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Discerning the thermodynamic 
feasibility of the spontaneous 
coexistence of multiple functional 
vegetation groups
Meredith Richardson  1 & Praveen Kumar  1,2*

Can the Second Law of Thermodynamics explain why ecosystems naturally organize into a complex 
structure composed of multiple vegetation species and functional groups? Ecosystem structure, 
which refers to the number and type of plant functional groups, is the result of self-organization, 
or the spontaneous emergence of order from random fluctuations. By considering ecosystems as 
open thermodynamic systems, we model and study these fluctuations of throughput signatures on 
short timescales to determine the drivers and characteristics of ecosystem structure. This diagnostic 
approach allows us to use fluxes of energy and entropy to calculate an ecosystem’s estimated work 
and understand the thermodynamic behavior of the system. We use a multi-layer canopy-root-
soil model to calculate the energy and entropy fluxes of different scenarios for field sites across 
various climates. At each site, scenarios comprised of native individual plant functional groups and a 
coexisting multi-group composition scenario including all functional groups observed at the site are 
compared. Ecosystem-scale calculations demonstrate that entropy fluxes and work efficiency—the 
work performed for the amount of radiation entering the ecosystem—are greatest in the multi-group 
scenario when its leaf area is significantly larger than each of its individual functional groups. Thus, we 
conclude that ecosystems self-organize towards the vegetation structure with the greatest outgoing 
entropy flux and work efficiency, resulting in the coexistence of multiple functional groups and 
performing the maximum amount of work within the constraints of locally available energy, water, 
and nutrients.

Presence of vegetation on our planetary surface, when resources of water and nutrients are not limiting, is a 
ubiquitous feature. Often different plant species utilize niche space to create a plurality of simultaneous existence 
through competitive and/or symbiotic sharing of resources. The spontaneous emergence of such complexity 
across a range of climates suggests that this self-organization should be thermodynamically viable. We propose 
that thermodynamics can provide insights that can bolster scientific understanding of the coexistence of multiple 
vegetation species or functional groups within an ecosystem. By viewing ecosystems as open thermodynamic 
systems, we are able to calculate their entropy, which can allow us to identify possible thermodynamic drivers 
for the spontaneous emergence of complex vegetation structure.

The concept of viewing organisms and other natural phenomena as webs of open thermodynamic systems 
has been utilized across scientific disciplines for several decades. Prigogine1,2 and other chemists, physicists, and 
biologists studied and developed the ideas of open thermodynamic systems in the early twentieth century with 
the goal of conceptualizing the growing complexity of organisms and other biological systems. They discov-
ered that this complexity comprises of a hierarchy of irreversible processes leading to systematic organization 
which maintains the system in a state far from thermodynamic equilibrium1–6. Soon the idea of system theory 
was extended to other natural systems including ecological and Earth systems7–9. It became understood that 
ecosystems can be categorized as open thermodynamic systems existing far from thermodynamic equilibrium 
maintained by the spatial imbalance of energy in the form of state variables, such as temperature or geopotential 
height10,11. Energy and mass naturally flow along gradients from high to low concentrations, and more rapid 
dissipation of these gradients is made possible by the formation of structures9,10,12. These so-called dissipative 
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structures give the system a form of organization that emerges without external directive or predetermination, 
called self-organization13. This local self-organization results in low local entropy and greater overall system 
entropy due to the dissipation of the driving gradient and the decreasing spatial heterogeneity of the associated 
state variables1,10. Such dissipative structures spontaneously emerge through self-organization, which can be 
exemplified in Earth systems from convection cells on the global scale to vegetation on the local scale10,11.

Ecologists further expanded these ideas to understand the direction of ecosystem evolution and quantify the 
distance of a system from equilibrium14–16. Concepts such as exergy and eco-exergy have been fruitful for the 
understanding of relative stages of ecosystem development and developing thermodynamic principles of ecology, 
such as the irreversible nature of ecosystem processes and the increasing disequilibrium of ecosystems17–22. How-
ever, exact quantifications of exergy are not feasible due to the requirement of the knowledge of the equivalent 
ecosystem in equilibrium—similar to an ‘inorganic soup’22 with no lifeforms. Thus, when comparing differences 
in similar ecosystems based on the composition of functional groups, a new framework must be developed.

While growth and development of ecosystems has been studied from the thermodynamic perspective, the 
thermodynamic basis for the self-organization towards one dissipative structure over another remains unex-
plored. This paper seeks to fill this gap in understanding by comparing the thermodynamic behavior of different 
possible vegetation structures for a given ecosystem to identify if one results in a thermodynamic advantage 
over others.

We characterize ecosystem composition and vegetation structure in terms of the number and type of plant 
functional groups present. A plant functional group corresponds to a set of species that performs similar 
functions23. We accept the existence of an observed vegetation structure as a probabilistic, self-organized out-
come. However, little has been done to compare the prospects of other vegetation scenarios that do not emerge. 
The probabilistic set of possible vegetation structures at a given site is based on the available energy, nutrients, 
and water. We aim to seek clarity on this topic by adding an additional parameter—thermodynamic advantage. 
We utilize work and entropy flux as metrics to compare thermodynamic behavior and determine if a certain 
vegetation structure has a thermodynamic advantage over others, thereby making it more probable. In classi-
cal mechanics, work is defined as the energy required for motion or the “the flow of heat” for heat engines in 
particular13; for ecosystems, we interpret this existing definition to estimate work as the sum of the latent and 
sensible heat leaving the system (i.e. the energy leaving the system through molecular motion of water vapor 
and air molecules). In these systems, self-organization in the form of vegetation emerges as a result of the heat 
dissipation throughout the vertical temperature gradient between the atmosphere at the top of the canopy and 
the soil-surface. Work is a measure of the ability of an ecosystem (by way of vegetation) to diminish this tem-
perature gradient through the redistribution of heat. The entropy flux leaving an ecosystem—calculated from 
its temperature and outgoing energy flux—is a measure of the disorder of the outgoing energy, or the inability 
of this energy to perform work. However, high outgoing entropy flux does not always mean that more work 
has been performed. Longwave radiation has high entropy, but it is not a component of work; it is a form of 
radiative energy that is a passive response to the temperature state of its source and leaves the control volume 
without directly affecting the distribution of heat throughout the vertical profile. Thus, it is wasted energy. To 
distinguish between work and wasted energy, we introduce the concept of work efficiency as the work performed 
for the amount of radiation entering the ecosystem. Work efficiency measures an ecosystem’s ability to effectively 
dissipate the incoming energy throughout the ecosystem through conversion of energy into alternate forms. 
Ecosystems with greater work efficiency more effectively decrease the temperature gradient imposed on the 
ecosystem, giving the ecosystem a thermodynamic advantage. Since entropy flux and work efficiency are not 
equivalent, both metrics are important for the interpretation of thermodynamic advantage.

Our premise is that ecosystems with more plant functional groups—corresponding to more complex dissipa-
tive structures—produce more total entropy and perform more work, resulting in a higher work efficiency than 
ecosystems having only one plant functional group. This leads to our main research question: Does the existence 
of multiple functional groups offer a thermodynamic advantage?

To address this question, we model and compare the thermodynamic behavior of representative ecosystems 
consisting of multiple functional groups with that of hypothetical single-functional-group scenarios comprising 
of the individual native functional groups that make up the coexisting multiple functional groups. This is with 
the acknowledgement that the energy, water, and nutrients at each site support the existing functional groups. 
We do not alter the biomass or any additional parameters of these individual functional groups when modeled 
individually because we do not know how the energy, nutrients, and water of the ecosystem would support 
additional growth of these species if the others did not exist. Self-organization is non-linear, subject to chance 
outcomes to which we cannot predict how the alternative ecosystem would be structured. Thus, we compare the 
multi-group scenario with the known composition of the individual functional groups as they are observed to 
discern if there are advantages that promote the thermodynamic feasibility, or drivers towards the existing multi-
group scenario. Using an open thermodynamic system framework and a 1-dimensional multi-layer canopy model 
(MLCan) which has been widely used and validated24–30, we simulate three climatologically-different natural 
ecosystems to determine the energy and entropy fluxes across the ecosystem control volume consisting of the 
canopy, roots, and soil (Fig. S1). Energy fluxes considered are shortwave and longwave radiation, and sensible 
and latent heat. The model calculates the energy and entropy fluxes in each layer over a 2-year study period, 
2004–2005. These years were chosen based on continuous data availability in order to use the same study period 
across all study sites. Entropy flux, work, and work efficiency at each timestep (half-hourly or hourly) are then 
calculated as the net sum over all 21 layers (20 canopy layers and 1 layer for the ground surface) to complete the 
ecosystem-level analysis, providing a description of thermodynamic behavior that is able to capture the subtle 
differences among different simulation scenarios.

Three sites from the FLUXNET2015 dataset31 are modeled: Santa Rita Mesquite (SRM) in Arizona, Willow 
Creek (WCR) in Wisconsin, and Tapajos National Forest (TAP) in Pará, Brazil (Fig. S2)32–34. The SRM and WCR 
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sites are modeled with two functional groups based on the composition of their dominant vegetation, and the 
TAP vegetation is divided into four functional groups (based on the details in Domingues et al.35). For simplic-
ity, the functional groups are abbreviated as: understory (UN), mid-canopy trees (MT), overstory trees (OT), 
and lianas (L). The scenario with multiple functional groups is abbreviated as MG. Site-specific classifications 
can be found in Table S1 of the Supplementary Information. At each location we compare the existing scenario 
of vegetation consisting of multiple functional groups with hypothetical scenarios of each one of the individual 
functional groups present. For all scenarios, we calculate the entropy flux ( Jeco ; see Eq. 7), work (W; see Eq. 11), 
and work efficiency (WE; see Eq. 13). We define thermodynamic advantage as the production of larger entropy 
fluxes as well as greater work efficiency by the ecosystem as a whole. We hypothesize that the multiple-functional-
group systems are more thermodynamically advantageous than or similar to their respective single-group scenarios.

Results
The distributions of entropy fluxes at each timestep and the distributions of daily work efficiency for the 2-year 
study period are shown in Fig. 1. The three sites have different ranges of entropy fluxes and work efficiencies 
due to distinctions in the local availabilities of water, energy, and nutrients. WCR, SRM, and TAP have relatively 
energy-limited, water-limited, and nutrient-limited environments, respectively. Thus, the entropy and work 
efficiencies should not be directly compared across sites. However, within each site the ranges gradually change 
as we look across the different functional group scenarios. SRM has the least variability amongst its functional 
groups, and TAP has the most. Considering the entropy fluxes and work efficiencies, the multi-group scenarios 
all appear to have distributions similar to or consisting of larger values than the other scenarios for each site.

Figure 1.   Entropy and work efficiency flux distributions. Illustration of the variability of (a) entropy flux, and 
(b) work efficiency associated with each functional group and coexisting multi-functional vegetation groups (see 
Table S1). The distributions of entropy fluxes are developed based on each time step of simulation for the 2-year 
study period, and the distributions of work efficiency are calculated based on daily energy fluxes (see Eq. 13). 
Means are shown as black diamonds.
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Using the Miller Jacknife and Kolmogorov–Smirnov tests, the distributions of entropy fluxes and work effi-
ciency for the multiple functional group scenarios at each site are compared for statistically significant differences 
with each of their individual functional groups. Overall, the results indicate that multiple-functional-groups 
either have a thermodynamic advantage over single-groups or they are not at a disadvantage due to greater or 
similar values of entropy flux and work efficiency. There was a statistically significant difference in the distribu-
tions of entropy and work efficiency between the MG scenarios and each of the individual functional groups 
except for WCR-OT. This case is unique since WCR-UN only contributes to 3% of the total leaf area of WCR-MG, 
meaning that the WCR-OT and WCR-MG are very similar in vegetation composition. For all other cases, the 
values of entropy and work efficiency were significantly larger in the MG scenarios, indicating thermodynamic 
advantage. The “Statistical analysis” section in the “Methods” lays out the statistical tests and related analyses for 
comparing these entropy flux and work efficiency distributions.

Factors impacting entropy flux.  The behavior of an ecosystem’s entropy is determined by the combined 
variation of its individual energy fluxes leaving the system, such as: shortwave radiation (SW), longwave radia-
tion (LW), latent heat (LE), and sensible heat (H). For each scenario at each site, an entropy per unit energy 
(EUE) value is computed for all energy fluxes (see Eq. 8) and reported as an average over the simulation period 
in Fig. 2a. Each ecosystem has its own partitioning of energy among these categories, leading to differences in 
total entropy per unit energy leaving the ecosystem ( EUEeco ), corresponding to “Total Out” in Fig. 2a.

The EUE for each energy category can be explained by the temperature of its source. SW originates from the 
sun, so its EUE is based on the temperature of the sun. However, outgoing longwave radiation ( LWout ), LE, and 
H originate from the leaves as well as the soil surface. The total outgoing energy of the ecosystem is a result-
ant of the energy leaving each of the canopy layers including the soil surface within MLCan, each with its own 
temperature. Therefore, we calculate temperature equivalences ( Teq ) for each of these energy categories based 
on the weighted average of the temperature of each leaf and soil layer contributing to the overall energy flux of 
that category (Fig. 2b, Eq. 5). Entropy is calculated directly from temperature (Table 1), leading to an important 
inverse relationship between EUE and Teq.

Figure 2b shows that for each of the sites, across almost all energy categories the UN scenario has the highest 
Teq and the multi-group scenario has the lowest. Due to the inverse relationship between Teq and EUE, all of the 
EUE averages for each category in Fig. 2a are smallest for the UN scenarios and largest in the multi-group sce-
narios, though some of these differences are marginal. From this pattern, one would expect that this would lead to 
a clearly greater overall EUEeco for all multi-group scenarios (“Total Out” in Fig. 2a). Yet, this is not the case for all 
sites, as TAP is the only one in which the average EUEeco varies considerably among functional group scenarios.

Although EUE averages tend to increase with leaf area index (LAI) and when multiple functional groups coex-
ist, each energy category has different relative values of EUE. Further, EUE can be interpreted as an indicator of 
how degraded a particular form of energy is and the ability of that energy to perform additional work. SW has the 
least EUE across all sites and scenarios (Fig. 2a), so it has the greatest capacity for work to be done; plants are able 
to use this energy to perform work. Yet, SW is radiative energy, so it does not perform work itself. On the other 
end, LWout has the highest EUE of the energy categories studied here, meaning it is the most degraded with little 
capacity for additional work to be performed from it. In the middle, LE and H are more degraded than SW, but 
they are still able to perform physical work in the ecosystem through convection and conduction and contribute 
to the redistribution of heat throughout the vertical profile of the ecosystem. Since we are only considering the 
fluxes that enter and leave the ecosystem control volume in this analysis and all irreversible work releases heat, 
LE and H are also proxies for the work performed within the ecosystem internally (i.e. by the vegetation itself). 
Overall, when an ecosystem has low thermodynamic efficiency and high LWout , it degrades the incoming SW 
quickly without performing much work within the ecosystem and constitutes wasted energy. However, higher 
values of LE and H leaving the ecosystem mean that more work has been performed.

Since each scenario partitions the incoming energy differently throughout the ecosystem, the considerably 
higher overall EUE for LWout has important implications for overall EUEeco and entropy fluxes, yielding larger 
values when more outgoing energy is allocated towards LWout . Figure 3a displays the average partitioning of 
incoming radiation among the various energy categories at TAP, and Fig. 3b indicates the corresponding entropy 
fluxes presented as percentages of the incoming entropy flux and disaggregated into different energy categories. 
The energy and associated entropy entering the ecosystem are the same for all functional groups, but the outgo-
ing fluxes vary significantly among them. Due to conservation of energy, the outgoing energy for all scenarios 
corresponds to 100% of the incoming radiation. Alternatively for entropy, this percentage is greater than 100%, 
indicating entropy production (shaded in grey). At TAP and similarly at the other two sites, the multi-group 
scenario produces more total entropy on average than the other two scenarios.

However, the contribution of each energy category towards the total entropy differs among functional groups. 
As LAI increases from UN to OT and with the addition of multiple functional groups, the proportion of LE and 
H, or work, increases while the outgoing radiation decreases (Fig. 3). The UN scenario partitions more energy 
towards LWout than the OT and multi-group scenarios. Since LW has the largest EUE of all the energy categories 
(Fig. 2a), its percentages in Fig. 3b are larger than in Fig. 3a. This observation, consistent across all sites, indicates 
that UN scenarios are able to make up for lower performing EUE values by partitioning more energy towards the 
higher entropy-producing energy category, LWout . Thus, even though the UN scenario has the lowest EUE for 
all energy categories, its total EUEeco—and overall ability to degrade the incoming SW—and entropy production 
are similar to the other scenarios since it has more outgoing energy partitioned towards the largest EUE category, 
LWout . However, EUEeco is an indication of energy degradation, not work performed. Thus, the additional assess-
ment of work and work efficiency is necessary for the interpretation of thermodynamic advantage.
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Work as an indicator of self‑organization.  As discussed in the previous section, partitioning of energy 
and entropy fluxes are important for understanding the overall thermodynamic behavior of ecosystems. Energy 
fluxes with large EUE values result in greater entropy production for an ecosystem but do not always yield more 
work performed. Work—estimated as the sum of the ecosystem’s latent and sensible heat fluxes (W; Eq. 11)—
represents the ability of an ecosystem to diminish the temperature gradient through the ecosystem. Despite 
having the largest EUE value, LWout is not a component of work since it is a passive response to the temperature 
state. Figure 4 displays the relationships of work versus temperature gradient between the atmosphere and land 
surface ( �T/�z ; Eq. 12) for the functional group scenarios at each site. Work performed within an ecosystem 
has a positive nonlinear relationship with temperature gradient across all scenarios. Further, each functional 
group scenario is fitted to a power function: W = a(�T/�z)b . At each site a power law is observed; higher 
powers (b) correspond to functional groups with larger LAI, and except for the SRM-UN scenario, the highest 
power at each site corresponds to the multiple-functional-group scenario. This means that the work performed 
by the ecosystems with multiple functional groups has an exponentially greater response to marginal changes in 
temperature gradient as it increases.

Figure 2.   Entropy per unit energy and temperature equivalences. (a) Entropy per unit energy (EUE) by energy 
category for all sites (see Eq. 8). Colors refer to vegetation functional groups: UN understory, MT mid-trees, 
OT overstory trees, L lianas, and multi-group consisting of all functional types observed in the ecosystem. In 
general for each energy category, more EUE is associated with increasing leaf area index (LAI). (b) Temperature 
equivalences ( Teq ) by energy category for all sites. In general for each energy category, temperatures are cooler 
with increasing LAI. Despite similar equivalent temperatures for emitted longwave radiation ( LWout ), latent 
heat (LE), and sensible heat (H), LWout is by far the greatest contributor to EUEeco (see Eq. 9). [The weather 
forcing for all model simulations is the same across scenarios for each site].
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Figure 3.   Energy and entropy partitioning by scenario for TAP. (a) Partitioning of incoming radiation into 
outgoing shortwave radiation (SW), longwave radiation (LW), latent heat (LE), and sensible heat (H) for three 
scenarios at TAP. From UN to OT to Multi-group, the percentage of LWout decreases as the sensible and latent 
heat increases. A larger partitioning towards LWout (i.e. UN) leads to greater weight towards a higher EUE value 
for an ecosystem’s dissipation efficiency (Fig. 2a). (b) The corresponding entropy flux for the incoming radiation 
and outgoing energy flux of three TAP scenarios presented as a percentage of the total incoming entropy flux. 
Unlike energy, entropy is not conserved, but produced—indicated by a percentage greater than 100 and shaded 
in grey. The table displays the percent of the scenarios’ outgoing entropy flux relative to the incoming entropy 
flux, indicating a 11–16% increase in entropy produced by the functional groups. Since LW has the largest EUE 
of all the energy categories (Fig. 2a), its percentages in (b) are larger than in (a).

Figure 4.   Plots of work versus temperature gradient for all functional groups and sites. Power functions are 
fit to the data: W = a(�T/�z)b . Parameter b is reported in the upper right corner of each plot. For each site 
LAI increases in each functional group scenario from left to right in the legend at the bottom (i.e. UN has the 
smallest LAI and MG has the largest—see Fig. S2 in the Supplementary Information). Trends in b indicate that 
power increases with LAI among functional groups and is the largest in the MG scenario for all sites except the 
SRM-UN scenario. A few values corresponding to negative temperature gradients are removed from the WCR 
scenario since they are a function of the presence of snow rather than self-organization.
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To better understand the relationship between work and temperature gradients, we refer to the 1994 paper 
in which Schneider and Kay10 theoretically explored Silveston’s36 Bénard cell experiments of heating an enclosed 
fluid from below. They demonstrated that without self-organization, a system’s work performed from conduc-
tion alone has a linear relationship with the temperature gradient. However, when self-organization in the form 
of convection occurs at a critical point, Bénard cells form, the relationship becomes nonlinear, and more work 
is performed for each additional unit increase in gradient10. In this experiment, analysis of data in which no 
self-organization occurred at all demonstrated a linear relationship between work and gradient. Alternatively, 
when Bénard cells formed (i.e. self-organization occurred) power law relationships between work and gradient 
emerged with higher-degree powers corresponding to greater dissipation rates due to increased convection. We 
give this example not to study the emergence of the phenomena, but as a means of comparing the behavior of 
possible end states: with and without self-organization. If we take the functional group scenarios as possible 
end states with various levels of self-organization, the interpretation for each of our sites is consistent with those 
of the Bénard cells: with self-organization, there is a nonlinear relationship between work and gradient with 
larger exponents in the power law relationship corresponding to more advanced levels of self-organization. This 
yields exponentially more work performed in the more highly organized multiple-functional-group ecosystem 
scenarios. From the combined results of Schneider and Kay and Fig. 4, we infer that self-organization is the 
leading driver of the nonlinearity shown in work-gradient plots. This supports the proposition that the existence 
of multiple functional groups reflects a higher degree of self-organization that results in nonlinear increases of 
work performed in response to marginal increases in temperature gradient, reflecting thermodynamic advantage.

Discussion
Through the concepts of entropy and work efficiency, this paper establishes a framework for identifying ther-
modynamic advantage for the spontaneous self-organization of ecosystems towards a vegetation structure that 
includes multiple functional groups. We identify decreased canopy temperature, increased LAI, and greater par-
titioning of energy towards LWout as important factors amplifying the entropy production of an ecosystem. From 
these factors, one can deduce the relative changes in entropy flux and, thus, changes in thermodynamic behavior 
of an ecosystem. Entropy provides insights into the total disorder of a system. The second law of thermodynamics 
requires that closed systems yield increases in entropy over time. Although, ecosystems are open thermodynamic 
systems, scientists have correlated greater entropy production as a driver of self-organization11,37. However, not 
all energy and hence entropy is productive in terms of thermodynamic advantage. Thus, we provide work effi-
ciency as another important component of thermodynamic advantage and the directionality of self-organization.

Work efficiency captures the ability of an ecosystem to perform work based on the energy throughflow of the 
system. Work without context of incoming radiation doesn’t tell much about the performance of an ecosystem 
relative to others. Since all functional group scenarios at each site receive the same incoming radiation in this 
study, either work or work efficiency can be used as a metric of thermodynamic advantage. However, work effi-
ciency is a more attractive metric for further study as it normalizes an ecosystem based on its local availability of 
energy, allowing for comparison of ecosystems across multiple climates. Thus, work efficiency provides promise 
for future research to compare ecosystems with varying energy availabilities and external environments directly.

Additionally, work efficiency measures an ecosystem’s ability to rapidly convert incoming radiation into 
alternate forms of energy that disperse throughout the ecosystem control volume and diminish the imposed 
temperature gradient. Work efficiency helps us understand the reorganization of available energy entering an 
ecosystem towards thermodynamically-productive uses—meaning depleting the imposed temperature gradi-
ent. According to thermodynamic theory, all systems work to decrease gradients of their state variables, which 
in turn drive the movement of energy and mass from high concentrations to low concentrations (i.e. high to 
low temperatures)13. In this study, work exhibits a nonlinear power law relationship with temperature gradient. 
This means that exponentially more work is performed to combat the greater temperature differences from the 
Earth surface to the atmosphere above the canopy. For the sites studied here, scenarios with multiple functional 
groups exhibit the highest power law, meaning that the MG structure is more efficient at depleting the driving 
temperature gradient. This is a demonstration of high work efficiency. Since structures that perform more work 
for a given temperature gradient have a thermodynamic advantage over those with lower efficiencies, ecosystems 
have a natural tendency to self-organize to this MG structure.

Because ecosystems are formed and evolve through a process of random fluctuations, there is a nonzero 
statistical probability for the existence of any possible vegetation structure or state. The state exhibiting thermo-
dynamic advantage identifies the state with the highest probability of occurrence. This does not mean that the 
advantageous structure will always result. In all of our sites, the highest work efficiency corresponds to the exist-
ing MG scenario. Thus, the ecosystems exist in the highest probability thermodynamically-advantageous state.

The outcomes of this work provide valuable insight into the self-organization of natural ecosystems. Thus 
far, we have identified that when multiple functional groups coexist this structure exhibits a thermodynamic 
advantage over other possible individual functional group scenarios. Thus, ecosystems will have a higher prob-
ability of self-organizing towards this greater work efficiency state. Additionally, this work highlights new areas 
for further study. The framework of thermodynamic advantage through greater entropy production and work 
efficiency could be applied to other ecosystem structures, such as the existence of individual functional groups 
in nature. Further, this framework could help scientists understand how human-induced perturbations could 
impact thermodynamic behavior and alter the most advantageous state. Thus, we propose the concepts of entropy 
and work efficiency as valuable contributions to the basic understanding of the existence of a particular vegeta-
tion structure and present thermodynamic advantage as a tool for future use in understanding and studying the 
stability and behavior of ecosystem self-organization.
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Methods
Experimental design.  A multi-layer canopy-root-soil model (MLCan)24,26,27 is used to calculate the energy 
and entropy fluxes for three climatologically-different ecosystems containing multiple functional groups: water-
limited Santa Rita Mesquite (SRM), energy-limited Willow Creek (WCR), and nutrient-limited Tapajos National 
Forest (TAP)38.

MLCan takes site-specific parameters and weather forcing data and computes the energy and entropy fluxes 
and temperatures for each of the ecosystem layers. Entropy calculations are based on both the energy fluxes and 
temperature of soil, air, and leaves (see Entropy Calculations). The model is run for a simulation period of 2 years 
(2004–2005) at a half-hourly timescale for SRM and WCR and an hourly timescale for TAP due to data availabil-
ity. Weather forcing data was downloaded from FLUXNET2015: air temperature, air pressure, global radiation, 
precipitation, wind speed, friction velocity, and relative humidity32–34. Additional model input parameters can 
be found in Table S2 of the Supplementary Information.

The initial soil moisture and temperature profiles for each of the sites—and snow properties for WCR—were 
produced from a spin-up of the model. The WCR and TAP sites used 2004 LAI with 2003 forcing data for a 
spin-up of 2 years to provide the initial conditions for the beginning of the 2004 simulation. For the SRM site, 
the FLUXNET2015 data was not available for 2003, so 2004 data was used instead.

At each site, the model splits up the vegetation into plant functional groups. Domingues et al.35 demon-
strates the importance of modeling ecosystems based on functional groups. For WCR and SRM, the vegetation 
is represented by understory herbaceous species and overstory trees. For TAP, a high biodiversity ecosystem in 
Amazonia, the vegetation is further divided and represented by four groups: understory tree, mid-canopy tree, 
upper-canopy tree, and upper-canopy liana35. See Table S1 of the Supplementary Information for functional 
group abbreviations.

The LAI data for all sites are taken from MODIS39 and calibrated based on site documentation (Fig. S4 of the 
Supplementary Information). The LAI is then partitioned into two or four components based on the number 
of functional groups at each site. Additional LAI information can be found in the Supplementary Information.

MLCan has been previously validated for each of the sites considered30,40. Since entropy cannot be directly 
measured, we provide a comparison of the model outputted latent heat fluxes with the observed fluxes at each 
site in Fig. S5 of the Supplementary Information for additional validation.

Site descriptions.  The SRM site is located on the Santa Rita Experimental Range in southern Arizona 
( 31.8214◦N , 110.8661◦W ). SRM has a hot semi-arid climate and consists of woody savannas with mesquite trees 
(Prosopis velutina Woot.) and C4 grasses and subshrubs40,41.

The WCR (Willow Creek) site is located within the Chequamegon-Nicolet National Forest in northern Wis-
consin ( 45.8059◦N , 90.0799◦W ) with a northern continental climate. It is a deciduous broadleaf forest dominated 
by sugar maple (Acer saccharum Marsh.) with understory shrubs, including bracken ferns (Pteridium aquilinum), 
and overstory seedlings and saplings42–44.

The TAP (Tapajos National Forest) site data is taken from the Santarem Km 67 Primary Forest site located in 
Belterra, Pará, Brazil ( 2.8567◦S , 54.9589◦W ). This evergreen broadleaf forest in Amazonian Brazil has a tropical 
monsoon climate with vegetation consisting of dozens of known tree species and lianas30,35.

Entropy calculations.  Entropy calculations are based on model-simulated temperature and energy at each 
of the 20 canopy layers and the soil-surface layer, and results are scaled up to the ecosystem level. No lateral 
exchange of fluxes are considered. The net sum of energy fluxes from all layers of the ecosystem is equivalent to 
the total flux of energy across the boundary of the control volume (Fig. S1 of the Supplementary Information). 
These energy fluxes include shortwave radiation (SW), longwave radiation (LW), latent heat (LE), and sensible 
heat (H). All results are categorized as the flux of energy at the boundary entering ( SWin , LWin ) or leaving 
( SWout , LWout , LE, H) the ecosystem. Because the total energy flux across the ecosystem boundary is equal to 
the sum across the canopy layers in the model, the total entropy flux across the boundary can also be taken as 
the cumulative sum of the entropy fluxes from all layers of the ecosystem.

Entropy flux calculations are summarized in Table 1. All energy variables have units of W/m2 , entropy vari-
ables are in W/m2K , and temperatures are in K.

Entropy for LE and H calculations are based on simple heat transfer. The change in entropy is:

where dQ is change in heat and T is temperature49. Thus, the flux of entropy for a given energy flux (E) across 
a boundary is:

However, thermal radiation (SW and LW) cannot be treated this simply. The entropy flux for blackbody 
radiation is:

where σ is the Stefan–Boltzmann constant, and EBR is the blackbody radiation flux defined as σT4 from the 
Stefan–Boltzmann Law48,49.

(1)dS =
dQ

T

(2)J =
E

T
.

(3)JBR =
4

3
σT3 =

4

3

EBR

T
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SW is considered blackbody radiation, and entropy fluxes for direct shortwave radiation ( JSW direct ) can be 
obtained by Eq. 3. However, LW is considered non-blackbody radiation, also called ‘diluted blackbody radiation’, 
which must include an additional factor X(ǫ) to account for the entropy produced during the ‘diluted emission’ 
of radiation given by an object’s emissivity, ǫ . This factor is defined as45,46:

Although SWdiffuse is still a blackbody radiation, it has been demonstrated47 that the entropy flux due to 
SWdiffuse can be treated similarly to non-blackbody radiation with a new variable, ξ , in place of emissivity. ξ 
is the ‘dilution factor’ of radiation due to scattering, meaning it is the ratio of diffuse solar radiance on Earth’s 
surface to solar radiance in extraterrestrial space47. Since diluted blackbody radiation ( SWdiffuse ) is mathemati-
cally equivalent to non-blackbody radiation (LW) when the dilution factor is equal to the emissivity, ξ can also 
be plugged into Eq. 4 to solve for the amplifying factor of entropy production due to scattering, X(ξ)37,45,46,48.

Each of the entropy calculations in Table 1 have a temperature value corresponding to the temperature of 
the energy’s source. For instance, shortwave radiation originates from the sun, so the source temperature in its 
entropy equations is Tsun . Likewise, longwave radiation is assumed to originate from the atmosphere, leading 
to a corresponding temperature of Tatm . However, LWout , LE, and H do not have a single source location, so we 
must calculate an equivalent temperature ( Teq ) for each energy category based on the modeled temperatures 
and weighted contribution of each layer to the total energy flux at the ecosystem boundary. The equivalent tem-
peratures for these three energy categories are calculated as follows:

where Teq,j is the equivalent temperature of energy category j such that j ∈ {LWout , LE,H} . k refers to the layer 
in the ecosystem such that layers 1-20 are the canopy layers, and layer 21 refers to the ground surface. Tk is the 
temperature of layer k, and ωj,k is the weight of energy category j coming from layer k given by:

where Ej,k is the energy j leaving layer k, and Ej,eco is the total energy j leaving the ecosystem.
The total entropy flux of the ecosystem ( Jeco ) is calculated by summing the energy categories:

where JSWout is the entropy flux of diffuse shortwave radiation leaving the ecosystem. The entropy flux per unit 
energy (EUE) is another way to view the thermodynamic state of ecosystem vegetation. EUE is calculated as:

where EUEj is the entropy per unit energy in 1/K of energy category j. It follows that the corresponding 
EUESWout = JSWout/ESWout , and the total ecosystem EUE is:

Work calculations.  Work in an ecosystem represents the energy required to directly perform motion in the 
form of heat, effectively decreasing the temperature gradient within the ecosystem. We assume that LE and H 

(4)X(ǫ) = 1−

[ 45

4π4
ln (ǫ)(2.336− 0.26ǫ)

]

.

(5)Teq,j =

21
∑

k=1

[Tk × ωj,k]

(6)ωj,k =
Ej,k

Ej,eco

(7)Jeco =
∑

Jj + JSWout

(8)EUEj =
Jj

Ej

(9)EUEeco =

∑

Jj + JSWout
∑

Ej + ESWout
.

Table 1.   Entropy calculations X: reflection factor as a function of ξ or ǫ from Landsberg and Tongue45 and 
Wright et al.46. ξ : dilution factor based on scattering37,45,47,48 ǫ : emissivity Tsun : temperature of the sun (5760 K) 
Tatm : observed atmospheric temperature Teq,j : equivalent temperature of the system for energy category 
j ∈ {LWout , LE,H} ; see Eq. 5.

Energy category Symbol Entropy equation

Latent heat JLE ELE
Teq,LE

Sensible heat JH EH
Teq,H

Direct shortwave JSW direct
4
3

ESW direct
Tsun

Incoming longwave JLWin
4
3

ELWin
Tatm

× X(ǫ)

Outgoing longwave JLWout
4
3

ELWout
Teq,LWout

× X(ǫ)

Diffuse shortwave JSWdiffuse
4
3

ESWdiffuse

Tsun
× X(ξ)
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are the primary regulators of temperature within a natural ecosystem, and LWout is wasted energy. Additionally, 
we assume that the bottom of the control volume is sufficiently deep such that the temperature at the boundary 
is consistent and there is no loss of heat (i.e. ground heat flux is ignored). Thus, work is estimated and calculated 
directly from LE, H, and change in internal energy due to photosynthesis, �Q:

where �Q is significantly less than LE and H and can be ignored. So work can be simplified to:

Since work represents the ability of an ecosystem’s vegetation to deplete the driving temperature gradient 
imposed upon the ecosystem, our analysis compares work with temperature gradient. We define temperature 
gradient as:

where Tsurf  is the temperature of the soil surface, Tair is the temperature of the air in the top layer of the ecosystem, 
and he is the ecosystem height (see Table S2 in the Supplementary Information).

Work efficiency is the work performed for the amount of radiation entering the ecosystem defined as:

 Since each vegetation functional group partitions energy differently among the energy categories, work efficiency 
is a good way to compare thermodynamic behavior across model scenarios at each site in a normalized way.

Statistical analysis.  To determine if the differences of entropy flux and work efficiency among scenarios 
at each site are statistically significant, we perform two separate tests for entropy flux and work efficiency. Since 
entropy flux distributions are positively skewed (Fig. 1a), we use the variance as an indicator of the difference 
between them. To this end we use the distribution-free Miller Jackknife (MJ) significance test50,51 for variance 
that does not assume that the distributions come from populations with the same median. However, the work 
efficiency distributions exhibit no such pattern (Fig. 1b), and, therefore, we use the two-sample Kolmogorov–
Smirnov (KS) test, which measures the maximum absolute difference between two empirical cumulative distri-
bution functions (CDF)52–54.

First, the entropy flux variances are compared with the MJ test. Because functional group scenarios at each site 
are bounded on the lower end by similar values, if a distribution has a larger variance than another, then the two 
populations cannot be considered as coming from the same continuous distribution, and the distribution with a 
larger variance generally consists of larger values. For each site we test the null hypothesis, H0 , that the distribu-
tion of multiple-functional-group entropy fluxes and the distribution for each of its single-functional-groups 
have the same variance. This is done with each functional group present at each site (Table S1). The alternate 
hypothesis, HA1 , states that the distribution of entropy fluxes from the multiple-functional-group has a larger 
variance than that of the corresponding single-functional-group, meaning that the two populations do not belong 
to the same distribution and the multi-group scenario consists of larger values than the single-group scenario. 
The results from this test, shown in Table 2, indicate that H0 is rejected in favor of HA1 at the 5% level ( p < 0.05 ) 
for all scenarios except for the WCR-OT scenario. This indicates that for these ecosystems the distributions of 
entropy fluxes consist of larger values when multiple functional groups are present.

(10)W = LE +H +�Q

(11)W = LE +H .

(12)
�T

�z
=

Tsurf − Tair

he

(13)WE =
LE +H

ESWin + ELWin
=

W

Ein
.

Table 2.   Significance tests H0 is rejected if p < 0.05 at the 5% significance level. Entropy—Miller Jackknife 
test of variance HA1 : The entropy flux results from multiple functional groups have a variance larger than 
the single-functional-group. HA2 : The entropy flux results from multiple functional groups have a variance 
smaller than the single-functional-group. Work efficiency—two-sample Kolmogorov–Smirnov test HA3 : The 
work efficiency results from multiple functional groups have a CDF smaller than the single-functional-group 
(i.e. values are generally larger). HA4 : The work efficiency results from multiple functional groups have a CDF 
larger than the single-functional-group (i.e. values are generally smaller).

Site Funct. group

HA1 HA2 HA3 HA4

p value Reject H0? p value Reject H0? p value Reject H0? p value Reject H0?

SRM
UN 0.004 Yes ∼ 0 Yes

OT 0.017 Yes 0.002 Yes

WCR​
UN ∼ 0 Yes ∼ 0 Yes

OT 0.606 No 0.394 No 0.934 No 0.915 No

TAP

UN ∼ 0 Yes ∼ 0 Yes

MT ∼ 0 Yes ∼ 0 Yes

OT ∼ 0 Yes ∼ 0 Yes

L ∼ 0 Yes ∼ 0 Yes
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Using the KS test to compare work efficiency distributions for each site, we test the null hypothesis, H0 , that 
the multiple-functional-group measures of work efficiency and those for each of its single-functional-groups are 
from the same continuous distribution, or population. The alternate hypothesis, HA3 , states that the CDFs of the 
entropy flux from the multi-group scenario are smaller than those from the corresponding single-groups, mean-
ing that the multi-group scenarios consist of values that are larger than their associated single-group scenarios. 
The results from this test, shown in Table 2, indicate that H0 is rejected in favor of HA3 at the 5% level ( p < 0.05 ) 
for all scenarios except for the WCR-OT scenario. This indicates that the distributions for work efficiency are 
indeed larger when multiple functional groups are present in these ecosystems, as indicated by a smaller CDF 
(Fig. S3 of the Supplementary Information).

However, the tests of comparison for the WCR-OT scenario for both work efficiency and entropy flux dis-
tributions have p values larger than 0.05 (i.e. H0 cannot be rejected at the 5% level). This means that we cannot 
say that the WCR multi-group entropy flux distribution has a variance larger than the OT single-group distri-
bution or the multi-group work efficiency scenario comes from a larger distribution than the OT single-group 
scenario. This is not entirely surprising, as there is very little difference in LAI between these two scenarios; 
the maximum difference in LAI is about 0.2 (Fig. S4 in the Supplementary Information), only 3% compared to 
the total WCR-MG LAI. This small increase in LAI from the single to the multi-group scenario provides less 
opportunity for increased energy dissipation and hence entropy production due to the smaller understory. Thus 
for completeness, we also perform the MJ and KS tests in the opposite direction for the WCR-OT scenario with 
the following alternative hypotheses. For the MJ test on entropy flux variances, HA2 states that the distribution 
of entropy fluxes from the WCR multiple-functional-group has a smaller variance than that of the OT single-
functional-group, meaning that the two populations do not belong to the same distribution and the multi-group 
scenario consists of smaller values than the single-group scenario. For the KS test on work efficiency, HA4 states 
that the CDF of the entropy fluxes from the WCR multiple-functional-group is larger than the CDF from the 
OT single-functional-group, meaning that the multi-group scenario consists of values that are smaller than the 
single-group scenario. The results from both tests, shown in Table 2, indicate that we again cannot reject H0 at 
the 5% significance level for WCR-OT. Thus, although the WCR multi-group scenario compared to the OT sce-
nario does not have a significantly greater entropy flux variance or a greater work efficiency distribution, it also 
does not have less variance or a smaller distribution. Overall, the test results indicate that multiple-functional-
groups have either greater or similar values of entropy flux and work efficiency than the modeled scenarios of 
their individual functional groups.
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