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Aflatoxin is the most harmful mycotoxin that is ubiquitous in foods and agro-products.
Because of its high toxicity, maximum admissible levels of aflatoxins (AF) is regulated
worldwide, and monitoring of their occurrence in several commodities is mandatory
for assuring food safety and consumers’ health. Considering that the strip method
is very simple and convenient for users, in order to enhance strip assay’s sensitivity,
a lot of time-resolved fluorescence immunochromatography assays (TRFICAs) were
developed recently with increasing several times of assay sensitivity compared with
traditional gold nanoparticle-based strip assay (GNP-SA). This review briefly describes
the newly developed TRFICA for aflatoxin determination, including TRFICA for aflatoxin
B1 (AFB1) detection, TRFICA for aflatoxin M1 (AFM1) detection, TRFICA for total
aflatoxins (AFB1 + B2 + G1 + G2) detection and the latest identification-nanobody-
based TRFICA for aflatoxin detection. The application of TRFICA for aflatoxin detection
in different agro-products is also concluded in this review. Reasonably, TRFICA has
been becoming one of the most important tool for monitoring aflatoxin in foods and
agro-products.

Keywords: time-resolved fluorescence immunochromatography assay (TRFICA), sensitivity, aflatoxin, nanobody,
application

INTRODUCTION

Aflatoxin, a group of highly toxic second metabolites from some Aspergillus species such as
Aspergillus flavus and Aspergillus paraticus, has still been threatening human health worldwide
and the sustainable and high-quality development of modern agriculture industry (Danesh et al.,
2018). Aflatoxin caused lots of serious events in the history. In 1960s, aflatoxin was found from
the contaminated feeds that caused “turkey event” (Blout, 1961). In 1974, an outbreak of aflatoxin-
induced hepatitis occurred in about 200 villages in western India, with maize as the staple food,
and in the event, there were 397 patients infected, among which 106 patients died (Krishnamachari
et al., 1975; Pitt, 2000). In 2004–2005, Kenya witnessed the largest outbreak of aflatoxin poisoning
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until now, with more than 1,000 people poisoned and 125
deaths, and the “culprit” was eventually identified as aflatoxin-
contaminated maize (Williams et al., 2004; Muture and Ogana,
2005). As reported in China in 2005, the positive rate of
aflatoxin M1 (AFM1) in urine of 300 volunteers from some
universities in Guangzhou was as high as 47%. Aflatoxin
contamination also resulted in huge economic losses. During
the past decade, the ratio of export trade notification from EU
caused by aflatoxin exceeded the corresponding government’s
maximum limit, close to 30%. Even in developed country like the
United States, aflatoxin caused over 225 million dollars loss per
year (Robens and Cardwell, 2003).

Sensitive detection method is the key tool for monitoring
aflatoxin contamination and preventing contaminated foods far
away from table. Aflatoxin, belonging to natural contaminants,
was found in many agricultural products (maize, rice, groundnut,
etc.), foods (edible plant oil, milk, meat, etc.), and feeds and may
occur in the steps of planting field, harvest, transport, storage,
process, and even circulation of commodities (Wang B. et al.,
2016; Zhao et al., 2018). Therefore, it is most important to find
the contamination on time.

As is known, a lot of analytical methods for aflatoxin
detection have been developed. Instrumental methods, such
as high-performance liquid chromatography (HPLC) with
fluorescence detector (Koc et al., 2009; Sheijooni-Fumani
et al., 2011; Kong et al., 2013) and ultraperformance liquid
chromatography–tandem mass spectrometry (UPLC-MS/MS)
(Scholl, 2004; Cervino et al., 2008; Scholl and Groopman,
2008; Deng et al., 2017), may give precise results and
especially fit for lab performance but not for on-site detection.
However, more and more producers want to use on-site
assay methods for monitoring and ensuring their products’
quality. Immunoassays have been developed especially for
this aim (Kolosova et al., 2006; Tang et al., 2010; Masinde
et al., 2013; Lin et al., 2017; Yao et al., 2017; Pan et al.,
2018; Wang et al., 2018; Bhardwaj et al., 2019). Among
the developed immunoassays, membrane-based strip assay for
aflatoxin determination becomes more and more popular,
although it was found to have lower sensitivity than ELISA
(Wang et al., 2011; Anfossi et al., 2013). As ELISA is still
limited to special equipment in laboratories and is time
consuming, these make it not suitable for on-site monitoring
(Hu et al., 2017).

Considering that the strip method is very simple and
convenient for users, recently, many efforts were made for
enhancing strip assay’s sensitivity. Time-resolved fluorescence
immunochromatography assay (TRFICA) is one of the important
new methods (Rundstrom et al., 2007), which was reported
to increase several times of the detection sensitivity compared
with that of the traditional gold nanoparticle-based strip assay
(GNP-SA). Expensive time-resolved fluorescence detector was
ever thought as the bottleneck for TRFICA technology (Liu et al.,
2016). During the past 5 years, with the development of portable
TRFICA reader, the TRFICA strip has been enhanced quickly and
even occurred in the market.

Therefore, we here first made a review for the newly developed
analytical technology: TRFICA for aflatoxin detection.

PRINCIPLE

TRFICA combines the advantage of time-resolved fluorescence
immunoassay (TRFIA) and chromatography, labeling the
lanthanide-chelate-embedded nanoparticles or microbeads with
antibodies or protein, which are captured in the detection
area by the principle of chromatography (Ye et al., 2004;
Xia et al., 2009). Lanthanide chelates exhibit highly desirable
fluorescence characteristics: (1) long fluorescence lifetime (Eu3+

has a lifetime on the order of millisecond, which is several
orders of magnitude longer than that of the non-specific
background autofluorescence) (Karhunen et al., 2011); (2) wide
excitation spectrum and narrow and sharp emission spectrum
(Hemmilä, 1995; Matsumoto and Yuan, 2003); and (3) a large
Stokes shift (200–300 nm) (Huhtinen et al., 2005; Binnemans,
2009; Ouyang et al., 2011), with improved spatial resolution.
Lanthanide chelates were embedded into microbeads to increase
fluorescence intensity (Harma et al., 2001; Huhtinen et al., 2004;
Kokko et al., 2007), which effectively resolve the limitation
of conventional dissociation-enhanced lanthanide fluorescence
immunoassay used in liquid phase only (Xia et al., 2013; Xu
et al., 2013; Zhang et al., 2014). What is more, through wave
resolution and time-delay technique, TRFICA can be used for
quantitative detection with high sensitivity, wide linear range,
and low background.

A sample pad, nitrocellulose membrane sprayed with test and
control lines, and absorbent pad are assembled into a TRFICA
device (Tang et al., 2015; Wang et al., 2015; Zhang et al., 2015).
The liquid sample in the microreaction pool moves from the
sample pad, through nitrocellulose membrane, to the absorbent
pad through capillary action. In the absence of aflatoxin, the
fluorescent lanthanide microbead-labeled antibodies react with
the immobilized antigen (aflatoxin–protein conjugate) on the test
line and secondary antibody on the control line, so two colored
lines are observed under ultraviolet illumination. However, when
aflatoxin presents in the sample, the aflatoxin–protein conjugate
immobilized on the test line competes with the aflatoxin in
samples to bind with lanthanide microbead-labeled antibodies.
Thus, the fluorescence signal in the test zone is negatively
correlated with the concentrations of [Frame1]aflatoxin in the
sample, as illustrated in Figure 1.

DEVELOPMENT

After the first introduction of Eu3+ complexes by Weissman
(1942), the TRFICA method was found to be extremely suitable
for rapid on-site assay. However, the lack of a portable TRFICA
detector greatly limited its wide application in the past few
years. In 2015, Wang et al. developed a homemade and portable
TRFICA reader for aflatoxin determination. The components of
the TRFICA detector are listed as follows: (1) a xenon lamp
was used as the excitation source with an excitation wavelength
of 365 ± 10 nm; (2) the emission light was collected at
613 ± 10 nm by a photomultiplier tube (PMT) after a 400-
µs delay of the excitation light; (3) the interference band-pass
filters were used to obtain the specific excitation and emission
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FIGURE 1 | The scheme of time-resolved fluorescence immunochromatography assay (TRFICA) for aflatoxin detection.

bands; (4) the emission signals were processed by a rapid
preamplifier–discriminator and pulse counter; and (5) the results
were delivered to the readout.

TRFICA for Aflatoxin B1
Aflatoxin B1 (AFB1) is considered as the most toxic and potent
naturally occurring carcinogen, which has been classified as a
Group 1 human carcinogen (International Agency for Research
on Cancer [IARC], 1993; Streit et al., 2012) mainly targeting
liver and lungs (Otim et al., 2005; Turner et al., 2009). It can
easily contaminate both food and feed during almost every
stages, such as before and after harvest and during storage,
transportation, and consumption. Consequently, the study on
rapid, effective, and on-site determination of AFB1 in the food
chain has attracted tremendous efforts in the past few years, as
indicated in Table 1. Zhang et al. developed a portable TRFICA
for the sensitive determination of AFB1 (Zhang et al., 2015).
First, they fabricated a TRFICA strip. Ovalbumin (OVA) [2%
(w/v)] was used to block the sample pad in order to prevent non-
specific adsorption. On the nitrocellulose membrane, the test
and control lines were coated with AFB1–bovine serum albumin
(AFB1–BSA) and immunoglobulin G (IgG), respectively. The

distance between the test and control lines was set as 5 mm,
so an effective detection zone could be obtained. The sample
pad, nitrocellulose membrane, and absorbent pad were assembled
onto a plastic scale board in turn and then cut into TRFICA
strips with a width and length of 4 and 60 mm, respectively.
During the analysis process, free AFB1 and the monoclonal
antibody against AFB1 (anti-AFB1 mAb)-conjugated fluorescent
microbeads (Eu3+) were mixed in a reaction pool first and then
laterally flowed through the TRFICA strip via capillary action.
After specific binding interaction of aflatoxin–antiaflatoxin mAb
and antiaflatoxin mAb-IgG, the detection results based on the
fluorescence intensity of the test and control lines could be read
out in 6 min using the proposed TRFICA detector. TRFICA
exhibited a magnified positive signal with low signal/noise ratio
due to the absence of background interference fluorescence and
scattering light. This platform demonstrated a wider dynamic
range from 0.2 to 60 µg/kg, with a lower limit of detection (LOD)
from 0.06 to 0.12 µg/kg (12 times diluted sample, be converted
to 0.005–0.01 ng/ml). The detection sensitivity was increased by
two orders of magnitude than that of the competitive ELISA
developed by Kolosova et al. for AFB1 detection with an IC50
value of 0.62 ng/ml (Kolosova et al., 2006). Compared with the

TABLE 1 | A list of time-resolved fluorescence immunochromatography assay (TRFICA) for aflatoxin detection in different samples.

Samples Analyte LOD (µg/kg) Linear range (µg/kg) Recovery (%) References

Feed AFB1 0.06 0.2–60 80.5–116.7 Zhang et al., 2015

Soybean sauce AFB1 0.1 0.3–10.0 87.2–114.3 Wang D. et al., 2016

Maize AFB1 0.05 0.13–4.54 72.6–106.6 Tang et al., 2017

Chinese herbal medicines AFB1 0.60 0.60–3.92 73–95% Sun et al., 2018

Peanut AFB1 0.18 0.48–20 83.24–110.80 Wang et al., 2019

Milk AFM1 0.009 0.02–0.4 88.7–105.0% Li et al., 2018

Feed AFB1 + B2 + G1 + G2 0.16 0.48–30.0 83.9–113.9 Wang et al., 2015
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previously developed GNP-SA for AFB1 with a visual detection
limit (VDL) of 1 ng/ml (Zhang et al., 2011a), the detection
sensitivity was also greatly improved.

TRFICA for AFM1
Aflatoxin M1, which is converted by AFB1 through hydroxylation
under liver cytochrome P450 catalysis, is usually excreted from
lactating animals that ingest feed contaminated with AFB1. It
has been classified as a group 2B human carcinogen by the
International Agency for Research on Cancer (International
Agency for Research on Cancer [IARC], 1993). Aflatoxin M1
can be extensively found in milk and dairy products in both
developing and developed countries, causing great threat to
consumers’ health. Thus, there is an urgent need to develop a
rapid and sensitive detection method for AFM1 in milk. Tang
et al. (2015) developed a highly sensitive TRFICA to detect AFM1
in milk. The test line was coated with AFM1–BSA conjugate,
and the control line was coated with the goat antirabbit IgG on
the nitrocellulose membrane. The absorbent pad, nitrocellulose
membrane, and the glass fiber sample pad were then assembled
and cut into 4 mm× 60 mm TRFICA strips. The anti-AFM1 mAb
2C9 exhibited high affinity to AFM1 with an affinity constant of
1.74 × 109 l/mol. Under the competitive ELISA format, its IC50
reached (50% inhibition concentration of AFM1) 0.067 ng/ml,
and the cross-reactivity to AFB1, B2, G1, and G2 was <0.1%.
When anti-AFM1 mAb 2C9 was used in this TRFICA with
a competitive format, the detection sensitivity for AFM1 was
0.03 ng/ml. According to the previously reported GNP-SA, which
exhibited a VDL of 0.3 ng/ml for AFM1 (Zhang et al., 2012), the
detection limit was enhanced an order of magnitude.

TRFICA for Total Aflatoxins
(AFB1 + B2 + G1 + G2)
Aflatoxins (AF), including AFB1, AFB2, AFG1, and AFG2, can
occur in a wide range of commodities, such as cereals, tree nuts,
and spices. They cause great concern in the globe due to its
heavy threat such as teratogenic, mutation, and cancer to human
being health. In order to avoid human exposure to AF, strict
limits have been set up by international government agencies.
Therefore, it is urgent to develop rapid and sensitive detection
methods for AF monitoring in agro-products. Wang et al. (2015)
developed a TRFICA for highly sensitive total aflatoxin detection.
The AFB1-conjugated BSA and rabbit antimouse IgG were coated
on the nitrocellulose membrane as a test line and a control line,
respectively. The TRFICA strips were made in a width and length
of 4.5 and 70 mm. Antiaflatoxin mAb4F12 was homemade and
purified with a protein G immunoaffinity column before use.
Its cross-reactivity toward AFB1, AFB2, AFG1, and AFG2 were
100, 90.1, 84.6, and 20.7%, respectively. A wide dynamic range
from 0.48 to 30.0 µg/kg with a LOD of 0.16 µg/kg (40 times
diluted sample, be converted to 0.004 ng/ml) was obtained by this
TRFICA for total aflatoxin detection. The detection sensitivity is
one order of magnitude higher than that of the GNP-SA for total
aflatoxin detection with VDLs from 0.03 to 0.25 ng/ml reported
by Zhang et al. (2011b). The detection sensitivity was also higher
than that of the ELISA developed by Li et al. for aflatoxin
detection with a LOD of 0.06–0.09 ng/ml (Li et al., 2009).

Idiotype Nanobody-Based TRFICA
for Aflatoxin
As is known to all, antibody plays a very important role
in immunoassay. In recent years, anti-idiotypic antibodies,
also named as anti-idiotypic nanobodies (AIdnbs), which are
composed of only heavy chains obtained from camelids, have
gained considerable attention due to their unique properties
(Muyldermans, 2013; Muyldermans and Lauwereys, 1999; Bazin
et al., 2017). They can be prepared in large quantities, and
the small size makes them suitable for bioengineering. What is
more, the interaction between AIdnbs and its antigen changes
from a majority of side-chain contacts to main-chain contact,
which makes them useful in molecular mimicry. They also
exhibited high solubility and chemical stability compared with
traditional mAbs in sample matrix. Combining the unique
characteristic of AIdnbs with the advantage of TRFICA, Tang
et al. (2017) developed a highly sensitive and green immunoassay
for AFB1 detection without the use of toxic traditional antigen.
For AIdnb-based TRFICA, phages 2–5 (anti-1C11 nanobody)
used as capture antigen and rabbit IgG were coated on the
nitrocellulose membrane, respectively. During the TRFICA
procedure, AFB1 in the sample bound to its specific antibody
1C11 first. After the capillary action, the competitive reaction
between phages 2–5 and AFB1 toward mAb 1C11 occurred
on the test line. Under optimal conditions, AIdnb–TRFICA
provided a quantitative relationship ranging from 0.13 to
4.54 ng/ml for AFB1, with a LOD of 0.05 ng/ml in the
buffer solution.

MAIN APPLICATIONS

The TRFICA offers many advantages: (1) simple operation,
fast analysis, and less time consuming; (2) practicality for
on-site use; (3) high accuracy; and (4) good reproducibility
and stability. As the fluorescence lifetime of lanthanide
chelates is several orders of magnitude longer than that
of the background interference fluorescence in agro-
products, it is favorable to collect the fluorescence signal
of lanthanide-chelate-embedded microbeads coupled
with aflatoxin in the absence of background fluorescence
by time delay technique. Therefore, the detection

TABLE 2 | Comparison of the detection sensitivity of time-resolved fluorescence
immunochromatography assay (TRFICA) and gold nanoparticle-based
strip assay (GNP-SA).

Analyte LOD (ng/ml) Compare results
(enhanced times)

References

TRFICA GNP-SA

AFB1 0.005 1 Three orders of
magnitude

Zhang et al.,
2011a, 2015

AFM1 0.03 0.3 One order of
magnitude

Zhang et al.,
2012; Tang
et al., 2015

AF
(B1 + B2 +
G1 + G2)

0.004 0.03 One order of
magnitude

Zhang et al.,
2011b; Wang
et al., 2015

Frontiers in Microbiology | www.frontiersin.org 4 May 2020 | Volume 11 | Article 676

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00676 May 4, 2020 Time: 17:32 # 5

Li et al. TRFICA for Aflatoxin-Increasing Sensitivity

sensitivity and reliability are greatly improved in TRFICA. In
recent years, TRFICA has been widely used for aflatoxin detection
in several kinds of agro-products.

In 2015, Zhang et al. developed a portable TRFICA for
sensitive and on-site determination of AFB1 in food and feed
samples. This method provided a wide dynamic range of 0.2–
60 µg/kg with a LOD from 0.06 to 0.12 µg/kg, and good recovery
was also obtained in different food and feed sample matrices from
80.5 to 116.7% (Zhang et al., 2015). A sensitive TRFICA was
developed by Wang D. et al. (2016) for the detection of AFB1 in
soybean sauce with a dynamic range from 0.3 to 10.0 µg/kg and
a LOD of 0.1 µg/kg, with recoveries between 87.2 and 114.3%.
Tang et al. (2017) developed an AIdnb-based TRFICA for AFB1
detection in maize and its products with a dynamic range from
0.13 to 4.54 ng/ml and a LOD of 0.05 ng/ml. Good recoveries
(72.6–106.6%) in maize samples were also obtained (Tang et al.,
2017). Sun et al. (2018) developed TRFICA for AFB1 detection in
Chinese herbal medicines. The established TRFICA showed good
linear range from 0.60 to 3.92 µg/kg, with a LOD of 0.60 µg/kg
in Chinese herbal medicines Semen coicis, Rhizoma dioscoreae,
and Platycodon grandiflorus. The average recovery was 73–95%
with a relative standard deviation of <9.08% (Sun et al., 2018).
Wang et al. (2019) developed a TRFICA for AFB1 detection with a
linear detection range of 0.48–20 µg/kg and a LOD of 0.18 µg/kg
in peanut. The recovery range was 83.24–110.80% (Wang et al.,
2019). In 2020, a TRFICA for AFB1 detection was established
by Chang et al. (2020) with a LOD of 0.04 µg/kg and recoveries
ranging from 71.6 to 119.98% in grains.

Li et al. (2018) developed a TRFICA based on a unique bridge-
antibody label to realize on-site detection of AFM1 in milk.
Different from the previous reports of TRFICA, the fluorescent
Eu nanoparticles were first conjugated with polyclonal antibodies
and then with monoclonal antibodies. According to the detection
results, the sensitivity of this newly developed TRFICA was
greatly improved compared with monoclonal antibodies-labeled
fluorescent Eu nanoparticle-based TRFICA. A linear range from
0.02 to 0.4 ng/ml with a LOD of 0.009 ng/ml was obtained, and
the recoveries ranged from 88.7 to 105.0% for AFM1.

In 2019, TRFICA was used to detect total AF in corn samples
with a calculated limit of quantity of 0.03 ng/ml (Tang et al.,
2019). Wang et al. (2015) developed a TRFICA for total aflatoxin
detection in feed samples. It showed a wide dynamic range of
0.48–30.0 µg/kg with a LOD of 0.16 µg/kg, and the recoveries

ranged from 83.9 to 113.9%. In 397 feed samples from company
and livestock farms throughout China, the detection rate of total
AF was 78.3%, and the concentrations were in the range of
0.50–145.30 µg/kg (Wang et al., 2015).

CONCLUSION

Aflatoxin is the most harmful mycotoxin that is ubiquitous in
foods and agricultural supplies. In order to ensure consumption
safety, it is very necessary to develop highly sensitive assay
methods for aflatoxin detection. GNP-SA is one of the
most simple and popular test method. However, its detection
sensitivity is usually unsatisfactory for practical use. In order to
improve the detection sensitivity, TRFICA has been developed
in recent years. TRFICA for AFB1, AFM1, and total aflatoxin
detection in various kinds of agricultural products has been
reported. Compared with the previously reported GNP-SA and
ELISA, the detection sensitivity was greatly improved (Table 2).
Reasonably, TRFICA has been becoming one of the most
important tool for monitoring aflatoxin in foods and agro-
products. In consideration of the advantages of simple operation
and practicality for on-site use, TRFICA can be widely used
to detect various food contaminants, such as other biotoxins,
pesticide, and so on in the future.
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