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Abstract

To establish a new model for estimating ground-level PM2.5 concentration over Beijing,

China, the relationship between aerosol optical depth (AOD) and ground-level PM2.5 con-

centration was derived and analysed firstly. Boundary layer height (BLH) and relative humid-

ity (RH) were shown to be two major factors influencing the relationship between AOD and

ground-level PM2.5 concentration. Thus, they are used to correct MODIS AOD to enhance

the correlation between MODIS AOD and PM2.5. When using corrected MODIS AOD for

modelling, the correlation between MODIS AOD and PM2.5 was improved significantly.

Then, normalized difference vegetation index (NDVI), surface temperature (ST) and surface

wind speed (SPD) were introduced as auxiliary variables to further improve the performance

of the corrected regression model. The seasonal and annual average distribution of PM2.5

concentration over Beijing from 2014 to 2016 were mapped for intuitively analysing. Those

can be regarded as important references for monitoring the ground-level PM2.5 concentra-

tion distribution. It is obviously that the PM2.5 concentration distribution over Beijing revealed

the trend of “southeast high and northwest low”, and showed a significant decrease in

annual average PM2.5 concentration from 2014 to 2016.

Introduction

With vibrant development of economy and rapid improvement of industry, environmental

issues have gradually become a focus of attention. In recent years, the problem of haze has

become outstanding, and the main reason for this is the absorption and scattering of PM2.5

(particulate matter with aerodynamic diameters less than or equal to 2.5 μm) in visible light

intensity. In addition to affecting the human daily life and economical production, PM2.5 also

contributes to chronic respiratory, pulmonary, cardiovascular, and other human diseases [1,

2]. The reduction of PM2.5 concentration has been a matter of great urgency all over the world.

The real-time monitoring of PM2.5 concentration plays a vital role in PM2.5 concentration

reduction and environmental protection. Monitoring methods of PM2.5 concentration can be
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generally divided into two categories: ground stations monitoring and satellite remote sensing

image estimating [3]. The former obtains environmental pollution information by setting up

monitoring stations on the earth surface. This category can provide accurate monitoring of

PM2.5 concentration, but the spatial distribution of monitoring stations is uneven and the

equipment is expensive, making it difficult to obtain a wide range distribution of PM2.5 con-

centration. The latter can acquire continuous, large scale atmospheric aerosol information

through remote sensing data, which can be converted to the PM2.5 concentration and distribu-

tion of the earth surface [4–6]. This category is more comprehensive and can greatly reduce

the cost of research. So building a high-precision regression model between satellite based

atmospheric aerosol information and ground measured PM2.5 concentration has great practi-

cal significance.

Griggs et al. discovered that ERTS-1 satellite data provided the possibility of monitoring

atmospheric AOD [7]. Meanwhile, the monotonic linear relationship between the radiation

values of infrared and visible channels and AOD was confirmed theoretically. Since Moderate

Resolution Imaging Spectroradiometer (MODIS) sensors were put into use, AOD inversion

algorithms and products have been greatly developed. It pushed the aerosol inversion research

from ocean to land which supports most human activities. Dark target (DB) and Deep blue

(DT) algorithms have gradually become mature AOD inversion algorithms over land through

continuous improvement and development. Butt et al. adopted the DB algorithm AOD prod-

ucts of the Terra and Aqua satellites from 2000 to 2013 to analyse changes of AOD over Arabia,

and concluded that the Aqua satellite’s AOD data were closer to the AOD results measured

by ground stations than the Terra satellite’s AOD data [8]. Bilal et al. utilized AOD data from

Aerosol Robotic Network (AERONET) level 2.0 cloud screening and quality control data to

evaluate the static Normalized Difference Vegetation Index (NDVI) pixel selection criteria of

AOD which based on the combination of the DB, DT, and DT and DB (DTB) algorithms. The

experimental results revealed that the proposed dynamic NDVI pixel selection criteria could

improve the performance of DTB products and reduce uncertainty [9].

With the shrinkage of particulate matter index from PM10 to PM2.5 and new development

of AOD products, researchers have exploited AOD data to estimate PM2.5 concentration. The

main approaches generally include statistical models and physical-chemical models. Com-

pared to the physical-chemical models which require complex analysis of light transmission

process in atmosphere and are difficult to generalize, statistical ones can use a regression

model fitted by the relationship between AOD and PM2.5 concentration to approximately esti-

mate the PM2.5 concentration.

Statistical models can be divided into the linear regression model, mixed effect model, geo-

graphically weighted regression model (GWR), and some others. On the basis of measured

AOD and mixed layer height data, Schäfer et al. derived the extinction coefficient of aerosol,

and acquired the extinction efficiency of aerosol through a linear regression model [10]. The

experimental results showed that the extinction coefficient of aerosol was significantly related

to the surface PM concentration in winter conditions. To study the correlations between

PM2.5 concentration and AOD in North China, Xin et al. established linear regression func-

tions between ground-level PM2.5 concentration and ground-observed AOD and MODIS

AOD, respectively [11]. The results indicated that the linear regression functions of different

seasons are significantly different and this is because the aerosol types were affected by sea-

sonal variations. Tai et al. analysed the relationship between PM2.5 and different meteorologi-

cal variables using the multivariate regression model (MLR) from 1998 to 2008 in adjacent

areas of the United States [12]. The experiments showed that the distribution of PM2.5 are

influenced by disturbances of wind patterns due to climate change.
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Lee et al. proposed a mixed effect model, which fully exploited remote sensing data to estab-

lish the relationships between daily PM2.5 concentration and AOD in the New Zealand region

and suggested the daily relations between AOD and PM2.5 concentration through the statistical

method [13]. Xie et al. developed a mixed effect model to invert daily PM2.5 concentration in

Beijing, which taken the diurnal variation relationship of AOD and PM2.5 concentration into

account [14]. This research concluded that high-resolution daily PM2.5 concentration maps

can contribute to assessment of short-term and long-term PM2.5 exposure. Zheng et al. put for-

ward a linear mixed effect model that integrated AOD measurement, meteorological parame-

ters, and NO2 column density for the estimation of PM2.5 concentration in Beijing, Tianjin

and Hebei, the Yangtze River Delta, and the Pearl River Delta [15]. As shown in the experi-

mental results, the combination of different factors contributed to the accuracy of model,

which provided the possibility of assessing PM2.5 concentration in areas with different pollu-

tion levels.

You et al. adopted the GWR model to estimate the concentration of PM2.5 concentration in

China and introduced meteorological features as auxiliary variables into the model to improve

the accuracy [16]. In the experiments, cross validated R2 reached 0.79. The experimental

results demonstrated that the proposed approach could evaluate a large area of PM2.5 concen-

tration distribution. Guo et al. proposed a geographic and temporal weighted regression

model (GTWR), which took both the temporal and spatial variability into consideration [17].

The AOD measurements, meteorological factors, and land use variables were also employed

for fitting different seasons. The experiments indicated that GTWR was superior to MLR and

GWR but that it was influenced by the sampling frequency of PM2.5 data [17]. Continuous

daily PM2.5 observations could improve the performance of the model.

The aforementioned methods, such as MLR, mixed effects mode, GWR, GTWR, estab-

lished the empirical linear relationship between PM2.5 concentration and satellite based AOD,

and successfully mapped the PM2.5 concentration distribution of the study area. However, ade-

quate analysis of how the relevant factors, such as boundary layer height (BLH) and relative

humidity (RH), effect the PM2.5 concentration from a theoretical point of view is also essential

for estimation of PM2.5 concentration distribution.

In this work, we first analyse the relationship between ground-level PM2.5 concentration

and AOD, BLH, RH, and get the conclusion that BLH and RH can effectively correct the rela-

tionship between AOD and PM2.5 concentration. Thereby, three kinds of more theoretical

AOD-PM2.5 regression models are established for PM2.5 concentration estimation, which are

more interpretable. Then, NDVI, ST and SPD are introduced as auxiliary variables to further

improve the performance of the corrected regression model. The modified AOD-PM2.5 con-

centration regression models were established separately according to the season and used to

estimate the seasonal average PM2.5 concentration over Beijing, China during 2014 to 2016.

The seasonal and annual PM2.5 concentration distribution over Beijing were mapped using the

established models for better analysing the geographic distribution and annual changes of

PM2.5 concentration.

Materials and methods

Beijing, located at 39.4˚-41.6˚ N, 115.7˚-117.4˚ E, is an important economic and political cen-

ter of China. With the rapid development of the economy, Beijing has become one of the cities

heavily affected by haze, especially in spring and winter. PM2.5 has a serious impact on urban

traffic and people’s life. In this section, MODIS AOD and NDVI products, station-measured

PM2.5 data, four kinds of meteorological data are described in this section (seen in Table 1).
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PM2.5 measurements

Hourly station-measured PM2.5 concentration data observed at 15 uniformly-distributed air

quality monitoring station in Beijing, which were collected from the Beijing Municipal Envi-

ronmental Monitoring Center (http://zx.bjmemc.com.cn/) [18, 19], were used for the experi-

ments. The location of all the 15 air quality monitoring stations in Beijing is shown in Fig 1.

and the geographical coordinates are listed in S1 Table. We averaged the measured PM2.5

concentration between 13:00 pm and 14:00 pm local time to match the overpass time of the

MODIS Aqua satellite (about 13:30 pm local time). The study period was from January 1,

2014, to December 31, 2016, spanning a total of 1096 days.

MODIS AOD and NDVI products

MODIS onboard the NASA Aqua satellite has been in operation since 2002. It provides

retrieval products of aerosol and cloud properties with nearly daily global coverage. The

MODIS data used in this study were the MYD04 Level 2 aerosol products with a resolution of

10 km and MYD13 monthly NDVI products with a resolution of 1 km [9]. The overpass time

of the MODIS Aqua satellite is about 13:30 pm local time. The MODIS DT aerosol algorithms

produce two separate products with different resolutions, with spatial resolutions of 3km and

10km respectively. However, it performs unsatisfactorily in urban regions. The DB algorithm

performs better than the DT algorithm over urban areas, and it can provide better land cover-

age over both dark and bright surfaces, which is more reasonable for PM2.5 concentration dis-

tribution research in Beijing [20–22].

ECMEF ERA interim meteorological data

The ERA-Interim data provided by the European Centre for Medium-Range Weather Fore-

casts (ECMWF) are real-time updated global atmospheric reanalysis data (https://www.

ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim). The meteorological parame-

ters used in this study are BLH and RH at 100m vertical direction, surface temperature and

wind speed at 14:00 pm local time [23]. The spatial resolution of the ERA-Interim reanalysis

data used in this study was approximately 0.125˚.

AOD-PM2.5 corrected regression model

Because some parameters used to describe atmospheric physical conditions, such as air pres-

sure, atmospheric temperature, and atmospheric humidity, change much more in the vertical

direction than the horizontal direction [24], it is often assumed that the atmosphere has a

structure in which the horizontal direction is uniform and the vertical direction is layered.

When considering a single homogeneous atmospheric layer containing spherical aerosol

Table 1. Descriptive statistics of PM2.5 measurements, MODIS AOD product, NDVI, and meteorological data during the study period (2014 to 2016).

Variable Unit Temporal resolution Spatial resolution Source

AOD Unitless 1 day 10km MODIS

NDVI Unitless monthly 1km MODIS

PM2.5 μg/m3 1 hour 15 stations CEMC

RH % 6 hour 0.125˚ ECMWF

BLH m 3 hour 0.125˚ ECMWF

ST ˚C 3 hour 0.125˚ ECMWF

SPD m/s 3 hour 0.125˚ ECMWF

https://doi.org/10.1371/journal.pone.0240430.t001
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particles, the mass concentration at the surface can be represented as

PM ¼
4

3
pr

Z

r3ndryðrÞdr; ð1Þ

in which ρ denotes the density of aerosol particles (g/m3) and ndry(r) denotes the particle size

distribution spectrum under dry conditions. Generally, AOD is the integral of the extinction

coefficient of aerosol particles in the vertical direction of the atmosphere with aerosol scale

height H [25]

AODðlÞ ¼
Z H

0

sext;ambðlÞdz; ð2Þ

where σext,amb denotes the aerosol extinction coefficient under ambient conditions. It can be

expressed as sext;ambðlÞ ¼
R1

0
pQext;ambðr; lÞnambðrÞr2dr, where Qext,amb denotes the particulate

matter extinction efficiency under ambient conditions and namb(r) denotes the particle size

Fig 1. The location of 15 air quality monitoring stations in Beijing.

https://doi.org/10.1371/journal.pone.0240430.g001
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distribution under ambient conditions. Thus, at a given wavelength λ, the aerosol optical

thickness from the ground to the height H can be expressed as [26]

AOD ¼ p
Z H

0

Z 1

0

Qext;ambðrÞnambðrÞr
2drdz: ð3Þ

As we all know, different aerosol particles have different hygroscopic properties, e.g., water-

soluble particles and organic aerosol particles have distinct hygroscopic properties. Thus,

aerosol particles with the same mass concentration but different composition show different

extinction characteristics under different humidity conditions. That is to say, the correlation

between the extinction coefficient and the mass concentration changes with humidity. There-

fore, to reduce the uncertainty introduced by the hygroscopic growth of the particles, it is nec-

essary to convert the AOD obtained by satellite remote sensing into the mass concentration of

dry particles.

A hygroscopic growth factor f(RH), which represents the ratio between these (size-distribu-

tion integrated) extinction efficiencies, is required to convert particulate matter extinction effi-

ciency under ambient conditions to under dry conditions. Then, Eq (3) can be converted to

the following [26, 27]

AOD ¼ pf ðRHÞ
Z H

0

Z 1

0

Qext;dryðrÞnambðrÞr
2drdz: ð4Þ

Furthermore, to rewrite the above formula, the size-distribution integrated extinction effi-

ciency hQexti and effective radius reff can be introduced:

hQexti ¼

R
QextðrÞnðrÞr2dr
R
nðrÞr2dr

; ð5Þ

reff ¼
R
nðrÞr3ðrÞdr

R
nðrÞr2ðrÞdr

: ð6Þ

Hence, the relationship between AOD and near-surface PM mass concentration is finally

derived as follows [25, 28]

AOD ¼ PM � H � f RHð Þ
3hQext;dryi

4rreff
: ð7Þ

As the aerosol scale height H is an assumed equivalent height under ideal conditions, it is

difficult to measure directly when the near-surface aerosol extinction coefficient is unknown.

In the planetary boundary layer, the obvious turbulent motion causes strong atmospheric mix-

ing, resulting in a uniform vertical distribution of aerosols. In practice, the BLH has a similar

physical meaning to the aerosol scale height H and is often used instead of H.

According to the above relationship between AOD and PM, it can be inferred that if the

AOD is corrected by the factors BLH and f(RH), the corrected AOD should be expected to

obtain a better correlation with PM.

Here, a time-space matched MODIS AOD-PM2.5 data pair and a corresponding BLH and

f(RH) were used to construct different linear regression models in different seasons [26].
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There were 4 types of models:

I : AOD ¼ a1 þ b1PM2:5; ð8Þ

II : AOD=BLH ¼ a2 þ b2PM2:5; ð9Þ

III : AOD=ðf ðRHÞÞ ¼ a3 þ b3PM2:5; ð10Þ

IV : AOD=ðBLH � f ðRHÞÞ ¼ a4 þ b4PM2:5: ð11Þ

where a and b are model regression coefficients. Eq (8) represents a simple, original regression

model, Eq (9) represents a model corrected by BLH, Eq (10) represents a model corrected by

RH, and Eq (11) represents a model jointly corrected by BLH and RH.

In this study, NDVI, ST and SPD are introduced as auxiliary variables to further improve

the performance of the corrected regression model for estimating ground-level PM2.5 concen-

tration. 4 types of modified corrected regression models can be described as

V : AOD ¼ a1 þ b1PM2:5 þ c1NDVIþ d1STþ e1SPD; ð12Þ

VI : AOD=BLH ¼ a2 þ b2PM2:5 þ c2NDVIþ d2STþ e2SPD; ð13Þ

VII : AOD=ðf ðRHÞÞ ¼ a3 þ b3PM2:5 þ c3NDVIþ d3STþ e3SPD; ð14Þ

VIII : AOD=ðBLH � f ðRHÞÞ ¼ a4 þ b4PM2:5 þ c4NDVIþ d4STþ e4SPD: ð15Þ

Those modified corrected regression models are fitted separately according to the season

and used to estimate the seasonal average PM2.5 concentration over Beijing, China during

2014 to 2016. For model evaluation, we assessed the model performance by calculating the

coefficient of determination R2 and root mean squared error (RMSE) between estimated and

measured PM2.5 concentration in different seasons:

R2 ¼ 1 �

Pn
i¼1
ðyi � fiÞ

2

Pn
i¼1
ðyi � �yiÞ

2
; ð16Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn

i¼1
ðyi � fiÞ

2

r

; ð17Þ

where fi and yi are the predicted PM2.5 and the measured PM2.5 concentration of the ith sam-

ple, respectively, and N is the total number of AOD-PM2.5 pair samples.

Fig 2 shows the flow diagram of the development process of the modified corrected

AOD-PM2.5 model over Beijing. Firstly, BLH, RH, ST and SPD are interpolated to the same

resolution as MODIS DB AOD by means of bilinear interpolation. NDVI is resized to the

same resolution as MODIS DB AOD by means of nearest neighbor. Then, all variables located

at 15 air quality monitoring stations are used to construct a AOD-PM2.5 modified regression

model according to the season in every year. Finally, the seasonal and annual PM2.5 concentra-

tion distribution map is calculated by the AOD-PM2.5 modified regression model, which can

directly reflect the PM2.5 distribution of Beijing.
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Results and discussions

In our study, the correlation between estimated and measured PM2.5 concentration using

aforementioned models is evaluated. R2 between estimated and measured PM2.5 concentration

obtained by different models according to the season during 2014-2016 is tabulated in Table 2.

f(RH) is defined empirically as f(RH) = 1/(1 − RH/100).

In Table 2, the R2 of model I can be interpreted as the correlation between measured PM2.5

concentration and MODIS DB AOD. Generally, in spring and autumn, the estimated PM2.5

concentration had closer correlation with the measured PM2.5 concentration. This may be a

result of more uniform near-surface aerosol composition, as well as lower BLH, which limits

aerosol diffusion in Beijing during spring and autumn.

According to Eq (7), BLH and f(RH) corrections could improve the AOD-PM2.5 correlation

theoretically. The BLH corrected model was established on the basis of this. In Table 2, The R2

of model II can be interpreted as the correlation between measured PM2.5 concentration and

BLH corrected AOD. Model correlations were affected differently in different seasons. The R2

in spring had a large increase after BLH correction, from 0.72 to 0.75 in 2014, from 0.69 to

0.71 in 2015, from 0.76 to 0.82. The more obvious advantages of BLH correction appears in

Fig 2. Flow diagram for developing the modified corrected AOD-PM2.5 model in Beijing.

https://doi.org/10.1371/journal.pone.0240430.g002

Table 2. R2 between estimated and measured PM2.5 concentration obtained by different models according to the season during 2014-2016.

Model I II III IV V VI VII VIII

Season

Spring, 2014 0.72 0.75 0.73 0.75 0.75 0.76 0.75 0.77

Summer, 2014 0.66 0.64 0.68 0.65 0.68 0.68 0.68 0.69

Autumn, 2014 0.72 0.81 0.72 0.81 0.73 0.82 0.74 0.81

Winter, 2014 0.68 0.69 0.68 0.69 0.70 0.69 0.69 0.69

Spring, 2015 0.69 0.71 0.69 0.71 0.70 0.73 0.70 0.74

Summer, 2015 0.68 0.65 0.67 0.64 0.72 0.75 0.71 0.74

Autumn, 2015 0.73 0.81 0.73 0.81 0.74 0.82 0.73 0.81

Winter, 2015 0.69 0.69 0.68 0.69 0.73 0.731 0.72 0.731

Spring, 2016 0.76 0.82 0.76 0.82 0.76 0.84 0.77 0.83

Summer, 2016 0.62 0.58 0.73 0.60 0.63 0.61 0.74 0.63

Autumn, 2016 0.70 0.79 0.70 0.79 0.72 0.80 0.72 0.79

Winter, 2016 0.71 0.80 0.70 0.80 0.70 0.81 0.70 0.82

1 In Autumn of 2015, the R2 of model V is higher than that of model VI and VIII when using more scientific numbers.

https://doi.org/10.1371/journal.pone.0240430.t002
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autumn. The R2 has about 0.08-0.09 increase in different years, and reaches 0.81 in 2014 and

2015, 0.79 in 2016, demonstrating the effectiveness of BLH correction in autumn. For winter,

the BLH corrected model achieved a slight improvement in 2014 and 2015 and a significant

improvement in 2016. However, the R2 of the BLH corrected model had a decrease in summer,

which because higher BLH cannot limit aerosol diffusion, as well as the poor quality of

MODIS AOD products in summer because of cirrocumulus and rainfall.

The R2 of model III can be interpreted as the correlation between measured PM2.5 concen-

tration and RH corrected AOD. With RH correction separately (Model III), a obvious increase

of R2 are appeared in summer, 2016, from 0.62 to 0.73. However, the results change little in

other times, and the fluctuation range of R2 is within 0.02. When considering BLH and f(RH)

correction simultaneously (as Model IV), the results are very close to Model II.

When introduced NDVI, ST and SPD as auxiliary variables, the R2 of Model V-VIII in all

seasons have about 2% increase correspondingly in most situations. Fig 3 show the scatter

plots and regression results between estimated and measured PM2.5 concentration in the dif-

ferent seasons with the best results among all kinds of modified corrected models. In total, the

correlation between estimated and measured PM2.5 concentration is more higher in spring

and autumn. The R2 are 0.77, 0.74 and 0.84 in spring, 0.69, 0.75 and 0.74 in summer, 0.82, 0.82

and 0.80 in autumn, 0.70, 0.73 and 0.82 in winter during 2014 to 2016 respectively.

In our study, even though the complicated PM2.5 concentration distribution in Beijing, the

modified corrected AOD-PM2.5 models achieved higher model fitting R2 values than those in

previous studies, e.g., an observation-based algorithm that considers the effect of the main

aerosol characteristics applied to the Beijing-Tianjin-Hebei region with R2 of 0.70 [3], the

GWR model applied to the whole China mainland with an overall R2 of 0.64 [5], an improved

model applied to the Beijing-Tianjin-Hebei region with an R2 of 0.77 [15], satellite-driven

PM2.5 models with VIIRS nighttime data applied to the Beijing-Tianjin-Hebei region with R2

of 0.75 [19], and NAQPMS data incorporated to MODIS data applied to the Beijing-Tianjin-

Hebei region from January to December 2017 with seasonal R2 values of 0.75, 0.62, 0.80, and

0.78 in the spring, summer, autumn, and winter, respectively [22].

Table 3 is comparison between estimated and measured seasonal average PM2.5 concentra-

tion of 15 monitoring stations from 2014 to 2016. Minor difference reflects the good perfor-

mance of the established models in each season. Table 4. is the comparison of regional average

PM2.5 concentration from 2014 to 2016 over Beijing. In term of interannual seasonal change,

PM2.5 concentration in summer are more lower the other seasons because of a great deal of

rainfall. PM2.5 concentration in spring and winter is general higher than other seasons because

of low rainfall and home-heating. In term of annual change of PM2.5 concentration during

2014 to 2016, it witnesses a downward trend in the same season. The annual average PM2.5

concentration decrease from 75.1 μg/m3 to 62.0 μg/m3, about a 17% decrease, which confirms

the effectiveness of a series of stringent clean air actions implemented by the Chinese govern-

ment from 2013 to 2017 [29]. In 2016 winter, the PM2.5 concentration decreased to 59.4 μg/

m3, which is inspiring.

The spatial distribution of the seasonal and annual average PM2.5 concentration are

mapped to investigate its spatial distribution characteristics over Beijing during 2014 to

2017, as shown in Fig 4. The measured average PM2.5 concentration is represented as a circle

using the same color scheme. In Beijing, PM2.5 concentration spatial distribution reveals the

trend of “southeast high and northwest low”. In spring, autumn and winter of 2014, autumn

and winter of 2015, autumn of 2016, this trend is more obvious. PM2.5 concentration of the

southeast of Beijing during these seasons are higher than 75 μg/m3. This conforms to the

urbanization level and population distribution in Beijing. Human activities directly affect the

PM2.5 concentration.
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Fig 3. Scatter plots between estimated and measured PM2.5 concentration in different seasons during 2014 to 2016. (a) Spring, 2014, Model

VIII. (b) Spring, 2015, Model VIII. (c) Spring, 2016, Model VI. (d) Summer, 2014, Model VIII. (e) Summer, 2015, Model VI. (f) Summer, 2016,

Model VII. (g) Autumn, 2014, Model VI. (h) Autumn, 2015, Model VI. (i) Autumn, 2016, Model VI. (j) Winter, 2014, Model V. (k) Winter,

2015, Model V. (l) Winter, 2016, Model VIII.

https://doi.org/10.1371/journal.pone.0240430.g003
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Fig 5 is the annual average PM2.5 concentration distribution over Beijing during 2014 to

2016. An obvious decrease of PM2.5 concentration can be intuitively found.

Although the satellite-derived PM2.5 monitoring method can provide larger spatial coverage

than ground monitoring stations, the satellite has lower temporal coverage mainly due to bad

observation conditions, such as clouds and fogginess. In our study, there were 477 model-valid

days during 2014 to 2016. In addition, due to cloudy or foggy weather in Beijing giving rise to

inefficient sampling frequency of available satellite observations, the AOD retrieval algorithm

may be not valid. Thus other monitoring approaches with larger spatial coverage and smaller

weather limitations should be developed.

Overall, the seasonal estimated PM2.5 concentration showed good consistency with those of

ground measurements. We attempted to use relative humidity to correct MODIS AOD, but

this brought little effect. Additional work should be done in this aspect.

Conclusion

This paper focused on analysing the influence of BLH and f(RH) on the linear relationship

between AOD and PM2.5 concentration and attempted to evaluate the improvement pro-

vided by modified regression models. As aerosol scale height, BLH can effectively improve

the AOD-PM2.5 correlation by transforming AOD into near-surface aerosol extinction coef-

ficient. When introduced NDVI, ST and SPD, the R2 in all seasons have about 2% increase.

The spatial and temporal PM2.5 concentration distribution characteristics over Beijing dur-

ing 2014 to 2016 were well revealed by seasonal and annual PM2.5 concentration distribution

Table 3. The comparison between estimated and measured seasonal average PM2.5 concentration of 15 stations in

Beijing from 2014 to 2016.(μg/m3).

Year Estimated Measured

Spring, 2014 87.0 76.7

Summer, 2014 69.8 63.8

Autumn, 2014 87.7 89.0

Winter, 2014 83.2 76.7

Summer, 2015 69.7 65.3

Summer, 2015 60.3 51.0

Autumn, 2015 77.1 73.4

Winter, 2015 88.9 85.8

Summer, 2016 72.9 69.3

Summer, 2016 58.8 58.1

Autumn, 2016 77.2 86.0

Winter, 2016 67.5 66.9

https://doi.org/10.1371/journal.pone.0240430.t003

Table 4. The comparison of average PM2.5 concentration from 2014 to 2016 in Beijing.(μg/m3).

Year 2014 2015 2016

spring 79.3 67.7 69.1

summer 66.3 56.9 53.6

autumn 77.0 61.6 65.7

winter 77.7 77.9 59.4

Annual 75.1 66.0 62.0

https://doi.org/10.1371/journal.pone.0240430.t004
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Fig 4. The seasonal average PM2.5 concentration distribution over Beijing during 2014 to 2016.

https://doi.org/10.1371/journal.pone.0240430.g004
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maps. The results confirmed the effectiveness of China’s clean air actions implemented from

2013 to 2017.

Supporting information
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