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1  |   INTRODUCTION

Gestational diabetes mellitus (GDM) represents the most common 
pathoglycemia form in pregnant women that might also cause 
hypertension and cardiovascular disease (Oliveira et al., 2015). 
GDM’s morbidity is about 2%–5% across worldwide (Ashwal 
& Hod, 2015), and which is deeply affected by pathological and 
environment factors. For example, dangerousness of GDM could 

be increased up to 3.8 times in obese pregnant women than those 
with normal body mass index (Pantham & Aye, 2015). Previous 
study even reported that social capital, such as neighborhood 
trust, emotional support, has obvious influences on prevalence of 
GDM (Mizuno et al., 2016). What is more, GDM could increase 
incidence of type 2 diabetes mellitus and obesity in not only 
women, but also their offsprings (Catalano, 2010; Coustan, 2013; 
Harreiter, Dovjak, & Kautzky‐Willer, 2014; Nikolic et al., 2016).
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Abstract
Background: Gestational diabetes mellitus (GDM) is one of the most common prob-
lems during pregnancy. Lack of international consistent diagnostic procedures has 
limit improvement of current therapeutic effectiveness. Here, we aimed to screen 
potential gene biomarkers that might play vital roles in GDM progression for assis-
tance of its diagnostic and treatment.
Methods: Gene expression profiles in four GDM placentae at first trimester, four 
GDM placentae at second trimester, and four normal placentae were obtained from 
the publicly available Gene Expression Omnibus (GEO). Weighted gene coexpres-
sion network analysis (WGCNA) indicated two gene modules, that is, black and 
brown module, that was significantly positively and negatively correlated with GDM 
progression time points, respectively. Additionally, a significant positive correlation 
between module membership (MM) and degree in protein–protein interaction net-
work of brown module genes was observed.
Results: KIF2C, CENPE, CCNA2, AURKB, MAD2L1, CCNB2, CDC20, PLK1, 
CCNB1, and CDK1 all have degree larger than 50 and MM larger than 0.9, so they 
might be valuable biomarkers in GDM. Gene set enrichment analysis inferred tight 
relations between carbohydrate metabolism or steroid biosynthesis‐related processes 
and GDM progression.
Conclusions: All in all, our study should provide several novel references for GDM 
diagnosis and therapeutic.
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Gene expression profiling has been an important mean for 
exploring disease mechanism and identifying valuable diagnos-
tic and treatment biomarkers particularly after the development 
of gene microarray and high‐throughput sequencing technolo-
gies (Janikova et al., 2011; Kanda et al., 2015; Vu et al., 2015). 
As a polygenic disease, GDM progression was generally con-
sidered to be promoted by aberrant expression of multiple genes 
in a gestational age‐dependent manner (Uuskula et al., 2012). 
Insulin has been a key agent with effective treatment results for 
GDM mainly through regulating cholesterol transport in human 
placenta (Dube & Ethier‐Chiasson, 2013). Differences exist in 
placenta surfaces that exposed to bloodstreams of mother and 
fetus which corresponding to trophoblasts and endothelial cells, 
respectively, and could yield large amount of insulin receptor. 
Through interacting with those receptors, insulin could strik-
ingly control placental gene expression shifts from mother to 
fetus over the time course of pregnancy, which might shed new 
light on exploring therapeutic targets for GDM (Hiden et al., 
2006). It was also previously reported that reduced trophoblast 
apoptosis along with elevated inflammation could significantly 
result in aberrant expression of associated placental transcripts 
or proteins followed by GDM‐related increased placenta and 
newborn weights (Magee et al., 2014).

Genetic variation including single nucleotide polymor-
phisms (SNPs) and structure variation makes up the most 
common variations across the human genome, and it has 
been applied for multiple disease diagnostics and treatments. 
Vitamin D is closely associated with β‐cell function and im-
paired glucose absorption in GDM through transportation to 
placenta by vitamin D‐binding protein, that is, vitamin D re-
ceptor, and SNPs in which have been previously reported to 
be correlated with GDM clinical parameters (Wang, Wang, 
et al., 2015). Several previous studies even developed SNP‐
based risk score for GDM prediction. For example, through 
including type 2 diabetes‐related risk variants, Kawai et 
al. (2017) developed a risk score formula that could stably 
predict GDM risk; Chawla et al. (2014) proposed a model 
comprised of 48 SNPs along with several common clinico-
pathological features including ancestry, sex, gestational age, 
and so on, that could improve prediction of large‐for‐gesta-
tional‐age and newborn adiposity. Although the recent ad-
vancement of understanding about GDM mechanisms, the 
efficacy of conventional therapy is still poor and further stud-
ies for identifying valuable biomarkers are still needed.

In this study, we conducted weighted gene coexpression 
network analysis (WGCNA) for time series gene expression 

F I G U R E  1   Sample and gene clustering analysis based on the 3,731 gene expression profiles. (a) Sample clustering identified two main 
clusters that containing gestational diabetes mellitus and control samples, respectively. (b) Gene coexpression modules (GCMs) obtained 
through weighted gene coexpression network analysis and GCM clusters based on their eigengenes. The red line represents the height of 0.2. (c) 
Visualization of GCMs before and after merging closer GCMs according to the height of 0.2. Colors indicate GCMs, and leaves represent genes
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profiles in GDM samples at first trimester and second tri-
mester as well as control samples. Compared with traditional 
methodologies that take every transcript in the microarray 
alone and only capture two few information than that the mi-
croarray could provide, WGCNA takes correlations among 
those transcripts into account and identified potential dis-
ease‐related gene coexpression modules (GCMs) by con-
sidering associations between GCMs and disease’s traits as 
well as intramodular associations. We identified several gene 
modules that closely associated with GDM progression and 
screened potential biomarkers via combination with protein–
protein interaction (PPI) network. Additionally, carbohydrate 

metabolism or steroid biosynthesis‐related pathways were 
obtained through gene set enrichment analysis (GSEA), 
which has been previously reported to associate with GDM 
development.

2  |   MATERIALS AND METHODS

2.1  |  Gene expression profile dataset
We searched the Gene Expression Omnibus (GEO) 
with the keywords of “(gestational diabetes melli-
tus)” AND “Homo sapiens[porgn:__txid9606]” and 

F I G U R E  2   Gene coexpression module (GCM)‐gestational diabetes mellitus (GDM) progression correlation analysis. (a) A heatmap 
visualization of correlation between GCM and GDM patients’ pregnancy age. Numbers outside and inside brackets represent correlation 
coefficients and p value, respectively. (b,c) was the correlation plot of GS versus module membership for gene contained in black and brown 
module, respectively
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only retained gene expression datasets that profiled by 
using Affymetrix HG‐U133 Puls2.0 platform (ref no.: 
GPL570). As a result, we obtained one dataset that de-
posited by Mikheev et al. (2008) with the accession 
number of GSE9984, which consisted of placenta ex-
pression profiles of four GDM patients at first trimester 
(45–59 days), four GDM patients at second trimester 
and four control samples.

2.2  |  Gene expression preprocessing
R and Bioconductor packages were applied for preprocess-
ing raw gene expression profiles. Background correction, 
normalization, and logarithm transformation were con-
ducted by using the affy package (Gautier, Cope, Bolstad, 
& Irizarry, 2004). Probes were annotated as gene sym-
bols based on the GPL570 annotation file, and average 

F I G U R E  3   Protein–protein interaction (PPI) network analysis of genes contained in black and brown modules. (a) PPI network of genes 
contained in the black module. (b) PPI network of genes contained in the brown module. (c) Scatter plot indicated the positive correlation between 
network degree and module membership of genes contained in the brown module

info:ddbj-embl-genbank/GSE9984
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expression value was used for genes annotated by multiple 
probes.

2.3  |  Weighted gene coexpression 
network analysis
Gene coexpression analysis is a powerful mean for ex-
ploring correlations among genes at specific conditions, 
particularly in time series analysis. Weighted gene coex-
pression network analysis (WGCNA) assigns a connec-
tion weight to each gene pair in the coexpression network 
and uses soft thresholds that should be more biologically 
meaningful compares with traditional methods that use 
binary information (0 = unconnected, 1 = connected) 
(Zhang & Horvath, 2005). WGCNA package is a collec-
tion of R functions for soft power selection, GCM detec-
tion, identification of module eigengene (first principle 
component of the module), assessment of associations be-
tween modules and clinical traits, and so on (Langfelder, 
2008). Here, we screened GCM based on gene expres-
sion profiles of the 12 samples and assessed associations 
between modules and GDM by using pregnancy age as 
clinical variable.

2.4  |  Protein–protein interaction analysis
Protein–protein interactions among genes were obtained from 
the STRING database (Szklarczyk et al., 2015), containing 
interactions that with reliability scores according to means 
by which they were presented, such as high‐throughput, bio-
informatics prediction, or low‐throughput methods. Here, 
we used reliability score >0.9 as the threshold for screening 
of valuable gene pairs. Cytoscape version3.6.0 (Su, Morris, 
Demchak, & Bader, 2014) was applied for visualizing PPI 
network.

2.5  |  Gene set enrichment analysis
Gene set enrichment analysis was performed by using the 
GSEA software (Subramanian, Kuehn, Gould, Tamayo, & 
Mesirov, 2007). “C2.CP.V6.0.ENTREZ.gmt” was used as 

the gene set for the analysis. Permutation number was set 
to 1,000, and p value <0.05 was considered as statistically 
significant.

3  |   RESULTS

3.1  |  Gene coexpression modules
Coefficient of variation (CV) of every gene between GDM 
samples at first‐trimester or second‐trimester pregnancy age 
and control samples was calculated, and expression profiles 
of overlapping genes between the top 5,000 genes with larg-
est CV in GDM samples at first and second trimester were 
used for identification of valuable GCMs. As a result, 3,731 
genes were screened and sample clustering based on those 
genes’ Euclidean distance separated samples into two distinct 
clusters that contained control and GDM samples, respec-
tively, as shown in Figure 1a.

A total of 33 GCMs were identified based on the soft 
threshold of 11. Module clustering analysis was further per-
formed based on correlations among eigengenes of the 33 
GCMs, which produced seven merged GCMs according to 
height of 0.2 (red line in Figure 1b). Figure 1c illustrated the 
GCMs before and after merging closer GCMs.

3.2  |  Module‐trait correlation analysis
To screen candidate GCMs that might contribute GDM pro-
gression, we used GDM patients’ pregnancy age as clini-
cal variable and estimated their correlations with GCMs’ 
eigengene. As a result, brown and black modules were 
closely correlated with pregnancy age of GDM patients 
by using correlation p value ≤0.01 as threshold (Figure 
2a). Additionally, we calculated correlation between every 
gene’s module membership (MM, correlation between a 
specific gene and module’s eigengene) and gene signifi-
cance (GS, correlation between a specific gene and clinical 
variable) in brown and black modules. As expected, sig-
nificant positive correlations between gene’s MM and GS 
were obtained in black as well as brown module as shown 
in Figure 2b,c, respectively.

3.3  |  Protein–protein interaction network
Identification of GCMs was purely based on mathematical 
correlations among genes in specific module, so we further 
explored potential biological associations among genes in 
brown and black modules. As a result, a total of 842 and 
2,654 gene pairs were, respectively, obtained for genes con-
tained in black and brown module. Figure 3a,b illustrate PPI 
network that comprised of pairs among genes in black and 
brown module, respectively. Additionally, degree of brown 
module genes (direct neighborhood in PPI network) was 

T A B L E  1   Module membership (MM) and degree of genes that 
with degree larger than 10 in protein–protein interaction network

Gene MM Degree Gene MM Degree

CDK1 0.90 102 AURKB 0.91 54

CCNB1 0.90 76 CCNA2 0.95 53

PLK1 0.92 69 CENPE 0.90 52

CCNB2 0.96 62 PAFAH1B1 0.86 52

CDC20 0.95 62 KIF2C 0.90 51

MAD2L1 0.91 56
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significantly positively correlated with their MM (Figure 3c), 
which might indicate closer relation between brown module 
and GDM progression than that of black module. Table 1 
shows the genes that with PPI degree larger than 50 and their 
MM.

3.4  |  Gene set enrichment analysis
We divided samples into first trimester and control group 
or second trimester and control group and subjected them to 
GSEA. Figure 4a,b illustrated the full list of KEGG pathways 
and top five KEGG pathways that significantly up‐regulated 
in first‐trimester and second‐trimester GDM samples com-
pared with control samples, respectively. Table 2 is the full 
list of KEGG pathways significantly up‐regulated in second‐
trimester GDM samples. Lysine degradation, carbon pool by 
folate, and steroid biosynthesis pathways were found to be 
significantly up‐regulated in both first‐trimester and second‐
trimester GDM samples. Strikingly, cancer‐related pathways, 
such as colorectal cancer, cell cycle, were also significantly 
up‐regulated in second‐trimester GDM samples.

4  |   DISCUSSION

Gestational diabetes mellitus represents the most prevalence 
form of pathoglycemia in pregnancy that deeply affects 
the life of mothers as well as their offspring. In this study, 
we identified some potential GDM‐related genes by ana-
lyzing GDM time series gene expression profiles through 
WGCNA along with PPI network analysis. GSEA strikingly 

obtained some cancer‐related pathways in addition to sev-
eral well‐known GDM‐associated pathways which were 
significantly up‐regulated in GDM samples compared with 
control samples. This study should shed some new light on 
the understanding of GDM mechanisms and its diagnosis or 
treatment.

Abnormal insulin secretion and metabolism contrib-
ute greatly to GDM initiation and progression. Here, lysine 
degradation, carbon pool by folate, and steroid biosynthesis 
pathways were significantly up‐regulated in first as well as 
second‐trimester GDM samples compared with control sam-
ples. Lysine represents a major component of histone, and 
modifications such as acetylation, methylation, and so on in 
it play vital roles in major cellular functions, for example, 
posttranscriptional proteins’ modification. In addition, ly-
sine acetylation was also previously reported to affect both 
immunological and metabolic pathways, which could then 
induce type II diabetes and cardiovascular disease (Iyer & 
Fairlie, 2012; Kosanam et al., 2014). Nε‐(carboxymethyl) ly-
sine‐conjugated bovine serum albumin is an essential compo-
nent of advanced glycation end products which could damage 
mitochondrial functions and result in reducing insulin secre-
tion followed by the incidence of diabetes (Lo et al., 2015). 
Diabetes could control many aspects of endocrine, including 
steroidogenesis, whose perturbation could in turn induce the 
initiation of diabetes (Hwang, 2014; Jangir, 2014). In addi-
tion to some well‐known pathways related to GDM, we strik-
ingly identified the up‐regulation of several cancer‐related 
pathways in second‐trimester GDM samples, such as colorec-
tal cancer, cell cycle. It has been widely reported that diabe-
tes could result in elevated colorectal cancer risk (Jarvandi & 

T A B L E  2   Full list of KEGG pathways that significantly up‐regulated in second‐trimester gestational diabetes mellitus samples

Pathway name ES Nom p value

KEGG_BIOSYNTHESIS_OF_UNSATURATED_FATTY_ACIDS 0.677 0

KEGG_ONE_CARBON_POOL_BY_FOLATE 0.727 0

KEGG_PORPHYRIN_AND_CHLOROPHYLL_METABOLISM 0.539 0

KEGG_COLORECTAL_CANCER 0.404 0

KEGG_STEROID_BIOSYNTHESIS 0.738 0.0192

KEGG_LYSINE_DEGRADATION 0.556 0.0195

KEGG_GLYCEROLIPID_METABOLISM 0.417 0.0200

KEGG_CELL_CYCLE 0.577 0.0303

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 0.567 0.0306

KEGG_VIBRIO_CHOLERAE_INFECTION 0.412 0.0446

KEGG_RNA_POLYMERASE 0.460 0.0497

Note. ES: enrichment score; Nom p value: normalized p value.

F I G U R E  4   Gene set enrichment analysis. (a) The full list of significantly up‐regulated KEGG pathways in first‐trimester gestational diabetes 
mellitus (GDM) samples compared with normal samples. (b) The top five most significantly up‐regulated KEGG pathways in second‐trimester 
GDM samples compared with normal samples
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Davidson, 2013; Wu et al., 2013), which was also confirmed 
in a rat model (Jia et al., 2014).

MM and degree are important for evaluating genes’ as-
sociations with specific trait in gene coexpression and PPI 
network, respectively. In this study, several genes have both 
high MM in brown module and high degree in PPI network, 
which might serve as important diagnosis or treatment bio-
markers for GDM. CDK1 and CCNB1 are the top two genes 
with larger degree in PPI network, and CDK1 and CCNB1 
interaction was previously proved to coordinates mitochon-
drial respiration and affect G2/M cell cycle progression 
(Wang et al., 2014). Cell cycle perturbation is closely asso-
ciated with multi diseases’ progression including diabetes 
(Saavedra‐Avila et al., 2014; Wang, Fiaschi‐Taesch, et al., 
2015). Besides, aberrant expression of CDK1 and CCNB1 
in diabetes patients were also proved by previous studies 
(Page, Morris, Williams, Ruhland, & Malik, 1997; Su et 
al., 2015). CCNB2’s MM is the largest one compared with 
the other nine genes in Table 1. In Zhang’s study (2017), 
CCNB2 was found to be significantly up‐regulated in diabe-
tes mice compared with normal mice and was also the core 
gene in PPI network of DEGs. Although no previous study 
about direct association between some of those genes with 
GDM progression, lots of studies have proved associations 
between those genes with the well‐known GDM‐associ-
ated biological processes, such as CDC20 with metabo-
lism (Martin, Mebarki, Paradis, Friguet, & Radman, 2014), 
CENPE with insulin absorption (Zhu, Ai, Wang, Xu, & 
Teng, 2012), and so on. So, those genes might be potential 
biomarkers for GDM.

5  |   CONCLUSIONS

In conclusion, we identified several potential biomark-
ers for GDM through WGCNA and PPI network analysis. 
GSEA identified some cancer‐related pathways in addi-
tion to several well‐known GDM‐related pathways, which 
might provide novel clues for GDM experimental research 
and clinical treatment.
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