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Abstract: Oil pollution such as diesel poses a significant threat to the environment. Due to this, there
is increasing interest in using natural materials mainly from agricultural waste as organic oil spill
sorbents. Oil palm’s empty fruit bunch (EFB), a cost-effective material, non-toxic, renewable resource,
and abundantly available in Malaysia, contains cellulosic materials that have been proven to show
a good result in pollution treatment. This study evaluated the optimum screening part of EFB that
efficiently absorbs oil and the physicochemical characterisation of untreated and treated EFB fibre
using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The
treatment conditions were optimised using one-factor-at-a-time (OFAT), which identified optimal
treatment conditions of 170 ◦C, 20 min, 0.1 g/cm3, and 10% diesel, resulting in 23 mL of oil absorbed.
The predicted model was highly significant in statistical Response Surface Methodology (RSM) and
confirmed that all the parameters (temperature, time, packing density, and diesel concentration)
significantly influenced the oil absorbed. The predicted values in RSM were 175 ◦C, 22.5 min,
0.095 g/cm3, and 10%, which resulted in 24 mL of oil absorbed. Using the experimental values
generated by RSM, 175 ◦C, 22.5 min, 0.095 g/cm3, and 10%, the highest oil absorption achieved was
24.33 mL. This study provides further evidence, as the data suggested that RSM provided a better
approach to obtain a high efficiency of oil absorbed.

Keywords: agriculture waste; diesel spills; sorption capacity; absorbed; fibre; treated

1. Introduction

Oil pollution such as diesel poses a major threat to the marine environment. Many
factors contribute to the seawater’s oil pollution, including the transportation of super-
tankers with diesel fuel storage in bulk quantities, which can significantly increase the
risk of pollution from events such as accidental spills and leakages [1]. Recently, a tanker
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carrying around one million barrels of crude oil was involved in a collision that resulted in
an oil spill in the Yellow Sea, China, which could cause major environmental damage [2].
Due to the risk of ecological disaster, oil spills should be prevented as they pose serious
health risks to the environment, humans, and animals [3–5].

The oil contains direct-acting compounds such as mono- and dinitropolyaromatic
hydrocarbons that lead to mutagenic effects when exposed [6]. Diesel oil is highly haz-
ardous as it contains carcinogenic substances that include polycyclic aromatic hydrocarbons
(PAHs), a highly condensed aromatic hydrocarbon [7]. After a spill, the oil can stay for
decades as it decomposes slowly in low-temperature regions, thus becoming more harm-
ful [8,9]. As the hydrocarbon contaminant is highly persistent with some toxicity packages,
this can have long-term effects on many cold temperate species and further destroy the
ecosystem. Thus, oil spills have created a great need for remediation efforts to be consid-
ered [10–12].

Several remediation methods can be used to remove oil contaminants from the en-
vironment; they include: physical, chemical, and biological methods. The physical and
chemical methods are non-favourable methods to remove contaminants as the methods
are expensive and result in an incomplete removal [13]. Other than the physical and
chemical remediation, bioremediation methods can be used as one of the remediation pro-
cesses. Bioremediation is a process where the contaminants are biologically removed from
the contaminated sites. Opposite to physical and chemical remediation, bioremediation
promises more eco-friendly treatment as cost-effective and environmentally sustainable
methods [14].

Recently, there has been increasing interest in using cheap, effective, non-toxic, and
abundant natural materials, mainly from agricultural waste as organic oil spill sorbents [15].
The potential use of this natural oil clean-up sorption technology gives a significant possi-
bility for high efficiency of oil removal from the sea’s surface with no secondary pollution
produced. It is environmentally friendly apart from giving minimum harmful effects to the
ecosystem. The use of agricultural waste as a biosorbent is promising due to its efficient
disposal and cost-effectiveness [16,17]. The natural sorbent can be biologically degraded,
abundantly available, and relatively cheap, thus becoming a significant advantage com-
pared to the synthetic sorbent. The use of agricultural waste as a biosorbent can reduce
the waste from the industry. The natural sorbents that contain cellulosic materials such as
cotton [18], palm fibres [19], and pineapple leaves [20] have been proven to have a good
result in oil spill treatment.

A tree, Elaeis guineensis, produces the most commonly used vegetable oil in the world
today, palm oil. Indonesia, Malaysia, Thailand, Colombia, and Nigeria are the five top oil
palm producers [21]. Malaysia and Indonesia are the biggest producers and exporters of
palm oil and palm oil products globally [22]. The solid wastes from the oil palm industries
are EFB, mesocarp fruit fibres (MF), and palm kernel shells (PKS) [16]. After being pressed
to collect oil, more than 70% of fresh fruit brunch components are left as EFB, making them
the most abundant wastes from palm oil industries [23]. The presence of this EFB as oil
palm waste in large quantities has created a significant disposal problem that can pollute
the environment.

EFB consists of hard, abundant, and multicellular solid fibres. The rough and jagged
morphology of EFB makes it suitable for biosorption, and it has been reported that EFB
is widely used to biosorp heavy metals and dyes. Nonetheless, its use in oil biosorption
remains limited [24]. EFB is an eco-friendly material and is generally used to produce
conventional biocomposite products (moulded product panel, plywood, fibreboard, hy-
brid biocomposite) and advanced biocomposites (thermoplastics, thermosets, and elas-
tomers) [25].

EFB consists of 80% of the stalk (fibre) and 20% of the spikelet. In spikelet and stalk,
their components are regarded as lignocellulose biomass composed of lignin, hemicellulose,
and cellulose [26]. The chemical compositions of EFB fibre are cellulose (44.2%), hemicel-
lulose (33.5%), and lignin (20.4%) [27]. The properties of EFB include strong structural
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stability and the ability to adsorb contaminants such as heavy metals and dye [28,29].
Recently, the interest in innovations of chemical, physical, and biological methods for
lignocellulosic materials oil palm biomass for value-added products has been growing [25].
EFB is widely used to biosorp heavy metals and dyes, but its use in oil biosorption remains
limited. As cellulose is widely used as an adsorbent, research into the use of EFB to biosorp
oil as potential uses in oil-spill cleaning is timely.

This study aimed to evaluate the ability of EFB fibres to clean up oil spills. The
experiments were conducted in a hybrid system with various parameters. Sorption capacity,
and oil and water absorbed efficiency were investigated from the temperature, time,
packing density, and oil concentration parameters. Another aim of this work was to
analyse the characterization of EFB samples before and after being treated, with and
without oil, using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron
Microscope (SEM).

2. Materials and Methods
2.1. Materials

Empty fruit bunch agricultural waste was collected from the local oil palm industry,
Manjung, Perak, Malaysia. The samples were kept at room temperature until further use.
Diesel fuel (Dynamic diesel fuel Euro 5) was bought from PETRONAS UPM Serdang,
Selangor, Malaysia. The seawater was obtained from Port Klang (2.9999◦ N, 101.3928◦ E)
with salinity of 15.19 ppt and pH 7.5–8.1.

2.2. Laboratory Scale Set Up and Sorbents Selection

A plastic bottle (250 mm × 50 mm) was used as a filter column; 5 g of each sample
were placed inside a cylinder spacer (h = 10 cm, d = 5 cm) made from PVC mesh wire
and inserted in the column; 40 mL of diesel was vigorously mixed in 400 mL of seawater,
poured into the column, and left to stand aside for 10 min after each run. The oil and water
effluent was observed and measured together with the weight of bundled samples. The
sorption capacity (Equation (1)) and oil and seawater absorbed efficiency (Equation (2))
were calculated using the following formula:

Diesel sorption capacity (g/g) =
Ma − Mb

Mb
(1)

where Ma is the mass of sample after sorption of diesel, and Mb is the mass of sample
before sorption [30].

E f f iciency o f diesel/seawater removal (%) =
D f − Di

Di
× 100% (2)

where Df is the final volume (mL) of diesel after sorption, and Di is the initial volume (mL)
of diesel before sorption.

2.3. Screening

The samples were separated into three parts; stalk, spikelet, and whole and were
rinsed with distilled water until all the debris was removed. After the cleaning procedure,
the samples were sun-dried until they reached a constant weight. The samples were heated
in a laboratory oven for 20 min at temperatures of 170 ◦C. After completion of the treatment,
the heat was stopped, the samples were allowed to cool down at room temperature. The
same method as in Section 2.2 was conducted and all the experiments were performed
in triplicates. The selection of the part of EFB to be used in the subsequent parts of the
study was based on the high efficiency of oil and low efficiency of water absorbed. From
the result, the optimum part of EFB to absorb oil was analysed for characterization and
morphological analysis.
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2.4. Chemical Content Analysis and Sorbent Characterization
2.4.1. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

FTIR (ALPHA, Bruker Optik GmbH, Ettlingen, Germany) was used to determine the
presence of functional groups in samples composition differences of untreated and treated
samples before and after the filtration system [31].

2.4.2. Morphology Analysis—Scanning Electron Microscope (SEM)

Observations on the surface morphological changes were carried out using SEM and
Energy Dispersive X-ray (EDX) microanalysis to identify the composition of elements. The
changes were observed by comparing the morphology of untreated and treated samples
with the presence of diesel [31].

2.5. Statistical Experimental Design
2.5.1. One-Factor-at-a-Time (OFAT)

Evaluation of optimum effects on efficiency of diesel–seawater sorption were carried
out using the conventional OFAT approach based on four selected parameters: temperature
(140, 150, 160, 170, 180, 190 ◦C), time (10, 15, 20, 25, 30, 35 min), packing density (0.06,
0.07, 0.08, 0.09, 0.10, 0.11 g/cm3), and oil concentration (5, 10, 15, 20, 25, 30% (v/v)). Each
experiment was conducted in triplicates. The significant factors were analysed using
one-way variance analysis (ANOVA) by GraphPad Prism 8.0.2 software (GraphPad Inc.,
San Diego, CA, USA). The influence of each parameter was tested using One-way ANOVA
where significant and by pairwise post hoc comparisons using Tukey’s test [32].

2.5.2. Response Surface Methodology (RSM)

Response Surface Methodology is a set of statistical and mathematical tools for design-
ing experiments that minimise experimental runs. This study applied two experimental
designs, Placket-Burman design (PBD) and Central Composite Design (CCD). By using
analysis of variance (ANOVA), the adequacy of the model terms was obtained. The Fisher’s
F test and ANOVA were used to find the significance of each model term. p-Values not
more than 0.05 indicate the model terms are accepted as significant. Adequate precision
greater than 4 is desirable to measure the signal-to-noise ratio and R2 values to determine
the goodness of fit. Further studies on the efficiency of oil and water absorbed were carried
out using the statistical approach of RSM [32].

Plackett–Burman Design

Four factors were picked from OFAT and analysed through the Plackett–Burman
design. Each factor was tested at high (+1) and low (−1) levels (Table 1). The result shows
18 experimental runs with six centre points. The experimental design was developed and
analysed using Design Expert 13.0.5.0 software (Stat-Ease Inc., Minneapolis, MN, USA) [32].
Equation (3) shows the PB factorial design at two levels:

y = β0 +
k

∑
i=1

βiXi (3)

where y is the efficiency of diesel and seawater absorbed, β0 is the intercepted model and
βi is the coefficient of linearity, Xi is the independent variable’s coded level, and k is the
number of variables.
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Table 1. Experimental values and levels of variables tested for EFB fibre as biosorbent in Plackett–
Burman design.

Variables Code Unit Experimental Range

Low (−1) High (+1)
Temperature A ◦C 160 190

Time B min 15 30
Packing density C g/cm3 0.08 0.11

Oil concentration D % (v/v) 5 15

Central Composite Design (CCD)

The CCD was applied to construct the response surface of the identified significant
parameters with p values less than 0.05 [32]. As shown in Table 2, four significant variables
were analysed with the combination of two factorial points (−1, +1), two axial points
(−2, +2), and a sole central point (0). To predict the optimal conditions, the experimental
response was fitted to a second-order polynomial regression model. Equation (4) quadratic
mathematical model was used:

y = β0 +
k

∑
i=1

βixi +
k

∑
i=1

βiix2
i +

k

∑
1=i<j

βijxixj (4)

where y is the response variable, x is the independent factors that influence y, β0 is the
intercept, βi is the ith linear coefficient, βii is the quadratic coefficient, βij is the coefficient
of interaction effect, and k is the number of involved factors. Therefore, 30 experiment runs
resulting from four significant variables with 6 centre points obtained were conducted. All
experiments were done in triplicates.

Table 2. Experimental values and levels of the selected independent factors for CCD optimisation.

Symbol Unit
Experimental Values

−2 −1 0 +1 +2

Temperature A ◦C 145 160 175 190 205
Time B min 7.5 15 22.5 30 37.5

Packing density C g/cm3 0.065 0.08 0.095 0.11 0.125
Oil concentration D % (v/v) 0 5 10 15 20

Note: Factorial points (−1, +1); Axial points (−2, +2); Sole central point (0).

3. Results and Discussion
3.1. Screening

Heat treatment at 170 ◦C in 20 min was used for all samples to find out the best
optimum part with high efficiency of oil absorbed and low efficiency of water absorbed.
Screening tests were conducted in mixed systems (water and oil mixture). Among the
samples tested, Figure 1 shows that treated fibre (stalk) has the highest efficiency of oil ab-
sorbed at 33% (p < 0.0001) and the lowest efficiency of water absorbed at 1% (p < 0.0001). As
treated fibre showed high efficiency of oil absorbed with low efficiency of water absorbed,
it was selected for further study.

For untreated and treated spikelets, for sorption capacity, and efficiency of oil and
water absorbed, there were significant differences obtained: (F6,14 = 21.95, p < 0.0001),
(F6,14 = 4.358, p = 0.0109) and (F6,14 = 3.830, p = 0.0180), respectively. Between untreated and
treated EFB fibres, ANOVA analysis indicated the significant differences observed for the
sorption capacity (F6,14 = 13.89, p < 0.0001). The efficiency of absorbed diesel (F6,14 = 2.842,
p = 0.0503) and seawater (F6,14 = 4.842, p = 0.0071) between the EFB sorbent materials were
found to have no significant differences. For untreated and treated whole EFB, the ANOVA
analysis found that there were no significant difference for efficiency of oil and water
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absorbed: (F6,14 = 3.053, p = 0.0400) and (F6,14 = 0.5792, p = 0.7412), respectively, but there
were significant differences obtained for sorption capacity (F6,14 = 38.02, p < 0.0001).

Figure 1. Screening part of EFB samples and efficiency of oil and water absorbed. UNT: Untreated;
T: Treated.

The evidence on the efficiency of the stalk to absorb more oil was due to the size
of the natural fibres from the stalk that are larger in diameter, but have lower strength
than spikelet [33]. Previous studies found that the galacturonic acid content in spikelets is
lower than in stalk, which correlates with the lower cation content [33]. This fact, therefore,
resulted in a difference in water absorptivity level between spikelet and stalk. Therefore,
thermal treatment for spikelets was not expected to enhance the surface characteristic and
sorption capacity.

3.2. Chemical Content Analysis and Sorbent Characterisation
3.2.1. Fourier Transform Infrared (FTIR) Spectroscopy Analysis

FTIR spectra for EFB untreated and treated at 170 ◦C before wetting with oil are
presented in Figure 2. FTIR spectra illustrated the EFB fibres that were heat-treated at
170 ◦C, showing the evidence amounts of OH group stretching that shows a broad peak at
3279.63 cm−1, which contributes to the reduction of cellulose [34]. Stretching vibration of
fingerprint at 2916.57 cm−1 illustrated the presence of C-H alkyl groups in the cellulose
backbone [35]. With the heat-treated EFB, the vibration peaks at 2362.45 cm−1 weakened,
thus concluding that the amounts of hydroxyl, hemicellulose, and cellulose were reduced
when the EFB were exposed to the heat treatment [36]. The C=C stretching of the aromatic
ring of lignin in untreated EFB at 1425.13 cm−1 was reduced to 1372.36 cm−1 after heat
treatment, indicating the loss of lignin [37]. Thus, removing lignin, hemicellulose, and
cellulose from heated samples led to the decreasing peak intensity in the spectra. The peak
at the range of 1235.84 cm−1–665.04 cm−1 in untreated samples is higher than in treated
samples at 1231.33 cm−1–662.84 cm−1, indicating C-O deformation.

FTIR spectra for EFB untreated and treated at 170 ◦C after wetting with oil are pre-
sented in Figure 3. FTIR spectra showed the enhanced stretching band of the alkyl group
after wetting with oil, indicating the presence of a long chain of alkyl from the hydrocarbon
of diesel. The absence of ester linkage of carboxyl group in untreated and wetted with
oil and the presence of ester linkage of carboxyl group in treated wetted with oil sample
(1711.10 cm−1) indicates more sorption of oil in treated samples. These are the evidence of
a hydrophobic functional group that confirms the sorption of diesel oil at the hydrophobic
sites of the EFB [38,39]. Thus, it is confirmed that treated EFB fibre can undergo more
sorption of diesel oil compared to untreated samples.
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Figure 2. Comparison of IR spectra between EFB untreated and treated with 170 ◦C samples before
wetting with oil. UNT: Untreated.

Figure 3. Comparison of IR spectra between EFB untreated and treated with 170 ◦C samples after
wetting with oil. UNT: Untreated.

3.2.2. Morphology Analysis-Scanning Electron Microscope (SEM)

Figure 4 illustrates SEM images of untreated, treated (170 ◦C, 20 min), untreated
wetted with oil and treated (170 ◦C, 20 min) wetted with oil. Referring to Figure 4a of
untreated samples, it was found that there were high amounts of ball-like structure on
the surface of fibre attached to circular craters, which were described as silica in previous
studies [31]. According to the earlier study, the compound of EFB fibre is also rich in
inorganic elements such as silica consisting of silicon and oxygen [40,41]. Silica bodies can
usually be found on the surface of woody plants [42]. Therefore, it is noted that a native
EFB fibre has much silica on its surface.
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Figure 4. SEM images of samples (a) untreated, (b) treated with 170 ◦C at 20 min, (c) untreated wetted
with oil, and (d) treated with 170 ◦C at 20 min wetted with oil at different magnification (500×).

For the heat-treated sample in Figure 4b, the SEM image spotted the removal of silica
bodies on the EFB cell wall. According to Chin et al. [43], thermal modification contributes
to lignin solubilization, resulting in silica bodies’ removal. This result is consistent with a
previous study by Mohammad et al. [44], claiming that heat treatment of oil palm fibre at
170 ◦C led to the alteration of EFB surface and removal of silica bodies.

Figure 4c illustrates that the surface of EFB fibre was partially covered with oil. It was
observed that the surface of untreated EFB fibre wetted with oil was rough. Meanwhile,
Figure 4d illustrates that the pores from the removal of silica bodies were covered com-
pletely. The surface of treated EFB fibre wetted with oil was found smoother than untreated
wetted with oil sample. Therefore, it was believed that diesel was successfully sorbed on
the surface of treated EFB fibre.

3.3. Optimisation of Oil Absorbed Using One-Factor-at-a-Time (OFAT)
3.3.1. Effects of Temperature and Time

Temperature and time significantly influenced the efficiency of oil absorbed, water
absorbed, and sorption capacity. It was observed in Figure 5 that treated EFB fibre has
higher oil absorption than untreated EFB sorbents. In treated samples, the temperatures
of 140 ◦C, 150 ◦C, 160 ◦C, 170 ◦C, 180 ◦C, and 190 ◦C led to a significant amount of oil
absorbed and lower amount of water absorbed. Figure 6 illustrates the effects of heating
time on EFB treated fibre. In different heating times, the results showed that the efficiency
of oil absorbed was the highest at 20 min. Thus, the 170 ◦C and 20 min heating time
recorded the highest efficiency of oil absorbed and the lowest efficiency of water absorbed.
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Figure 5. Effects of temperature on EFB treated fibre. Data obtained were the average efficiency of
oil absorbed (%), the efficiency of water absorbed (%), and sorption capacity (g/g) on temperature.
Vertical bars indicate SEM of three replicates.

Figure 6. Effects of time on EFB treated fibre. Data obtained were the average efficiency of oil
absorbed (%), the efficiency of water absorbed (%), and sorption capacity (g/g) on temperature.
Vertical bars indicate SEM of three replicates.

Fibre surface modification using thermal treatment was done to strengthen the poor
properties of the surface by reducing the polar components, which can attain good adhesion
in the fibre matrix and improve the interface of the fibre matrix [45]. Thus, it was proven
that the efficiency in absorbing oil increased by up to 170 ◦C with heat-treated fibres.
Sreekumar et al. [46] suggested that fibre surface modification by using thermal treatment
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successfully decreased the water absorption, supporting a more significant fibre interaction.
At a low temperature and time of heating, the hydrophobic properties of the sorbent are not
affected. The adsorption of oil at low quantities using low-temperature sorbents is caused
by removing surface impurities that ease the oil adsorption process [47]. On the other
hand, thermal treatment of sorbent at high temperatures results in sorbent carbonisation,
thus enhancing the oil sorption capacity [48]. Similar findings were reported by Sreekumar
et al. [46], Husseien et al. [49], Kudaybergenov et al. [50], and Kudaybergenov et al. [51] on
the efficiency of using a thermally modified sample as biosorbent to remediate pollution.

3.3.2. Effects of Packing Density

Packing density significantly influenced the efficiency of oil or water absorbed and
sorption capacity (Figure 7). The result indicates that the increase of packing density
affected the efficiency of oil absorbed up to 0.1 g/cm3. A further increase to 0.11 g/cm3

did not increase the oil absorbed and sorption capacity. The decrease of oil absorbed after a
packing density of 0.1 g/cm3 was due to less space available for oil sorption [52]. At low
packing density, the efficiency of oil absorbed is low. This was made evident from the size
of pores between the inter-fibre distance that became large due to non-compacted samples,
causing the fibre not to have sufficient capillary pressure to absorb oil [53]. At the loose
packing condition such as 0.06 g/cm3 and 0.07 g/cm3, there was an insufficient utilisation
of samples that resulted in low oil absorption [54]. It was found that higher and lower
packing density corresponded to lower oil absorbed and sorption capacity.

Figure 7. Effects of packing density on EFB treated fibre. Data obtained were the average efficiency
of oil absorbed (%), the efficiency of water absorbed (%), and sorption capacity (g/g) on temperature.
Vertical bars indicate SEM of three replicates.

3.3.3. Effects of Oil Concentration

The initial oil concentration significantly influenced the efficiency of oil and water
absorbed. Figure 8 indicates that increasing the initial diesel concentration significantly
affected the absolute amount of diesel absorbed up to a concentration of 10%. The re-
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sult showed that oils concentration above 10% did not lead to any further increase in
diesel absorption.

Figure 8. Effects of oil concentration on EFB treated fibre. Data obtained were the average efficiency
of oil absorbed (%), the efficiency of water absorbed (%), and sorption capacity (g/g) on temperature.
Vertical bars indicate SEM of three replicates.

At a low diesel concentration, the increase in diesel absorbed is claimed due to
the adsorption of diesel molecules at the hydrophobic reactive sites [55]. Moreover, oil
molecules are also believed to adsorb into the hollow lumen of the EFB sorbents [55].
According to Kudaybergenov et al. [50], when the sorbents are exposed to oil, the oil will
be absorbed by the macropores and micropores of the sorbents until equilibrium is reached.
When equilibrium is reached due to the saturation of oil molecules at reactive sites of
sorbents, desorption occurs [56]. It was found that the oil concentration corresponded to
oil absorbed until it reached an equilibrium state.

3.4. Optimisation of Oil Absorbed Using Response Surface Methodology (RSM)
3.4.1. Plackett–Burman Design

Eighteen runs were generated from the PB design (Table 3). In run 2, the highest value
of oil-absorbed efficiency was obtained at the condition of 190 ◦C, 15 min, 0.11 g/cm3 with
15% diesel and the lowest value of oil-absorbed efficiency was 160 ◦C, 30 min, 0.11 g/cm3

with 5% diesel.
From the ANOVA, the analysis identified that temperature, time, packing density,

and oil concentration significantly influenced diesel sorption. Table 4 shows the ANOVA
table for the oil absorbed from PBD. The results suggest that the overall model was highly
significant, with an F value of 33.37 and a p-value less than 0.05.

3.4.2. Central Composite Design (CCD)

CCD results of 30 runs are listed in Table 5. The highest oil absorbed was obtained
at the condition of 175 ◦C, 22.5 min, and 0.095 g/cm3 with 10% diesel. The lowest oil
absorbed was obtained at 175 ◦C, 22.5 min, and 0.095 g/cm3 with 0% diesel.

In CCD, ANOVA was conducted to detect the significance of each model term. The
quadratic model was applied in this design. The analysis shown in Table 6 confirmed that
the model is significant (p < 0.0001).
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Table 3. Screening of significant parameters affecting oil and water effluent using Plackett– Burman.

Run A B C D Oil Absorbed Water Absorbed

1 190 15 0.08 5 14.6667 16.6667
2 190 15 0.11 15 25 10
3 175 22.5 0.095 10 24 11
4 160 30 0.11 5 9.33333 15.6667
5 175 22.5 0.095 10 24 11
6 175 22.5 0.095 10 24 11
7 160 30 0.08 15 14.667 7.3333
8 175 22.5 0.095 10 24 11
9 160 15 0.08 5 12 12

10 190 30 0.08 15 17.1667 10.3333
11 160 30 0,11 15 22.3333 10
12 160 15 0.11 5 13.3333 20
13 175 22.5 0.095 10 24 11
14 190 30 0.08 5 12.6667 11.6667
15 190 15 0.11 15 25 10
16 160 15 0.08 15 19.6667 11
17 190 30 0.11 5 15 16.3333
18 175 22.5 0.095 10 24 11

A: Temperature (◦C); B: Time (min); C: Packing density (g/cm3); D: Oil concentration (%).

Table 4. ANOVA for the oil absorbed of the PBD model used to identify the factor significantly
influencing diesel sorption.

Source Sum of Squares DF Mean Square F Value p Value

Model 269.42 4 67.35 33.37 <0.0001
A 27.50 1 27.50 13.63 0.0031
B 28.52 1 28.52 14.13 0.0027
C 30.61 1 30.61 15.17 0.0021
D 182.78 1 182.78 90.56 <0.0001

Residual 24.22 12 2.02 104.57
Cor Total 504.69 17

Std. Dev. 1.42 R2 0.9175
Mean 19.16 Adjusted R2 0.8900
C.V. 7.42 Predicted R2 0.7576

Adequate
Precision 17.1700

Based on Table 6, the pairs of variables showed no interaction, thus concluding that
all parameters are independent. Supposing the interaction between variables is presented
from the model graph, a clear peak appears in the centre of a response surface plot and is
suggested as a mutual relationship between the two variables [57]. Packing density and oil
concentration were vital factors influencing the absorption of diesel oil in EFB. The data
obtained here clearly show that oil concentration achieved a more significant result than
temperature, time, and packing density. This is consistent with the studies of Thompson
et al. [56] and Onwuka et al. [31], mentioning that sorbent’s efficiency in absorbing oil
depends on the initial oil concentration. Packing density also gave a significant result
consistent with a previous study that concluded the enhanced availability of the sorbent to
absorb oil with the increase of samples’ packing density [54].
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Table 5. Optimisation of parameters for diesel sorption by EFB fibre using central composite de-
sign (CCD).

Run Order A B C D Oil Absorbed (mL)

Experimental Value Predicted Value

1 175 22.5 0.095 10 24.30 24.20
2 190 15 0.11 5 13.00 12.56
3 175 22.5 0.065 10 14.00 16.51
4 175 22.5 0.095 10 24.30 24.20
5 175 22.5 0.095 10 24.00 24.20
6 160 30 0.08 15 17.33 15.98
7 190 30 0.08 5 11.33 10.31
8 190 30 0.11 15 19.67 18.48
9 175 22.5 0.095 0 0.000 3.569

10 190 15 0.08 15 16.67 16.01
11 175 7.5 0.095 10 15.00 14.35
12 160 30 0.11 15 20.00 20.76
13 175 22.5 0.095 10 24.00 24.20
14 175 22.5 0.095 20 18.00 17.68
15 160 15 0.11 15 22.67 21.90
16 190 15 0.11 15 19.67 20.45
17 175 37.5 0.095 10 9.500 13.40
18 160 15 0.08 5 9.333 8.729
19 205 22.5 0.095 10 10.00 13.18
20 175 22.5 0.095 10 24.27 24.20
21 160 15 0.11 5 13.33 13.67
22 145 22.5 0.095 10 14.00 14.07
23 190 15 0.08 5 12.33 10.12
24 175 22.5 0.125 10 23.00 23.74
25 190 30 0.08 15 18.00 16.20
26 160 30 0.11 5 13.67 12.53
27 160 30 0.08 5 12.00 9.757
28 160 15 0.08 15 13.33 14.95
29 175 22.5 0.095 10 24.33 24.20
30 190 30 0.11 5 13.67 10.59

A: Temperature (◦C); B: Time (min); C: Packing density (g/cm3); D: Oil concentration (%).

Three-dimensional response surface plots were constructed by plotting the oil ab-
sorbed as a response on the z-axis against two independent parameters. The model graph
of temperature and time generated by CCD is given in Figure 9a. The combination of
optimum temperature (170–175 ◦C) and time (20–23 min) led to the highest oil absorption,
reaching 24 mL. At high and low temperatures, as well as the time of heating, oil absorbed
was lower. Figure 9b shows the model graph of packing density and temperature. The
result indicates that the increase of packing density affected the efficiency of oil absorbed
up to 0.1 g/cm3. A further increase to 0.11 g/cm3 did not increase the oil absorbed as
the graph remained constant. Figure 9c illustrates the model graph of oil concentration
and temperature in which the higher oil absorption was observed at a temperature of
166–178 ◦C and diesel concentration of 11–13%. In the packing density and time model
graph, the higher oil absorption was obtained at a heating time of 21–24 min with a packing
density of 0.104 g/cm3 (Figure 9d). Figure 9e shows at a heating time of 21–24 min, the oil
concentration in the range of 11–13% diesel results in higher oil absorption. In Figure 9f,
the model graph between packing density and oil concentration is illustrated. The higher
oil absorption of 25.984 mL was observed at a packing density of 0.098–0.104 g/cm3 and
11–13% diesel.
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Table 6. Results of ANOVA for CCD model identifying factors and pairwise interactions significantly
influencing diesel absorption.

Source Sum of Squares df Mean Square F-value p Value

Model 936.57 14 66.90 12.65 <0.0001 significant
A 1.19 1 1.19 0.2241 0.6427
B 1.34 1 1.34 0.2530 0.6223
C 78.24 1 78.24 14.80 0.0016
D 298.69 1 298.69 56.48 <0.0001

AB 0.6945 1 0.6945 0.1313 0.7221
AC 6.25 1 6.25 1.18 0.2941
AD 0.1111 1 0.1111 0.0210 0.8867
BC 4.69 1 4.69 0.8878 0.3610
BD 1.806 × 10−9 1 1.806 × 10−9 3.416 × 10−10 1.0000
CD 4.00 1 4.00 0.7576 0.3981
A2 191.69 1 191.69 36.25 <0.0001
B2 182.73 1 182.73 34.56 <0.0001
C2 28.46 1 28.46 5.38 0.0349
D2 315.88 1 315.88 59.74 <0.0001

Residual 79.32 15 5.29
Lack of Fit 79.20 10 7.92 326.32 <0.0001 Significant
Pure Error 0.1213 5 0.0243
Cor Total 1015.89 29

R2 0.9219
Std. Dev. 2.30 Adjusted R2 0.8491

Mean 16.49 Predicted R2 0.5508
C.V.% 13.95 Adequate Precision 12.6874

The model was validated by conducting the experimental trial by referring to the
predicted conventional OFAT and statistical RSM (Table 7). The predicted value of OFAT
was 23 mL of oil absorbed and 5 mL of water absorbed, whereas the predicted value of RSM
was 24 mL of oil absorbed and 8.178 mL of water absorbed. The experimental condition
suggested by the software was applied and yielded 24.33 mL of oil absorbed and 8.333 mL
of water absorbed. The data indicated that RSM provides a better approach to obtain a
high efficiency of oil absorbed.

Table 7. Validation model using the predicted optimum value in OFAT and RSM.

Optimised Parameters Predicted OFAT Predicted RSM Experimental RSM

Temperature (◦C) 170 175 175
Time (min) 20 22.5 22.5

Packing density (g/cm3) 0.1 0.095 0.095
Oil concentration (%) 10% 10 10

Oil absorbed (mL) 23 24 24.33
p value <0.0001 (significant) <0.0001 (significant) <0.0001 (significant)

Water absorbed (mL) 5 8.178 8.333
p value <0.0001 (significant) 0.0012 (significant) 0.0398 (significant)
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Figure 9. Cont.
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Figure 9. 3D Contour plots generated by Design Expert (Stat Ease, Inc., Minneapolis, USA) of the
significantly interacting model terms: (a) A: temperature and B: time, (b) C: packing density and A:
temperature, (c) D: oil concentration and A: temperature, (d) C: packing density and B: time, (e) D:
oil concentration and B: time, and (f) D: oil concentration and C: packing density.
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4. Conclusions

This study is the first to apply a statistical experimental design to optimise oil absorbed
using EFB stalk fibre, sampled from Manjung, Malaysia. The optimisation of the efficiency
of oil absorbed through conventional OFAT and the statistical approach of RSM resulted
in 23 mL and 25.33 mL of oil absorbed, respectively. In conclusion, the results obtained
support the statistical RSM for being an effective tool to optimise the factors to improve oil
absorbed compared to the conventional OFAT approach. Further in-depth studies of EFB
as sorbent material for oil pollution will further enhance the application of agricultural
waste as a tool for bioremediation.
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