (8.2)
3′ 4.22 o 4.16 m 4.29 o 4.35 o 4.16 t (8.2)
4′ 4.43 br s 4.46 br s 4.28 o 4.36 br s 4.45 t (9.6)
5′ 3.75 d (11.9) 4.47 o 3.83 d (11.5) 3.78 o 4.47 t (9.6)

4.20 o – 4.32 o 4.28 o –

6′ – – – – –

7′ – 4.23 d (7.1) – – 3.69 s
8′ – 1.14 t (7.1) – – –

1″ 5.39 d (7.7) 6.33 d (8.1) 6.16 s 5.17 d (7.8) –

2″ 4.03 t (7.7) 4.20 d (7.0) 4.75 br s 4.08 t (7.8) –

3″ 4.25 t (8.8) 4.27 d (8.8) 4.63 dt (3.1, 9.4) 4.18 t (8.9) –

4″ 4.24 o 4.37 t (9.2) 4.29 o 4.28 o –

5″ 3.98 br s 4.03 m 4.59 o 3.80 o –

6″ 4.39 dd (5.0, 11.7) 4.41 dd (4.3, 12.0) 1.63 d (5.9) 4.41 dd (4.2, 7.1) –

4.54 br d (10.8) 4.46 dd (2.2, 12.0) – – –
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added to the blank group, and they were incubate at 37°C and 5%
CO2 for 24 h. After the culture, 10 μl of CCK-8 was added to each
well and incubated for 1–4 h at 37°C and 5% CO2. The absorbance
(OD) value of each well at 450 nm was detected with a microplate
reader, repeating three times, and its IC50 value was calculated.

Bioassay for NO Production Inhibitory
Activities
The anti-neuroinflammatory effect of compounds 1–29 was evaluated
by LPS-induced BV2 microglia reported previously (Luo et al., 2020).
The BV2 microglia cells were plated into a 96-well plate. After adding
LPS (1 μg/ml) to each well for 12 h, it was treated with or without
compounds of various concentrations (0, 100, 200, 300, 400, and
600 μM) for 12 h. The NO production in the supernatant was
measured by the Griess reaction. The absorbance at 570 nm was
measured using a microplate reader. The NO concentration and the
inhibitory rate were calculated through a calibration curve. Quercetin
was used as the positive control. Experimentswere repeated three times.

RESULTS AND DISCUSSION

Structure Elucidation of Compounds
Compound 1 was obtained as an amorphous powder. The
negative HR-ESI-MS showed a deprotonated molecular ion

peak at m/z 784.4845 [M + NH4]
+ (calculated for

C41H70NO13, 784.4842), indicating its molecular formula of
C41H66O13. The 1H NMR spectrum displayed characteristic
resonances of an olean-12-ene skeleton, namely, six methyls
[δH 0.83, 0.96, 1.00, 1.22, 1.29, and 1.31 (3H each, all s, H-25,
24, 26, 30, 23, and 27)], one oxygenated methylene [δH 3.61 (2H,
s, H-29)], one oxygenated methine [δH 3.33 (1H, dd, J = 11.5,
3.8 Hz, H-3)], one olefin [δH 5.51 (1H, br. s, H-12)], and two
anomeric proton signals [δH 4.74 (1H, d, J = 7.3 Hz, H-1′) and
5.39 (1H, d, J = 7.7 Hz, H-1″)] (see Tables 1, 2). Coupled with
DEPT spectrum, the 13C NMR spectrum showed the presence of
41 signals, of which 30 signals were assigned to a triterpene of
oleanane skeleton, containing one carboxyl group (δC 180.2), two
olefinic carbons (δC 122.5 and 144.9), two anomeric carbons (δC
107.3 and 106.3), one downfield glycosylation-shifted oxygenated
methine (δC 88.5), a hydroxymethyl carbon (δC 73.8), and six
methyls (δC 15.4, 16.9, 17.3, 19.7, 26.1, and 28.0) (see Tables 1, 2).
These observations implied that compound 1 might be an
oleanane-type triterpenoid saponin.

The HMBC cross-peaks of the anomeric proton H-1′ (δH
4.74)/C-3 showed the by ether bond location of the sugar chain at
C-3. The HMBC connections of H2-22 (δH 2.16)/C-17, C-28
indicated a carboxy fragment attached at C-17 (Figure 2). Based
on the above analysis, the structure of compound 1 was similar to
compound 21, and the major difference was the substituent C-29
is changed from methyl to oxymethylene in compound 1, which

FIGURE 2 | 1H–1H COSY and key HMBC correlations of compounds 1–5.
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was supported by the HMBC correlation of the anomeric protons
of H2-29 (δH 3.61) with C-19, C-20, C-21, and C-30 (Figure 2).
The β orientations of both pyranose sugars were deduced
according to the large coupling constants of the anomeric
protons (J = 7.3 Hz, H-1′; J = 7.7 Hz H-1″). To determine the
absolute configuration of the arabinopyranose and
glucopyranose, compound 1 was hydrolyzed by 2 mM HCl to
obtain the sugar, and then, the trimethylsilyl thiazolidine
derivatives of the sugar and standards, L-arabinose, and
D-glucose were prepared. By comparing the retention times of
these three trimethylsilyl thiazolidine derivatives obtained from
GC, the absolute configuration of the arabinopyranose and
glucopyranose in 1 was determined to be L and D, respectively.

In the NOESY spectrum (Figure 3), the correlation peaks of
H3-24/H3-25/H3-26/H-18/H3-30 suggested the β orientations of
H3-24, H3-25, H3-26, H-18, and H3-30. Conversely, the
correlation peaks of H-3/H3-23/H-5/H-9/H3-27/H-22α (δH
2.16)/H2-29 indicated that H-3, H-5, H-9, H3-23, H3-27, and
H2-29 were α-oriented. Therefore, the structure of compound 1
was elucidated to be 3-O-β-glucopyranosyl-(1→3)-β-
arabinopyranosyl-29-hydroxy-olean-12-en-28-oic acid, named
acasentrioid A.

Compound 2 was isolated as an amorphous powder. Its
molecular formula, C44H70O15, was determined by the
negative HR-ESI-MS at m/z 856.5043 [M + NH4]

+ (calculated
for C44H74NO15, 856.5053). The

1H NMR spectrum displayed a
skeleton characteristic similar to compound 1, namely, six
methyls [δH 0.87, 0.88, 0.92, 0.93, 1.11, and 1.19 (3H each, all
s, H-30, 29, 25, 24, 26, and 27)], together with one methyl triplet
at δH 1.14 (3H, t, J = 7.1 Hz, H-8′), one hydroxymethyl [δH 3.70
(1H, d, J = 10.9 Hz, H-23a), δH 4.34 (1H, d, J = 10.9 Hz, H-23b)],
one oxygenated methine [δH 4.30 (1H, dd, J = 4.3, 12.3 Hz, H-3)],
one olefin [δH 5.41 (1H, t, J = 3.1 Hz, H-12)], and two anomeric
proton signals [δH 5.20 (1H, d, J = 7.7 Hz, GlcA-H-1′) and 6.33
(1H, d, J = 8.1 Hz, Glc-H-1″)] (see Tables 1, 2). There are 44
signals displayed in the 13C NMR spectrum, of which 30 signals
corresponded to the triterpene of the oleanane skeleton.
Combined with the DEPT spectrum, the 13C NMR spectrum
showed resonances for one carboxyl group (δC 176.4), two
olefinic carbons (δC 122.9 and 144.1), two anomeric carbons
(δC 106.4 and 95.6), one downfield glycosylation-shifted
oxygenated methine (δC 82.2), oxygenated methylene (δC
64.3), and seven methyls (δC 13.5, 14.1, 16.0, 17.5, 23.6, 26.0,
and 33.0) (see Tables 1, 2). These observations implied that

FIGURE 3 | Key NOESY correlations of compounds 1–5.
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compound 2 might be as well an oleanane-type triterpenoid
saponin.

The heteronuclear multiple bond coherence (HMBC) cross-
peaks of the anomeric protons H-1′ (δH 5.20)/C-3 and H-1″ (δH
6.33)/C-28 show that sugar is attached to the ether bond of C-3
and C-28, respectively. The HMBC connections of H2-22 (δH
1.74, 1.81)/C-17, C-28 indicated a glycosylated carboxyl fragment
attached at C-17 (Figure 2). Based on the above analysis, the
structure of 2 was similar to ilexoside XLVIII (Amimoto et al.,
1993), except for the ethyl group (δC 14.1 and 61.1) linked to C-6′
(δC 170.2) by ether bond in compound 2, which was supported by
the HMBC correlation of the ethyl protons H3-8′ and H-7′ with
C-7′ and C-6′, respectively (Figure 2). The β orientations of both
pyranose sugars were deduced according to the large coupling
constants of the anomeric protons (J = 7.7 Hz, H-1′; J = 8.1 Hz, H-
1″). The absolute configurations of both glucuronopyranosyl and
glucopyranosyl were determined to be D by the same chemical
methods and GC analysis as 1.

In the NOESY spectrum (Figure 3), the correlation peaks of
H3-24/H3-25/H3-26/H-18/H3-30 suggested the β orientations of
H3-24, H3-25, H3-26, H-18, and H3-30. Conversely, the
correlation peaks of H-3/H2-23/H-5/H-9/H-27/H-21β (δH
1.07)/H3-29 indicated that H-3, H-5, H-9, H2-23, H3-27, and
H3-29 were α-oriented. Thus, the structure of compound 2 was
defined as 3-O-β-D-6′-ethyl-glucuronopyranosyl-23-hydroxy-
olean-12-en-28-β-D-glucopyranosyl, named acasentrioid B.

Compound 3 was also obtained as an amorphous powder
with the molecular formula of C40H64O12 as indicated by the
molecular ion peak m/z 737.4490 [M + H]+ (calculated
737.4471 for C40H65O12) in the HR-ESI-MS spectra. The 1H
NMR spectra gave seven angular methyl signals at δH 0.82 (3H,
s, H-25), 0.99 (3H, s, H-26), 1.06 (3H, s, H-24), 1.17 (3H, s, H-
23), 1.26 (3H, s, H-27), 1.58 (3H, s, H-30), and 1.63 (3H, d, J =
5.9 Hz, Ara-H-6″); one oxygenated methine at δH 3.25 (1H, dd,
J = 4.1, 11.5 Hz, H-3); one olefin at δH 5.53 (1H, br.s, H-12); and
two anomeric proton signals at δH 4.91 (1H, d, J = 5.1 Hz, Ara-
H-1′) and 6.16 (1H, s, Rha-H-1″) (see Tables 1, 2). Accordingly,
the 13C NMR spectra also revealed seven methyl signals at δC
15.5 (C-25), 17.0 (C-24), 17.3 (C-26), 18.5 (C-6″), 26.0 (C-27),
28.0 (C-23), and 25.7 (C-30); an oxygen-substituted methine
signal at δC 88.7 (C-3); oxygen-substituted quaternary carbon
signal at δC 69.8 (C-20); two olefinic carbon signals at δC 122.6
(C-12) and 144.3 (C-13); and one carboxyl carbon signal at δC
180.0 (C-28), along with two anomeric carbon signals at δC
101.7 (C-1″) and 104.9 (C-1′) as determined by the HSQC and
DEPT spectra. All these NMR data were characteristic
resonances of olean-12-ene skeleton triterpenes. The NMR
data of 3 resembled those of 17, and the major difference
was the substituent C-29 is changed from methyl to hydroxyl
in compound 3, which was supported by the chemical shift δC
69.8 (C-20) and the HMBC correlation of the anomeric protons
of H3-30 (δH 1.58) with C-19, C-20, and C-21 (Figure 2). The
HMBC connections of H2-22 (δH 2.07) and H-18 (δH 3.35)/C-
28 indicated a carboxy fragment attached at C-17 (Figure 2).
The absolute configurations of both arabinopyranose and
rhamnopyranose were determined to be L by the same
chemical methods and GC analysis as 1. The coupling

constant of the anomeric hydrogen J = 5.1 Hz (δH 4.91, d, H-
1′) established the α-arabinopyranosyl linkage in 3. In the
NOESY spectrum (Figure 3), the correlation peaks of H3-24/
H3-25/H3-26/H-15β/H-18/H3-30 indicated that the H3-24, H3-
25, H3-26, H-18, and H3-30 were β-oriented. Conversely, the
correlation peaks of H-3/H3-23/H-5/H-9/H3-27 suggested the α
orientations of H-3, H-5, H-9, H3-23, H3-27, and OH-20. Thus,
compound 3was defined as 3β-[(α-L-rhamnopyranosyl-(1→2)-
α-L-arabinopyranosyl)oxy]-20α,30-dihydroxy-norolean-12-
en-28-oic acid, named acasentrioid C.

Compound 4 was obtained as an amorphous powder. Its
molecular formula C41H64O14 was established by the HR-ESI-
MS spectrum m/z 798.4648 [M + NH4]

+ (calculated for
C41H68NO14, 798.4634) and was supported by the 13C NMR
spectroscopic data. The 13C NMR spectrum of 4 displayed 41
carbons, of which 30 were assigned to the aglycone part and the
remaining 11 were assigned to two sugar units comprising one
pentose and one hexose. The NMR spectra showed signals for
six angular methyl at δH 0.80, 0.96, 1.00, 1.18, 1.25, and 1.55 (3H
each, all s, H-25, 26, 24, 23, 27, and 30), and their corresponding
carbons at δC 15.3 (C-25), 17.2 (C-26), 16.6 (C-24), 28.0 (C-23),
25.9 (C-27), and 19.9 (C-30); an olefinic group at δH 5.51 (1H, t,
J = 2.9 Hz, H-12) and δC 123.0 (C-12) and 144.1 (C-13); one
oxygenated methine at δH 3.17 (1H, dd, J = 4.2 and 11.8 Hz, H-
3) and δC 88.7 (C-3); two anomeric proton signals at δH 4.93
(1H, d, J = 5.7 Hz, Ara-H-1′) and 5.17 (1H, d, J = 7.8 Hz, Glc-H-
1″) and their corresponding carbons at δC 104.6 (C-1′) and
105.7 (C-1″); and two carboxy groups at δC 180.0 (C-28) and
181.1 (C-29), which were characteristic for the triterpenoid
saponin with oleanane skeleton. Two-dimensional NMR data
of 4 resembled those of 20, and the major difference was the
substituent C-29 is changed from methyl to carboxyl in
compound 3, which was supported by the chemical shift δC
181.1 (C-29) and the HMBC correlation of H-19 (δH 2.57)/C-29
and H3-30 (δH 1.55)/C-20, C-21, and C-29 (Figure 2). The
absolute configurations of the arabinopyranose and
glucopyranose were determined to be L and D, respectively,
by the same chemical methods and GC analysis as 1, and the
coupling constant of anomeric protons J = 5.7 Hz (δH 4.93, d, H-
1′) and J = 7.8 Hz (δH 5.17, d, H-1″) established the α-
arabinopyranosyl and β-glucopyranosyl linkage in 4. In the
NOESY spectrum (Figure 3), the correlation peaks of H3-24/
H3-25/H3-26/H-15β/H-18/H3-30 indicated that the H3-24, H3-
25, H3-26, H-18, and H3-30 were β-oriented. Conversely, the
correlation peaks of H-3/H3-23/H-5/H-9/H3-27 suggested the α
orientations of H-3, H-5, H-9, H3-23, H3-27, and COOH-20.
Thus, compound 4 was defined as 3β-[(O-β-D-glucopyranosyl-
(1→2)-α-L-arabinopyranosyl)oxy]olean12-ene-28,29-dioic
acid, named acasentrioid D.

Compound 5was obtained as an amorphous powder. The HR-
ESI-MS indicated a precise [M + H]+ ion at m/z 663.4121
(calculated for C37H59O10, 663.4103), indicating an empirical
molecular formula of C41H64O14. In the 1H NMR spectrum,
six quaternary methyl group protons at δH 0.83, 0.89, 0.92,
1.02, 1.04, and 1.11 (3H each, all s, H-25, 27, 23, 26, 30, and
29); a methoxy group proton at δH 3.69 (3H, s, H-7′); an olefinic
proton at δH 5.27 (1H, s, H-19); an oxygenated methine proton at
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δH 4.32 (1H, dd, J = 4.3, 12.1 Hz, H-3), hydroxymethyl protons at
δH 3.70 (1H, d, J = 11.0 Hz, H-24a) and δH 4.34 (1H, d, J =
11.0 Hz, H-24b); and an anomeric proton at δH 5.22 (1H, d, J =
7.7 Hz, GlcA-H-1′) along with six quaternary methyl group
carbons at δC 17.3 (C-25), 15.2 (C-27), 13.3 (C-23), 16.2 (C-
26), 29.2 (C-30), and 30.7 (C-29); methoxy group carbons at δC
51.9 (C-7′); an oxygen-bearing methine carbon at δC 82.0 (C-3); a
set of olefinic carbons at δC 138.9 (C-18) and 131.9 (C-19); a
hydroxymethyl carbon at δC 64.1 (C-24); a carboxyl carbon at δC
179.4 (C-28); an ester group carbon at δC 170.8 (C-6′); and an
anomeric carbon at δC 106.4 (C-1′) in its 13C NMR suggested the
aglycone belongs to oleanane-type triterpene (see Tables 1, 2). A
detailed analysis of HSQC, HMBC, COSY, and NOESY spectra of
5 assisted the complete assignment of its 1H and 13C NMR data,
which were similar to those of 3β,23-dihydroxyolean-18-en-28-
oic acid (Cai and Geng, 2016). The only difference is the presence
of glucuronopyranoside-6′-O-methyl ester at C-3 in 5, while
there is no glycoside at C-3 in 3β,23-dihydroxyolean-18-en-28-
oic acid, which was further confirmed by the HMBC correlations
of H-1′ with C-3 and of H3-7′ with C-6′ (Figure 2). The absolute
configurations of the glucuronopyranosyl were determined to be
D by the same chemical methods and GC analysis as 1, and the
coupling constant of anomeric proton J = 7.7 Hz (δH 5.22, d, H-
1′) established the β-glucuronopyranoside in 5. In the NOESY
spectrum (Figure 3), the correlation peaks of H2-24/H3-25/H3-
26/H-13/H3-30 indicated that the H2-24, H3-25, H3-26, H-13,
and H3-30 were β-oriented. Conversely, the correlation peaks of
H-3/H3-23/H-5/H-9/H3-27 suggested the α orientations of H-3,
H-5, H-9, H3-23, and H3-27. Thus, compound 5 was defined as
3β,23-dihydroxyolean-18-en-28-oic acid 3-O-β-D-
glucuronopyranoside-6′-O-methyl ester, named acasentrioid E.

The structures of known compounds 6–29were determined as
HN-saponin D1 (6) (Kizu et al., 1985), hederagenin glycosides 3-
O-α-L-arabinopyranoside (7) (Grishkovets et al., 2005), oleanolic
acid 3-O-β-D-glucuronopyranoside (8) (Li et al., 2012), HN-
saponin K (9) (Kizu et al., 1985), 3-O-β-D-glucuronopyranosyl-
3β,16α-dihydroxyolean-12-en-28-oic acid (10) (Ushijima et al.,
2008), gypsogenin 3-O-glucuronide (11) (Bouguet-Bonnet et al.,
2002), elatoside G (12) (Yoshikawa et al., 1995), hederagenin-3-

O-β-D- glucuronopyranoside 6′-O-methyl ester (13) (Cao et al.,
2011), tragopogonsaponin A methyl ester (14) (Warashina et al.,
1991), 3-O-6′-O-methyl-β-D-glucuronopy-ranoside of
gypsogenin (15) (Iwamoto et al., 1985), 3-O-β-D-(6′-
O-methyl-glucuronopyranosyl) oleanolic acid (16) (Melek
et al., 1996), 3-O-α-rhamnopyranose- (1→2)-α-
arabinopyranosyl-29-hydroxy-olean-12-en-28-oic acid (17)
(Shao et al., 1989), 3-O-[α-L-rhamnopyranosyl-(1→2)-α-L-
arabinopyranosyl] oleanolic acid (18) (Nakanishi et al., 1993),
HN-saponin F (19) (Mizui et al., 1988), saponin PE (20) (Zhong
et al., 2001), oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-α-L-
arabinopyranoside (21) (Satoh et al., 1994), lucyoside F (22),
lucyoside H (23) (Takemoto et al., 1984), 3-O-β-D-
glucopyranosyl-(1→2)-β-D-glucopyranosyl oleanolic acid (24)
(Reginatto et al., 2001), 3-O-β-D-glucuronopyranosyl methyl
ester-28-O-β-D-glucopyranoside (25) (Li et al., 2007), oleanolic
acid 3-O-α-L-rhamnopyranosyl(1→2)-α-L-arabinopyranosyl-
28-O-β-D-glucopyranosyl ester (26) (Fan et al., 2013),
paritriside E (27) (Wu et al., 2012), 3-O-α-arabinopyranosyl-
(1→2)-β-glucopyranoside-30-norolean-12,20(29)-dien-28-oic
acid (28) (Shao et al., 1989), and 3-[(O-β-D-glucopyranosyl-
(1→3)-α-L-arabinopyranosyl)oxy]-30- noroleana-12,20(29)-
dien-28-oic acid (29) (Jitsuno and Mimaki, 2010) by
comparison with literature data (Supplementary Table S1).
Compounds 7 and 20 were isolated from A. senticosus for the
first time. Compounds 6, 9, 12, 16, 19, 21, 23, and 24, were
isolated from Acanthoganax Miq. species for the first time.
Compounds 10, 11, 14, 15, 22, 26, 27, and 29 were isolated
from the family Araliaceae for the first time.

Bioactive Activity
The cytotoxicity of compounds 1–29 on BV2 microglia was
determined by the CCK-8 assay, and the results are listed in
Table 3. The neuroinflammation model was established by LPS-
induced BV2 microglia, and the neuroprotective effect of
compounds (1–29) in vitro was evaluated. Unfortunately, the
results of the evaluation were not ideal. Compounds 5, 10, 12,

TABLE 3 | Cytotoxic activities of compounds 1–29 on BV2 Cells (IC50, μM).

Compound IC50 (μM) Compound IC50 (μM)

1 143.04 ± 10.89 16 102.31 ± 9.77
2 156.71 ± 12.67 17 234.75 ± 21.13
3 149.89 ± 13.55 18 203.62 ± 19.78
4 246.03 ± 21.16 19 465.70 ± 35.05
5 236.33 ± 20.21 20 136.24 ± 10.55
6 108.17 ± 8.24 21 306.45 ± 28.00
7 123.75 ± 10.56 22 145.61 ± 12.67
8 107.37 ± 9.59 23 131.47 ± 10.04
9 240.90 ± 18.55 24 188.55 ± 15.22
10 215.13 ± 20.24 25 276.32 ± 25.46
11 402.42 ± 39.54 26 160.31 ± 13.53
12 264.49 ± 22.89 27 132.56 ± 11.76
13 41.42 ± 3.93 28 565.45 ± 47.98
14 584.67 ± 45.59 29 126.57 ± 10.56
15 156.85 ± 11.00

TABLE 4 | Inhibitory effects of compounds 1–29 on NO in LPS-induced BV-2
Cells (n = 3, x ± s).

Compound IC50 (μM) Compound IC50 (μM)

1 >100 16 92.55 ± 7.92
2 >100 17 >100
3 >100 18 >100
4 >100 19 >100
5 45.00 ± 3.89 20 >100
6 >100 21 >100
7 >100 22 >100
8 >100 23 >100
9 >100 24 >100
10 50.18 ± 4.72 25 >100
11 >100 26 >100
12 50.96 ± 5.05 27 >100
13 41.42 ± 3.93 28 >100
14 >100 29 >100
15 >100 Quercetin 10.50 ± 1.07

The IC50 > 100 μM was deemed inactive or meant ineffective.
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13, and 16 had moderate inhibitory effects on
neuroinflammation, as indicated in Table 4, and other
compounds had no anti-neuroinflammatory activity. Based
on the existing results and analyzing its structure–activity
relationship, we speculate in the structure of oleanane-type
triterpene saponins; when the C-16 hydroxyl group is
substituted or the structure contains only one methyl
glucuronate, the compound has moderate anti-
neuroinflammatory effects.

CONCLUSION

In summary, five previously undescribed oleanane-type
triterpenoid saponins (1–5), together with twenty-four known
saponins (6–29), were isolated from the fruit of A. senticosus. The
structures of all compounds were elucidated by extensive
spectroscopic analysis, including 1D, 2D NMR, and HR-ESI-
MS, in combination with chemical methods (acid hydrolysis).
The neuroinflammation model was established by LPS-induced
BV2 microglia, and the neuroprotective effects of all compounds
(1–29) were evaluated. Unfortunately, the results of the
evaluation were not ideal. Compounds 5, 10, 12, 13, and 16
had moderate inhibitory effects on neuroinflammation, while
other compounds have no anti-neuroinflammatory activity.
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