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Enhancers are important genomic regulatory elements di-
recting cell type-specific transcription. They assume a key
role during development and disease, and their identifica-
tion and functional characterization have long been the
focus of scientific interest. The advent of next-generation
sequencing and clustered regularly interspaced short pal-
indromic repeat (CRISPR)/Cas9-based genome editing
has revolutionized the means by which we study enhanc-
er biology. In this review, we cover recent developments
in the prediction of enhancers based on chromatin charac-
teristics and their identification by functional reporter as-
says and endogenous DNA perturbations. We discuss that
the two latter approaches provide different and comple-
mentary insights, especially in assessing enhancer suffi-
ciency and necessity for transcription activation.
Furthermore, we discuss recent insights into mechanistic
aspects of enhancer function, including findings about
cofactor requirements and the role of post-translational
histone modifications such as monomethylation of his-
tone H3 Lys4 (H3K4me1). Finally, we survey how these
approaches advance our understanding of transcription
regulation with respect to promoter specificity and tran-
scriptional bursting and provide an outlook covering
open questions and promising developments.

Throughout development, a single genome gives rise to
different cell types with unique morphologies and func-
tions. Each cell type differentially expresses a subset of
genes, which defines its identity. Transcription begins
with the recruitment of RNA polymerase II (Pol II) and
auxiliary factors to core promoters, short DNA sequences
around transcription start sites (TSSs).While core promot-
ers are sufficient to recruit Pol II and drive basal levels of
transcription (Orphanides et al. 1996; Roeder 1996; Black-
wood and Kadonaga 1998), they require cis-regulatory ele-

ments (CREs) or enhancers for full activity (Banerji et al.
1981; Shlyueva et al. 2014). Enhancers bind transcription
factors (TFs) and cofactors to recruit and activate Pol II at
target gene promoters from both proximal and distal posi-
tions. The genomic positions of enhancers typically show
characteristic chromatin properties, which are often used
to predict enhancers (Fig. 1; Heintzman et al. 2009), but
how enhancers function is still poorly understood, and
their reliable identification in large genomes has been a
major obstacle. In this review, we discuss recent techno-
logical advances in the field of regulatory genomics and
novel insights into enhancer function and biology.

Next-generation sequencing (NGS) enables the genome-
wide profiling of gene expression and chromatin
properties, allowing correlative enhancer predictions

Over the past decade, NGS has enabled studies of enhanc-
ers and their properties across entire genomes and, recent-
ly, with single-cell resolution (Adli and Bernstein 2011;
Buenrostro et al. 2013; Nagano et al. 2013; Deng et al.
2014; Macosko et al. 2015). Chromatin immunoprecipita-
tion (ChIP) coupled to NGS (Johnson et al. 2007; Robert-
son et al. 2007) is now used routinely to map TF binding
and histone modifications across entire genomes, includ-
ing histone H3 Lys4 monomethylation (H3K4me1) found
at enhancers, H3K4 trimethylation (H3K4me3) at promot-
ers, and H3K27 acetylation (H3K27ac) at active enhancers
and promoters (for reviews, see Buecker and Wysocka
2012; Zentner and Scacheri 2012; Calo and Wysocka
2013). Together with other correlative traits such as
DNA accessibility and (bidirectional) transcription, they
allow genome-wide enhancer predictions (for reviews,
see Buecker and Wysocka 2012; Maston et al. 2012;
Shlyueva et al. 2014). Recent advances have explored
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the relationship between these correlative traits and en-
hancers, including their putative contributions to enhanc-
er activity.

DNA accessibility is required for enhancer activity and is
a good predictor of enhancers

Histone octamers compact genomic DNA into units
termed nucleosomes, which inhibit the DNA accessibili-
ty of other proteins such as TFs (Svaren et al. 1994; Walter
et al. 1995; Liu et al. 2006), creating a barrier for enhancer
activation. Interestingly, nucleosomes have different af-
finities to different DNA sequences (Thåström et al.

1999; Bernstein et al. 2004; Segal et al. 2006; Kaplan
et al. 2009; Brogaard et al. 2012), and enhancers appear
to have a particularly high sequence-encoded nucleosome
positioning preference. Inactive enhancers are therefore
typically occupied by nucleosomes, which block TF-bind-
ing sites (TFBS), establishing a “default off” state (Lidor
Nili et al. 2010; Charoensawan et al. 2012; Barozzi et al.
2014). Enhancer activation is thought to rely on special-
ized pioneer TFs that bind and displace nucleosomes (Perl-
mann and Wrange 1988; Imbalzano et al. 1994; Cirillo
et al. 2002; Zaret and Carroll 2011; Soufi et al. 2015), pre-
sumably via ATP-dependent chromatin remodelers (for
reviews, see Clapier and Cairns 2009; Hargreaves and
Crabtree 2011), although alternativemechanisms are pos-
sible (for reviews, see Deplancke et al. 2016; Reiter et al.
2017).
Intriguingly, recent work has shown that nucleosomal

DNA can be accessible to micrococcal nuclease (MNase)
(Iwafuchi-Doi et al. 2016; Mieczkowski et al. 2016; Muel-
ler et al. 2017), particularly at enhancers and promoters
that have less stably bound nucleosomes, as determined
by salt extraction fractionation (Henikoff et al. 2009). De-
creased nucleosome stability and increased dynamics can
be caused by TFs that alter nucleosome positioning (Iwa-
fuchi-Doi et al. 2016), post-transcriptional modifications
of histones (for review, see Tessarz and Kouzarides
2014), or the incorporation of histone variants (Dion
et al. 2007; Henikoff et al. 2009; Mieczkowski et al.
2016; for review, see Talbert and Henikoff 2017). The
H3.3 variant, for example, decreases nucleosome stability
(Jin and Felsenfeld 2007), and its incorporation into nucle-
osomes at enhancers and promoters is mediated by the
histone chaperone complex HIRA (Goldberg et al. 2010),
recruited by the DNA-binding RPA complex (Zhang
et al. 2017). Consistently, depletion of either RPA or
HIRA impairs H3.3 incorporation and affects transcrip-
tion, emphasizing the importance of destabilized nucleo-
somes for gene expression.
Given its importance for TF binding and enhancer ac-

tivity, DNA accessibility has been used to predict enhanc-
ers and is one of the most predictive chromatin features
(Boyle et al. 2008; Kwasnieski et al. 2014). However, other
genomic regions such as insulators or promoters are also
accessible (Boyle et al. 2008), and DNA accessibility of en-
hancers does not quantitatively reflect their activity; in
fact, inactive enhancers can also be accessible (Arnold
et al. 2013; Andersson et al. 2014b). Therefore, enhancer
prediction approaches typically consider more features
to increase the specificity toward active enhancers.

Certain histone modifications are predictive of enhancers
yet are not required for enhancer activity

Some post-translational modifications (PTMs) of histones
are frequently found at enhancers and are catalyzed by en-
zymes such as P300/CBP or Mll3/4 that function as tran-
scriptional activators. While PTMs of histone residues
that contact DNA can affect nucleosome stability (Neu-
mann et al. 2009; Tropberger et al. 2013; Pradeepa et al.
2016; for review, see Tessarz and Kouzarides 2014),
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Figure 1. Overview: enhancers and (core) promoters. (A) Gene
(black bars) transcription starts at theTSSs (straight arrow)within
core promoter elements (light brown). Enhancers (blue boxes) are
cis-regulatory DNA sequences that activate expression of their
target genes and are often found in introns or distal intergenic re-
gions both upstream and downstream. (B) Nucleosomes (black
circles) bind to DNA and decrease accessibility to other proteins,
such as TFs (colored rods). Enhancers contain TF-binding motifs
(colored boxes), sequences specifically recognized by TFs and to
which TFs bind in competition with nucleosomes. Enhancer-
bound TFs recruit transcriptional cofactors (colored polygons)
and activate gene expression from a distal gene. Cofactors often
have catalytic activity and post-translationally modify TFs, his-
tones, and other proteins in the vicinity of enhancers and promot-
ers (small colored circles indicate such modifications).
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PTMs in the unstructured histone tails might recruit so-
called reader proteins, but their requirement for enhancer
function is less clear. Themodifications of histone tail res-
idues that aremost often found at enhancers are H3K27ac
and H3K4me1 (Heintzman et al. 2009; Creyghton et al.
2010; Rada-Iglesias et al. 2011; Zentner et al. 2011; Bonn
et al. 2012; for reviews, see Buecker and Wysocka 2012;
Shlyueva et al. 2014).

H3K4me1 occurs at most or all enhancers in both their
active and inactive or primed states prior to activation
(Creyghton et al. 2010; Rada-Iglesias et al. 2011; Zentner
et al. 2011; Bonn et al. 2012; Arnold et al. 2013). Despite
this extensive co-occurrence, two recent studies demon-
strated that H3K4me1 is not required for enhancer
activity: Even though rendering the mammalian H3K4
methyltransferases Mll3/Mll4 or their fly ortholog, Tri-
thorax-related (Trr), catalytically inactive efficiently de-
pleted H3K4me1, it had negligible effects on gene
expression and resulted in viable and fertile flies (Dorighi
et al. 2017; Rickels et al. 2017). The same mild impact on
global gene expression was observed with a hyperactive
mutant of Trr that increased H3K4me1 above physiologi-
cal levels (Rickels et al. 2017). Even thoughH3K4me1 loss
might affect individual genes, potentially relating to distal
enhancer contacts and H3K4me1-bound proteins (Local
et al. 2018; Yan et al. 2018), these observations suggest
that H3K4me1 is not generally required for enhancer ac-
tivity and does not seem to be able to cause ectopic gene
expression. This is in stark contrast to the consequences
of depleting the respective methyltransferases, which
strongly perturbs gene expression and is lethal in flies
and mice (Sedkov et al. 1999; Lee et al. 2013; Dorighi
et al. 2017; Rickels et al. 2017; for reviews, see Shilatifard
2012; Herz et al. 2013). A similar finding applies to UTX, a
H3K27 demethylase that recruits P300 andMll4 and is re-
quired for enhancer activity, while its catalytic activity is
not (Wang et al. 2017).

While the catalytic activity of Mll3/4/Trr methyltrans-
ferases is dispensable for transcription activation, the
acetyltransferase activity of P300/CBP is required (Hilton
et al. 2015; Boija et al. 2017). P300/CBP acetylates
H3K27, a residue that can also be trimethylated to form
H3K27me3 during Polycomb-repressive complex 2
(PRC2)-mediated silencing (Boyer et al. 2006). Indeed,
H3K27 mutations can dominantly affect PRC2 target
genes, as was shown experimentally by injecting mRNA
of H3K27R (where R is arginine, a positively charged ami-
no acid that cannot be acetylated or methylated) into
mouse zygotes, which impaired heterochromatin estab-
lishment and transcriptional silencing (Santenard et al.
2010). More importantly, dominant PRC2 loss of function
is also thought to underlie the cancer-causing effect of the
H3K27Mmutant that is observed in >70%of pediatric gli-
omas (Schwartzentruber et al. 2012; Wu et al. 2012;
Bender et al. 2013; Lewis et al. 2013; Funato et al. 2014;
Herz et al. 2014).

To assess the regulatory relevance of H3K27 in Droso-
phila, Pengelly et al. (2013) analyzed cells in which most
of the canonical H3 was replaced with H3K27R.
H3K27R mutant cells failed to silence PRC2 target genes

and formed tissues that displayed developmental defects
similar to PRC2 mutants. While enhancer activity was
not directly assessed and noncanonical H3 variants were
not mutated, the absence of a general loss of transcription
suggests that H3K27acmight not be required for enhancer
activity (Pengelly et al. 2013). This is consistentwith inde-
pendent observations that active enhancers in both flies
(Bonn et al. 2012) and mice (Pradeepa et al. 2016) are not
necessarily marked by H3K27ac and suggests that P300/
CBPmight target histone residues other than H3K27 (Pra-
deepa et al. 2016) or nonhistone proteins such as TFs (Ed-
munds and Mahadevan 2004; Ashwell 2006; Kim et al.
2006; Roe et al. 2015) or preinitiation complex (PIC) com-
ponents, including Pol II (Schröder et al. 2013). However,
even if not directly involved in transcription activation,
H3K27ac could modulate other aspects of enhancer activ-
ity; for example, destabilizing nucleosomes or recruiting
H3K27ac-binding proteins.

Histone 3 Ser10 and Ser28 phosphorylation at mitogen-
and stress-activated protein kinase 1/2 (MSK1/2)-induced
enhancers might also have an auxiliary role (Sawicka
et al. 2014; Josefowicz et al. 2016). While the MSK1/2 ki-
nases downstream from p38 and ERK signaling are main-
ly known to activate TFs by phosphorylation (Wiggin
et al. 2002), nucleosomes that flank the TF-bound en-
hancers also become phosphorylated at H3S10 and
H3S28 during kinase signaling (Sawicka et al. 2014). Mu-
tation of H3S28, but not H3S10, to alanine reduced the re-
cruitment of p300 to these enhancers, and in vitro
transcription assays show that transcription output is re-
duced (Josefowicz et al. 2016). While the effects were
small compared with the activation mediated by the
MSK1/2 target TFs, this example shows that PTMs at sec-
ondary targets near enhancers can gain modulatory roles
with potential benefits for the robustness or efficiency of
enhancer function.

Altogether, recent data suggest that enhancer-associat-
ed histone modifications are not necessarily required for
enhancer activity (Fig. 2); i.e., even a strong correlation
does not imply causation (Pollex and Furlong 2017).We ar-
gue that the recent finding that H3K4me1 is entirely dis-
pensable for transcription regulation warrants careful
reconsideration of a putative role of other histone modifi-
cations such asH3K27ac. Among the possible functions of
histone PTMs that could bemore difficult to assess are, for
example, indirect ones; i.e., PTMs that function by pre-
venting others, such as H3K27ac, which may function
to prevent H3K27 methylation and Polycomb-mediated
silencing (Pengelly et al. 2013). Alternatively, it is possible
that several PTMs contribute to enhancer function
through parallel mechanisms such that the loss of one
PTMmaybe obscured by the presence of others. However,
it is also possible that some histone modifications in the
vicinity of enhancers could be functionally neutral by-
products: Perfect specificity does not exist in biological
systems, and increasing specificity is typically costly, im-
plies a trade-off in sensitivity or enzyme kinetics, and can
evolve only if it confers selective advantage. If that were
the case, evolution may still have made use of such by-
products to modulate enhancer function or increase
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robustness to conditions not typically assessed in labora-
tory studies.

Enhancer transcripts as predictors of enhancer activity

Enhancer transcription is also correlated with enhancer
activity, as has been observed for individual genes (Tuan
et al. 1992) and by genome-wide analysis of transcription
and Pol II binding in mammals (Kim et al. 2010; Djebali
et al. 2012), flies (De Santa et al. 2010; Kharchenko et al.
2011; Bonn et al. 2012), and nematodes (Chen et al.
2013; for review, see Li et al. 2016).
Transcription from enhancers has been reported to of-

ten be bidirectional (Kim et al. 2010; Andersson et al.
2014b), although it can also be unidirectional (Koch
et al. 2011). The resulting enhancer RNAs (eRNAs) may
be polyadenylated and stable (Koch et al. 2011; Andersson
et al. 2014b), but, more typically, eRNAs are unstable and
rapidly degraded by the exosome (Andersson et al. 2014b;
Lubas et al. 2015). This instability hinders eRNA detec-
tion with RNA sequencing approaches that measure
steady-state RNA levels (Rabani et al. 2014; Schwalb
et al. 2016). Indeed, eRNA detection is improved by exo-
some inhibition (Andersson et al. 2014a) or methods
that measure nascent RNA, such as global run-on (GRO)
sequencing (GRO-seq) (Core et al. 2008), precision nuclear
run-on (PRO) sequencing (PRO-seq) (Kwak et al. 2013),
START-seq (Scruggs et al. 2015), native elongating tran-
script (NET) sequencing (NET-seq) (Churchman and
Weissman 2011), and transient transcriptome sequencing
(TT-seq) (Schwalb et al. 2016; Michel et al. 2017).
The correlation of eRNA transcription and enhancer ac-

tivity has led to the proposal that enhancers and promot-
ers might be more similar than traditionally assumed
(Core et al. 2014; Andersson 2015; Kim and Shiekhattar
2015). It has also been used for enhancer prediction across
different cell types and tissues (Melgar et al. 2011; Ander-
sson et al. 2014a) and in inducible systems such as neuro-

nal activation (Kim et al. 2010; Schaukowitch et al. 2014),
immune response (De Santa et al. 2010; Kaikkonen et al.
2013; Michel et al. 2017), hormone signaling (Hah et al.
2011, 2013; Wang et al. 2011; Li et al. 2013; Lai et al.
2015), or the modulation of TF activity (Melo et al.
2013). Interestingly, the timing between enhancer and
gene transcription seems to be locus-specific (or may
depend on the approaches used), with eRNA transcription
precedingmRNAproduction for some loci (De Santa et al.
2010; Arner et al. 2015), while, for others, both RNA spe-
cies were transcribed synchronously (Kaikkonen et al.
2013; Michel et al. 2017).
Even though eRNAs seem to generally be good predic-

tors of active enhancers (Melgar et al. 2011; Wang et al.
2011; Andersson et al. 2014a; Rennie et al. 2017; Henri-
ques et al. 2018; Mikhaylichenko et al. 2018), not all pre-
dicted candidates function as enhancers. For example,
while 70% of CAGE (cap analysis of gene expression)-de-
fined enhancers validated in reporter assays (Andersson
et al. 2014a), the remaining 30%may have other regulato-
ry functions, and, indeed, bidirectional transcription has
been reported for insulators (Melgar et al. 2011) and acces-
sible DNA in general (Young et al. 2017). Similarly, active
enhancers might show little or no eRNA transcription,
outcomes that depend on the sensitivity of eRNA detec-
tion. For example, 20%–33% of the tested regions with-
out detectable eRNA initiation yet with enhancer-
associated histone marks showed enhancer activity in re-
porter assays in mammalian cells (Andersson et al.
2014a), and some active developmental enhancers inDro-
sophila did not initiate eRNAs to detectable levels
(Mikhaylichenko et al. 2018). Enhancers that do or do
not strongly initiate eRNA transcription seem to differ
at the sequence level (i.e., the occurrence of core promoter
elements) (Andersson et al. 2014b; Core et al. 2014; Ar-
nold et al. 2017; Mikhaylichenko et al. 2018), and it will
be interesting to see whether cell types or tissues—or
their respective proliferation status—also influence
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Figure 2. Contributions of cofactors and histone tail
modifications to enhancer activity. (A) The methyl-
transferases Mll3/4/Trr are required for enhancer ac-
tivity and transcription, but their methyltransferase
activity is not (Dorighi et al. 2017; Rickels et al.
2017). (Top) An active enhancer withmethyltransfer-
ase and H3K4me1-marked flanking histones acti-
vates gene expression. (Middle) Mutation of the
catalytic domain results in the loss of H3K4me1
butmaintains enhancer activity and gene expression.
(Bottom) Knockout of the methyltransferase leads to
the loss of gene expression. (B) Enzymatic targets of
acetyltransferases P300/CBP, which have been re-
ported to acetylate many proteins, including TFs, co-
factors, histones, and members of the PIC, including
Pol II (for references, see the text). (C ) H3K27ac may
have an indirect role in preventing PRC2-mediated
silencing. (Top) PRC2 (brown) catalyzes H3K27me3,
which is blocked by H3K27ac, preventing PRC2-me-

diated silencing. (Bottom) Mutations of H3K27 tomethionine (M; as observed frequently in pediatric gliomas) or arginine (R) prevent both
acetylation and methylation. Both mutations induce changes in gene expression that mimic PRC2 loss-of-function H3K27M in a domi-
nant fashion, as indicated by the dashed cross (for references, see the text).
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eRNA abundance. Overall, the results obtained so far sug-
gest that eRNAs associate with enhancer activity across
different species but that they are not perfectly predictive
and therefore may not be either required or sufficient for
enhancer activity. This further suggests that enhancer
and promoter elements can co-occur in the genome but
that enhancer and promoter functionalities are distinct
and not interdependent (Arnold et al. 2017; Catarino
et al. 2017; Mikhaylichenko et al. 2018).

Proposed eRNA functions are diverse and context-
dependent

Establishing a causal and potentially mechanistic rela-
tionship between eRNAs and enhancer activity has been
difficult, presumably because of at least three reasons:
(1) Enhancer activity might be influenced by the act of
eRNA transcription or by the nascent or mature RNAs.
(2) Geneticmanipulations of eRNA sequences necessarily
alter the enhancer sequence and thus, potentially, its
activity. (3) Enhancer activity likely impacts eRNA tran-
scription, creating a circularity that obscures directional-
ity and causality.

Pol II binding and eRNA transcription have been report-
ed to displace nucleosomes and establish DNA accessibil-
ity (Gilchrist et al. 2010;Mousavi et al. 2013) such that the
act of eRNA transcription might have a role in enhancer
activity. Alternatively, nascent eRNAs could be impor-
tant, as they have been reported to perform diverse func-
tions, including the stabilization of TF binding (Sigova
et al. 2015), the recruitment and activation of cofactors
(Kaikkonen et al. 2013; Gardini et al. 2014; Lai et al.
2015; Bose et al. 2017), the release of NELF from promot-
ers (Schaukowitch et al. 2014), or the promotion of cohe-
sin-mediated enhancer–promoter contacts (Li et al.
2013; Hsieh et al. 2015; Isoda et al. 2017). However, each
of these functions seems to apply only to individual
eRNAs rather than globally or may depend on the respec-
tive experimental models or approaches. A recent propos-
al might reconcile the diversity of eRNA functions,
particularly regarding protein recruitment: If eRNAs me-
diated the formation of specialized membraneless com-
partments at active enhancers or promoters via phase
transition (Muerdter and Stark 2016; Hnisz et al. 2017),
these compartments could feature high local concentra-
tions of diverse activators. RNA-mediated phase transi-
tion has indeed been reported for RNAs with tandem
repeats and for nucleolar rRNAs (Berry et al. 2015; Jain
and Vale 2017). However, it remains to be tested whether
short unstable eRNAs with highly diverse sequences
could drive phase transition and whether this could con-
tribute to enhancer activity. It will also be interesting to
learn how compartments around active gene loci can re-
main separated from compartments with repressive prop-
erties (Banani et al. 2017), such as those formed during
heterochromatin protein 1 (HP1)-mediated phase transi-
tion (Larson et al. 2017; Strom et al. 2017).

The geneticmanipulation of eRNAs is also challenging,
as it necessarily affects the DNA sequence of the enhanc-

ers and thus, potentially, the enhancers’ activities. This
has been highlighted by recent work that assessed the
function of long noncoding RNAs (lncRNas) by polyA
site insertion next to the lncRNApromoter, enforcing ear-
ly transcription termination (Anderson et al. 2016;
Engreitz et al. 2016; Paralkar et al. 2016). In many cases,
the lncRNAs seemed to be dispensable, and transcription
was activated by enhancers located proximally to the
lncRNAs’ promoters (for discussion, see Bassett et al.
2014; Espinosa 2016). The lncRNA upperhand is one of
the exceptions, as it seems to control Hand2 expression
and heart development (Anderson et al. 2016). Similarly,
the direct depletion of eRNAs by either RNAi or RNase
H has been reported to abrogate the expression of individ-
ual genes (Hah et al. 2013; Lam et al. 2013; Li et al. 2013;
Schaukowitch et al. 2014), yet this approach has not been
used very frequently, presumably due to the inefficiency
of targeting nascent RNAs by these approaches or the dif-
ficulty in further increasing the turnover of already short-
lived eRNAs (De Santa et al. 2010; Andersson et al. 2014b;
Lubas et al. 2015).

A final complication is that enhancer activity likely in-
fluences eRNA transcription: Active enhancers are char-
acterized by accessible DNA and TFs that recruit
activating cofactors such as P300/CBP, Mll3/4, or Media-
tor, which can bind and/or activate Pol II at target promot-
ers. This established mechanism implies the existence of
strongly activating cues at enhancers, making it likely
that enhancers are transcribed even if this transcription
was not functional; i.e., entirely neutral. This is because
evolving a sequence specificity for transcription initiation
that makes initiation perfectly specific for gene starts (or
an activemechanism that prevents initiation in any other
region) is energetically costly and can evolve only if there
is a strong selective advantage. In addition, TSSs in en-
hancers contain sequences that weaklymatch to core pro-
moter elements—short sequences that can occur by
chance even in random sequences (Andersson et al.
2014a; Mikhaylichenko et al. 2018). While a sensible
null hypothesis should therefore be that eRNAs are neu-
tral by-products of accessible DNA in the vicinity of
strong transcriptional activators (Young et al 2017; for dis-
cussion, see Natoli and Andrau 2012), it is possible that
evolution has taken advantage of Pol II binding, transcrip-
tion, or eRNAs at enhancers and evolved means to modu-
late enhancer function.

Toward a functional definition of regulatory elements

Genomic traits used to predict enhancers can also be
found in other genomic regions, making enhancer predic-
tions imperfect. Thus, enhancer identification should in-
clude direct functional tests of enhancer activity,
following the original definition of enhancers as DNA se-
quences that increase transcription from distal promoters
(Banerji et al. 1981; for review, see Shlyueva et al. 2014).
Along this paradigm, two approaches are being applied
that measure either the ability of candidate sequences
to drive transcription in standardized reporter assays or
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the requirement of candidate regions for endogenous gene
expression; i.e., tests of sufficiency and necessity,
respectively.

Enhancer DNA is sufficient for enhancer activity

One of the most fascinating properties of enhancers is
their functional autonomy; i.e., their ability to retain their
transcription-activating function outside their endoge-
nous contexts even in combination with heterologous
promoters and reporter genes (Banerji et al. 1981). Ectopic
assays explore this property to test DNA sequences sepa-
rated from their endogenous sequence and chromatin en-
vironments. This removes any regulatory cues that could
confound the results, providing a fair comparison between
the enhancer activities of different DNA sequences. Such
activities can be quantified by measuring the abundance
of reportermRNAs or proteins; e.g., via the proteins’ enzy-
matic activities. In fact, the first enhancer was identified
using such reporter assays, which also provided the func-
tional definition of enhancers as DNA sequence elements
that activate transcription irrespective of distance, orien-
tation, and position (Banerji et al. 1981; for review, see
Shlyueva et al. 2014). Classical reporter assays (e.g., those
based on luciferase) enable systematic tests and have been
widely used yet suffered from low throughput, as candi-
dates needed to be tested one by one.

Assessing the enhancer potential of candidate DNA
sequences genome-wide

Several methods have taken advantage of NGS to vastly
increase the throughput of ectopic enhancer activity as-
says (Fig. 3). Massively parallel reporter assays (MPRAs)
uniquely associate candidate enhancers with barcodes—
short unique DNA sequences that are used instead of re-
porter genes (Kwasnieski et al. 2012; Melnikov et al.
2012; Patwardhan et al. 2012). Enhancers drive expression
of their associated barcodes, and the abundance of each
barcode among all reporter mRNAs reflects the activity
of the associated enhancer, allowing the parallel testing

of many candidates (for reviews, see Shlyueva et al.
2014; White 2015; Santiago-Algarra et al. 2017). Self-tran-
scribing active regulatory region (STARR) sequencing
(STARR-seq) (Arnold et al. 2013; Muerdter et al. 2018;
for review, see Muerdter et al. 2015) tests enhancer candi-
dates downstream from the TSS such that active enhanc-
ers drive their own transcription. The direct coupling of
enhancer sequences and activities in cis (i.e., the use of
each enhancer as its own barcode) simplifies library con-
struction and allows millions of candidates to be tested
at once, enabling genome-wide screens in fly and mam-
malian cells (Arnold et al. 2013; Muerdter et al. 2018).
Thehigh-throughput testing of enhancer candidates and

variants in multiplexed ectopic assays enables their appli-
cation tomany questions, including the importance of TF-
binding motifs (Melnikov et al. 2012; Patwardhan et al.
2012; Kheradpour et al. 2013; Yanez-Cuna et al. 2014),
their arrangements (Smith et al. 2013; Erceg et al. 2014;
Fiore and Cohen 2016; White et al. 2016; Vierbuchen
et al. 2017), and other sequence elements (White et al.
2013;Vockleyet al. 2016;Grossmanet al. 2017;Chaudhari
and Cohen 2018) for enhancer activity or the functional
impact of single-nucleotide polymorphisms (SNPs) (Kwas-
nieski et al. 2012; Reddy et al. 2012; Vockley et al. 2015;
Tewhey et al. 2016; Ulirsch et al. 2016; for reviews, see
Maston et al. 2012; Spitz and Furlong 2012; Yáñez-Cuna
et al. 2013; Levine et al. 2014; Shlyueva et al. 2014; Zabidi
and Stark 2016). It will be exciting to see such approaches
advance our understanding of how enhancer activities are
encoded in enhancer sequences.

Integrated reporters can recapitulate developmental
enhancer activities but with differences from the
endogenous enhancer loci

The study of cell type-specific enhancer activities across
entire embryos and throughout development requires
the reporter constructs to be integrated into the genome,
which is typically achieved by microinjections (Kothary
et al. 1989; Visel et al. 2008) or by integrating retroviruses
and lentiviruses (Murtha et al. 2014). However, this leads
to random integrations likely biased toward accessible
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A B Figure 3. Ectopic reporter assays measure
enhancer activities quantitatively. (A) Ec-
topic assays remove candidate sequences
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used with nonintegrating (episomal) plas-
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periment by replacing the reporter gene
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quantifying the barcode-containing transcripts. STARR-seq uses each candidate as its own barcode, which simplifies library cloning
and increases throughput. Both types of assays typically include ORFs (green) to stabilize the reporter mRNA.
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DNA near active enhancer or promoter regions (Bushman
2003;Myers et al. 2005), whichmay strongly influence re-
porter gene transcription (Akhtar et al. 2013). To allow
more controlled comparisons, enhancer candidates have
been tested using reporters integrated into identical geno-
mic positions (e.g., Dickel et al. 2014; Kvon et al. 2014) in a
trade-off with throughput.

Genomically integrated reporter assays have been used
to define enhancer activities throughout development in
both flies (Kvonetal.2014) andmice (Spitzetal. 2003;Visel
et al. 2007;Marinic ́ et al. 2013;Osterwalder et al. 2018), re-
capitulating dynamic and cell type-specific enhancer ac-
tivities that often (82% for developmental enhancers in
Drosophila embryos) (Kvon et al. 2014) match the endoge-
nous activities as judged by the expression pattern of
neighboring genes (Sagai et al. 2005; Kvon et al. 2014;
Kvon 2015). Interestingly however, the activity patterns
of some enhancers in such ectopic assays were broader
than the enhancers’ endogenous activities (Spitz et al.
2003; Kvon et al. 2014). These discrepancies might stem
from additional regulatory elements that regulate the en-
hancers’ target genes or from locus-specific transcriptional
silencing of the enhancers, mediated, for example, by
flanking sequences and chromatin features that differ be-
tween the endogenous loci and the ectopic site.

Episomal and integrated reporters in defined cell types

In contrast to the assays above, enhancer activities in indi-
vidual defined cell types in culture are often tested using
episomal plasmid-based reporters, particularly when
many candidates are tested in highly parallelized assays
(for review, see White 2015). Studies of simian virus 40
(SV40) DNA using electron microscopy suggest that epi-
somal plasmid DNA is chromatinized and acquires nucle-
osomes similar to genomic DNA (Cremisi et al. 1975),
although the chromatin likely differs from the enhancer
candidates’ endogenous loci. Indeed, a substantial fraction
of the sequences identified as strong enhancers in such as-
says is likely silenced in their endogenous contexts as
judged by DNA accessibility (∼30% of enhancers active
in ectopic assays in fly cells and 60% in human cells are
closed) (Arnold et al. 2013;Muerdter et al. 2018). The prev-
alence of H3K27me3 and H3K9me3 marks at the endoge-
nous loci of such closed enhancers suggests that they are
silenced at the chromatin level by the Polycomb- and
HP1-dependent pathways (Arnold et al. 2013; Muerdter
et al. 2018). In human cells, many closed enhancers are
retrotransposons, and, consistently, an LTR-derived
mouse mammary tumor virus (MMTV) promoter was si-
lenced only when stably integrated into the cellular chro-
matin but not on an episomal plasmid (Archer et al. 1992).

Genomic integration therefore has been assumed to
provide a chromosomal environment similar to the en-
hancers’ natural chromatin state. However, this assump-
tion is not generally true, as the insertion sites of the
reporter constructs are typically different from the endog-
enous sites of the candidate enhancers (particularly when
retroviruses or lentiviruses are used) (see above). Impor-
tantly, Drosophila S2 cell enhancers that were accessible

in their endogenous contexts (i.e., open) and those that
were silenced at the chromatin level (i.e., closed) were ac-
tive in both episomal and genomically integrated assays
(Arnold et al. 2013). Consistently, enhancer activities
measured by reporter assays using integrating and nonin-
tegrating lentiviruses were, overall, highly similar (Pear-
son’s correlation coefficent = 0.85) (Inoue et al. 2017).
These outcomes suggest that differences in enhancer ac-
tivities may not result from episomal versus chromosom-
ally integrated assays but from chromatin-mediated
developmental silencing that is stablished during cell
type differentiation and can be maintained in differentiat-
ed cells but not established de novo. In a given cell type,
episomal and genomically integrated assays therefore
should yield similar results, which, however, can differ
from the candidates’ endogenous activities (Arnold et al.
2013; Muerdter et al. 2018).

Assessing the impact of enhancer candidates on gene
expression by genetic enhancer perturbation

Akey question not addressed by ectopic enhancer activity
assays is whether—and how—a genomic enhancer affects
cellular gene expression. It is known that mutations or
deletions of genomic enhancers can cause genemisregula-
tion and lead to different diseases, including developmen-
tal defects (e.g., Sagai et al. 2005) or cancer (e.g., Pomerantz
et al. 2009; Wasserman et al. 2010; Sur et al. 2012; Man-
sour et al. 2014). In fact, many disease-associated genetic
variants identified through genome-wide association stud-
ies (GWASs) map to noncoding regulatory sequences
(Degner et al. 2012; Maurano et al. 2012; Schaub et al.
2012; Karczewski et al. 2013). The question of how differ-
ent enhancers contribute to cellular gene expressionmoti-
vated a second type of enhancer activity assay based on the
genetic perturbation of genomic enhancers (Fig. 4).

Versatile testing of endogenous enhancer activities by
clustered regularly interspaced short palindromic repeat
(CRISPR)–Cas9

Early experimental approaches disrupted endogenous
enhancer activities as part of genetic screens via random
insertional mutagenesis with transposons (e.g., P element
or sleeping beauty) that randomly integrate in the genome
(for reviews, seeKawakamietal. 2017;Kebriaei etal. 2017).
This approach led, for example, to the identification of the
extensive regulatory region of theDrosophila gene decap-
entaplegic (dpp) (St Johnstonetal. 1990),whichwas further
defined using ectopic enhancer activity assays (Blackman
et al. 1991).Targeted genomeengineering allows thedirect
testing of specific candidate sequences and was used, for
example, to demonstrate the importance of the sonic
hedgehog (shh) limb enhancer for shh expression and
limb development (Sagai et al. 2005). Targeted editing of
specific genomic regions has been revolutionized recently
by CRISPR–Cas9, which introduces double-strand breaks
in target DNA sequences defined by sequence-comple-
mentary guide RNAs (gRNAs) (Jinek et al. 2012).
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The simultaneous use of two gRNAs to delete defined
genomic regions (Fig. 4A) has been used, for example, to
measure the regulatory contribution of an enhancer clus-
ter (also called “superenhancer” [SE]) (Hnisz et al. 2013;
Lovén et al. 2013; Whyte et al. 2013) in the Sox2 locus
in embryonic stem cells (Li et al. 2014; Zhou et al. 2014)
and in theMyc locus in blood cells (Bahr et al. 2018). In ad-
dition, the targeted deletion of individual constituent en-
hancers within SEs revealed that enhancer activity is
mostly dependent on a few constituents that activate
transcription predominately additively (Hnisz et al.
2015; Hay et al. 2016; Moorthy et al. 2017; Xie et al.
2017; for discussion, see Dukler et al. 2016). In Droso-
phila, enhancer deletion has been used to uncouple the
tissue-specific contribution of different enhancers to the
overall expression pattern of the rhomboid gene (Rogers
et al. 2017).
Provided a DNA template to repair the double-strand

breaks via homology-directed DNA repair, essentially ar-
bitrary manipulations are possible, including the inser-
tion of defined sequences. For example, to study the
evolution of shh expression in vertebrates, the endoge-
nous shh limb enhancer sequence was replaced by orthol-
ogous sequences from different species, including snakes
(Kvon et al. 2016). Substitution of the mouse enhancer
with the snake enhancer led to development of limbless
(or “serpentized”) mice due to a 17-base-pair deletion in
the snake enhancer that removed binding sites for the
TF ETS1. Overall, CRISPR–Cas9 provides a powerful
and flexible approach to assess the impact of endogenous
enhancers on gene expression in vivo, including the func-
tional impact of SNPs that are significantly associated
with phenotypic traits according to GWASs (Smemo
et al. 2014; Yao et al. 2014; Claussnitzer et al. 2015; Singh
and Schimenti 2015; Cohen et al. 2017).

Multiplexed testing of endogenous enhancer functions
by CRISPR–Cas9

CRISPR/Cas9-mediated loss-of-function studies of en-
hancers have been multiplexed to screen several regions
viamultiple gRNAs simultaneously (for review, see Lopes
et al. 2016). While the approaches discussed above used
CRISPR/Cas9 to introduce defined genetic manipulations
and evaluated their impact on transcription, multiplexed
screens introduce many DNA alterations via the use of
complex gRNA pools, select cells based on a particular
phenotype (e.g., increased proliferation), and identify
gRNAs that are significantly enriched or depleted in the
selected cells (Fig. 4B). Such screens have been used to
identify functional enhancers among p53- and ERα-bind-
ing sites (Korkmaz et al. 2016) or identify important
DNA motifs within regulatory regions (Canver et al.
2015; Sanjana et al. 2016). Since not all genes are associat-
ed with a selectable cellular phenotype, target genes can
be tagged with GFP, allowing selection by FACS (Rajago-
pal et al. 2016; Diao et al. 2017). FACS-based CRISPR/
Cas9 screens for genomic regulatory elements revealed re-
gions required for the expression of the respective GFP-
tagged genes, including “closed” regionswithout chroma-
tin properties typically associated with enhancers and
promoter regions that functioned as enhancers of distal
genes (Rajagopal et al. 2016; Diao et al. 2017; for discus-
sion, see Catarino et al. 2017).

Targeted recruitment of transcriptional repressors
can identify enhancers

Catalytically dead Cas9 (dCas9) retains its DNA targeting
ability, making it a flexible in vivo recruitment device.
While DNA binding of dCas9 alone can inhibit gene
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Figure 4. Clustered regularly interspaced short palindromic repeat (CRISPR)–Cas9-based approaches to assess endogenous enhancer ac-
tivities. (A) Endogenous enhancer activities are typically assessed by genetic perturbation and assays that detect loss of enhancer function.
Transcription of an endogenous target gene is driven by the enhancer (blue) and is lost upon enhancer mutation or deletion by Cas9 and
guide RNAs (gRNAs). Deletions can be repaired through homologous recombination to insert exogenous sequences (purple), allowing es-
sentially arbitrarymanipulations such as the exchange of enhancerswith homologous sequences fromother species (e.g., Kvon et al. 2016).
(B) Endogenous high-throughput screens rely on cell selection to enrich for gRNAs that perturb enhancer activities. In a typical screen, a
pool of gRNAs is transfected into cells, which introducesmutations or deletions in candidate regions. gRNAs that target active enhancers
(blue) disrupt target gene expression and can be enriched by selecting for a cellular phenotype (e.g., increased proliferation [left] or reporter
gene expression [right]). The gRNAs enriched in the selected cells can identify the enhancers targeted (for references, see the text).
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expression through steric hindrance (Gilbert et al. 2013;
Qi et al. 2013), dCas9-mediated recruitment of transcrip-
tional repressors is more potent (Gilbert et al. 2013). For
example, recruitment of KRAB (Thakore et al. 2015;
Adamson et al. 2016; Dixit et al. 2016; Klann et al. 2017)
or LSD1 (Kearns et al. 2015) has been used to repress en-
hancers, which can also be exploited for enhancer identi-
fication. For example, a pool of gRNAs targeting candidate
regions in the GATA1 and MYC loci (essential genes for
K562 survival and proliferation) was used to recruit
KRAB to these candidates and identify enhancers (Fulco
et al. 2016). Overall, such high-throughput endogenous as-
says are able to test thousands of genomic regions in a sin-
gle screen, which is, however, typically centered on a
particular target gene with a selectable phenotype. Re-
cently, dCas9-KRAB recruitment has been coupled with
single-cell RNA sequencing methods, enabling the com-
bined targeting of multiple enhancers while assessing
global effects on gene expression for many genes in paral-
lel (Xie et al. 2017).

Endogenous and ectopic enhancer activity provides
complementary insights into enhancer sufficiency
and necessity

Ectopic and endogenous assays address characteristically
different questions and provide complementary insights
into gene regulation (Fig. 5): Ectopic assays assess the suf-
ficiency of DNA sequences to activate transcription,
while endogenous perturbations assess the necessity of
genomic regions for the expression of a specific gene.
The implications of these differences are interesting and
important: As ectopic reporter assays measure the ability
of DNA sequences to drive reporter gene transcription in a
neutral context, active candidates can be inactive in their
endogenous contexts, silenced at the chromatin level (Ar-
nold et al. 2013; Muerdter et al. 2018).

The results of endogenous enhancer perturbations also
need to be interpreted with care: Regions required for

the expression of certain genes are not necessarily enhanc-
ers, as perturbationsmight influence transcription by oth-
ermeans; e.g., when insulators, locus control elements, or
promoters are affected. Conversely, regions that do not ap-
pear necessary for the expression of a particular gene can
still be active: They might regulate a different gene or
act redundantlywith other enhancers. Key developmental
genes are commonly regulated by multiple enhancers,
which can act redundantly to assure robust gene regula-
tion (Frankel et al. 2010; Perry et al. 2010; for review, see
Barolo 2012). While full redundancy is thought to be
rare, as the negative selection preserving such redundant
sequences and functions would be low (Nowak et al.
1997), many enhancers seem to act partially redundantly,
assuring transcription above a certain threshold (Bothma
et al. 2015; Lam et al. 2015; Cannavò et al. 2016; Chatter-
jee et al. 2016; Osterwalder et al. 2018) or diverging in spa-
tial activity patterns over development (Kvon et al. 2014;
Bahr et al. 2018).

These considerations suggest that results from ectopic
enhancer activity assays should be interpreted in combi-
nation with methods that assess DNA accessibility (Ar-
nold et al. 2013; Muerdter et al. 2018) and that results
from endogenous enhancer perturbations need to be test-
ed for enhancer functionality by enhancer activity assays.

Functional enhancer activity assays define rules of
promoter targeting within topologically associating
domains (TADs)

Precise developmental gene regulation requires enhancers
to specifically regulate their cognate promoters, and en-
hancer–promoter targeting is regulated at different levels,
including the three-dimensional genome structure, DNA
accessibility, and biochemical compatibilities (for review,
see Zabidi and Stark 2016).

Distal enhancers come into close proximity with their
target promoters (Wijgerde et al. 1995; Dillon et al.
1997), and some of these contacts are stable across
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Figure 5. Ectopic enhancer activity assays and ge-
netic perturbations of endogenous enhancers are
complementary, and the outcomes need to be inter-
preted with care. Each row represents a different
scenario in which the candidate (blue) is an active
cellular enhancer or not (ground truth; left col-
umns). The right columns indicate the respective
outcomes of ectopic enhancer activity assays and
genetic perturbations. (Green checkmark) Enhancer
activity detected; (red cross) no enhancer activity
detected; (yellow checkmark) outcome depends on
degree of redundancy. See the text for details.
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developmental stages and appear to be independent of en-
hancer activity or gene transcription, while others seem to
be dynamic and occur only during or after enhancer acti-
vation (Ghavi-Helm et al. 2014; Dixon et al. 2015; Fraser
et al. 2015; Williamson et al. 2016; Dao et al. 2017; Rubin
et al. 2017). Enhancer–promoter contacts occur typically
within large chromosome domains, termed TADs (Dixon
et al. 2012; Nora et al. 2012; Sexton et al. 2012), which are
limited by boundaries that prevent interdomain contacts
(Handoko et al. 2011; Schwartz et al. 2012; Narendra
et al. 2015; for reviews, see Pombo and Dillon 2015; Mer-
kenschlager and Nora 2016; Schmitt et al. 2016; Zabidi
and Stark 2016). Within TADs, enhancer–promoter con-
tacts appear to not be constrained (Symmons et al. 2014,
2016) yet may be facilitated or stabilized by factors such
as YY1 (Weintraub et al. 2017). TADsmay form by the ex-
trusion of DNA loops (Nasmyth 2001; Alipour andMarko
2012; Sanborn et al. 2015; Fudenberg et al. 2016)—CTCF
and cohesin being key factors in the formation of boundar-
ies (Parelho et al. 2008; Wendt et al. 2008). Indeed, deple-
tion of CTCF or cohesin disrupts TADs and seems to
instead favor contacts within active or respressive com-
partments (Hou et al. 2012; Seitan et al. 2013; Zuin
et al. 2014; Ing-Simmons et al. 2015; Ulianov et al. 2016;
Haarhuis et al. 2017; Nora et al. 2017; Rao et al. 2017;
Schwarzer et al. 2017; Wutz et al. 2017). Mutations of
TAD boundaries highlight their importance in restricting
enhancer–promoter contacts and gene activation, as they
lead to the blurring of chromatin regions, improper gene
expression, and developmental defects (Nora et al. 2012;
Guo et al. 2015; Lupiáñez et al. 2015; Franke et al. 2016;
Narendra et al. 2016; Hanssen et al. 2017).

Biochemical compatibilities between enhancers and
promoters: different keys for different locks

Besides physical constraints imposed by the three-dimen-
sional genome architecture, enhancers cannot regulate all
promoters indiscriminately: Different promoters inserted
at identical genomic positions were activated differen-
tially (Butler and Kadonaga 2001), and housekeeping and
developmental enhancers displayed a strong specificity
toward housekeeping and developmental core promoters,
respectively (Zabidi et al. 2015). This specificity appears
to be encoded in the enhancer sequences and depends
on specific TF motifs, suggesting that different enhancers
recruit different TFs and cofactors to activate different
promoters (Zabidi et al. 2015; Zabidi and Stark 2016). In-
deed, directed recruitment of cofactors to minimal core
promoters with the DNA-binding domain of Gal4 re-
vealed that several cofactors were sufficient to activate
transcription and showed preferences toward housekeep-
ing versus developmental promoters or vice versa (Stamp-
fel et al. 2015). These results suggest that enhancers and
promoters need to be biochemically compatible (van Are-
nsbergen et al. 2014; Zabidi et al. 2015; Zabidi and Stark
2016) and that different enhancers might use different co-
factors and may respond differentially to cofactor inhibi-
tion or depletion.

Indeed, the inhibition or depletion of Brd4 in mammali-
an cells resulted, for example, in the selective down-regu-
lation of certain genes, including Myc (Zuber et al. 2011),
even though Brd4 appears to bind rather indiscriminately
to most if not all active enhancers and promoters (Zhang
et al. 2012; Kanno et al. 2014). Furthermore, in certain leu-
kemic cells, some enhancers become activated upon Brd4
inhibition, indicating that Brd4-independent enhancers
exist (Rathert et al. 2015). Likewise, inhibition of the fly
ortholog of P300/CBP results in the deregulation of many
genes that are both up-regulated and down-regulated (Boija
et al. 2017).The inhibitionof thecyclin-dependentkinases
(CDKs) CDK7 (Chipumuro et al. 2014; Kwiatkowski et al.
2014; Ebmeier et al. 2017) and CDK8 (Lenstra et al. 2011;
Kemmeren et al. 2014; Pelish et al. 2015; Jeronimo et al.
2016) also leads to differential gene expression effects, al-
though this could result from differences at the transcrip-
tion or post-transcriptional level; i.e., via differential RNA
stabilities. In contrast,CDK9 seems tobe requiredat virtu-
ally all promoters (Ni et al. 2008; Henriques et al. 2013;
Jonkers et al. 2014;Gressel et al. 2017), presumably reflect-
ing a universal requirement to release Pol II from a paused
state after initiation into productive elongation (Adelman
et al. 2005; Kwak et al. 2013; Henriques et al. 2018). Such
promoter- and enhancer-specific requirements of different
cofactors are consistentwith the differential requirements
for subunits of the large cofactor complexMediator (Allen
andTaatjes 2015),whichhasbeenassessed recentlyby rap-
id subunit depletion (Anandhakumar et al. 2016; Petrenko
et al. 2017).
Our ability to rapidly inhibit or deplete cellular proteins

(for review, see Housden et al. 2017) with technologies
such as anchor away (Haruki et al. 2008) or degron-related
methods (Dohmen et al. 1994; Nishimura et al. 2009) pro-
vides unprecedented opportunities to study the cofactor
dependencies of gene transcription (Anandhakumar
et al. 2016; Petrenko et al. 2017; Warfield et al. 2017; Win-
ter et al. 2017; Xue et al. 2017). These developments prom-
ise exciting new insights into how enhancers activate
transcription from target promoters and which cofactors
—or the PTMs that they catalyze (see above)—might be
mechanistically involved in this process.

Enhancers regulate transcriptional bursting frequency

New insights into enhancer-mediated activation also
come from measuring transcription initiation kinetics at
promoters; i.e., the pattern of transcription initiation
events (for review, see Lenstra et al. 2016). Transcription
is not a constant process but occurs in waves with bursts
of transcription initiation that are separated by inactive
intervals (Golding et al. 2005; Chubb et al. 2006; Raj
et al. 2006; Dar et al. 2012). This bursting phenomenon
means that the overall transcriptional output can be regu-
lated by modulating the frequency of transcription bursts
or the burst size; i.e., the number of mRNAs made per
burst.
Fluorescent in situ hybridization (FISH) and the use of

viral MS2 and PP7 RNA structures recognized by
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fluorescently taggedMCP and PCP proteins allow the im-
aging of RNA with single-molecule resolution (Bertrand
et al. 1998; Janicki et al. 2004; Larson et al. 2011a; for re-
views, see Larson et al. 2011b; Larson 2011; Chen and Lar-
son 2016). Using single-molecule imaging of reporter
genes in Drosophila embryos (Fukaya et al. 2016) or the
β-globin and γ-globin genes in mouse and human cells
(Bartman et al. 2016) showed that enhancers activate tran-
scription predominantly via increasing burst frequency
rather than burst size. Consistently, different enhancer
strengths or the enhancer-blocking functions of insulators
were reflected in the burst frequencies. At high transcrip-
tion rates, individual bursts might merge (Fukaya et al.
2016), or a transition to a different mode might occur in
which transcription is regulated only by increases of burst
size (Skupsky et al. 2010; Dar et al. 2012).

Interestingly, burst size and the lengths of permissive
and nonpermissive periods appear to be determined by
the core promoter sequence. The presence of TATA-box
motifs in promoters, particularly of inducible genes, is as-
sociated with large burst sizes (Basehoar et al. 2004; Hor-
nung et al. 2012; Carey et al. 2013; Tantale et al. 2016),
which are decreased upon mutating the TATA box (Hor-
nung et al. 2012; Tantale et al. 2016). The dependency of
burst size on the core promoter sequence andTATAboxes
is reminiscent of “enhancer responsiveness”; i.e., the effi-
ciency of core promoters to convert activating enhancer
input into productive transcription events (Arnold et al.
2017). It is conceivable that highly enhancer-responsive
core promoters show large burst sizes; i.e., produce a
high number of mRNAs per burst. We are excited to see
how new approaches such as single-molecule imaging
shed new light on transcriptional regulation.

Discussion

In this review, we discussed recent progress in identifying
and functionally characterizing enhancer elements in an-
imal genomes, focusing on predictions via correlative fea-
tures and functional assays that assess sufficiency or
necessity. Using such assays, international consortia
such as Encode and individual groups have compiled large
compendia of enhancers and annotated genomic regions
(e.g., Ernst and Kellis 2012; Hoffman et al. 2012), which al-
low the rough estimation of how many enhancers our ge-
nomes might contain. Work over the past years reported
∼10,000 enhancers for individual mammalian cells (e.g.,
ENCODE Project Consortium 2012; Muerdter et al.
2018) compared with ∼15,000 expressed genes (Ramsköld
et al. 2009), between 200,000 and 300,000 across ∼20
mouse tissues (Shen et al. 2012; Yue et al. 2014), and
∼400,000 across a set of 127 cell lines (ENCODE Project
Consortium 2012). For the much smaller Drosophila ge-
nome, estimates range from at least 50,000 to 100,000 en-
hancers (Kvon et al. 2014), which altogether suggests that
the human genome might contain up to several million
enhancers.

We anticipate that assays that assess the impact of en-
dogenous enhancers on gene expression by geneticmanip-

ulations will be further improved by modifications
and optimization of Cas9 (Kleinstiver et al. 2015, 2016;
Chen et al. 2017) and improved rules of gRNA design
(Fu et al. 2014; Sander and Joung 2014). By recruiting
the transcription-activating or -repressing functions
through extended gRNAs, such assays can be multi-
plexed, and different transcriptional regulators can be re-
cruited simultaneously to different gene loci (Tak et al.
2017). ExpandingCRISPR applications, Cas13a allows tar-
geting of RNA molecules (Abudayyeh et al. 2017; Cox
et al. 2017), potentially providing an alternative to RNase
H or RNAi depletion, particularly for the study of
ncRNAs in the nucleus.

In addition to these developments, over the past years,
we have witnessed the characterization of the DNA-bind-
ing preferences for an increasingly complete set of TFs
(e.g., Noyes et al. 2008; Badis et al. 2009; Jolma et al.
2013; Franco-Zorrilla et al. 2014; Weirauch et al. 2014;
Hume et al. 2015; Narasimhan et al. 2015; Mathelier
et al. 2016; Kulakovskiy et al. 2018; for reviews, see
Deplancke et al. 2016; Inukai et al. 2017; Morgunova
and Taipale 2017), their sensitivity to DNA methylation
(Domcke et al. 2015; Yin et al. 2017), and how TF dimeri-
zation impacts DNA-binding affinities (Jolma et al. 2015;
Isakova et al. 2016, 2017). This vocabulary and insights
into the importance of binding site arrangement (Senger
et al. 2004; Smith et al. 2013; Erceg et al. 2014; Farley
et al. 2016; Fiore and Cohen 2016), the use of nonoptimal
binding sites (Crocker et al. 2015; Farley et al. 2015), and
how different types of TFs cooperate to control enhancer
activity (Keung et al. 2014; Stampfel et al. 2015; for re-
view, see Reiter et al. 2017) advance our understanding
of how enhancer sequences encode and determine cell
type-specific transcription.

Our increased understanding of TF–DNA interactions
is complemented by the functional testing of enhancer
candidates and mutant variants in ectopic and endoge-
nous assays. Together with new technologies to rapidly
deplete proteins and single-molecule live imaging of TFs
(Chen et al. 2014) or nascent RNAs (Little et al. 2013; Le-
vine et al. 2014), the upcoming years will provide not only
novel insights into enhancer–promoter communication
but the means to assess whether—and how—the different
correlative traits are involved in enhancer function. We
look forward to seeing how these developments allow an
increasingly complete understanding of enhancer se-
quences and function and how our genomes encode gene
expression.
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