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Which deep learning model can best explain object
representations of within-category exemplars?

Dongha Lee
Cognitive Science Research Group, Korea Brain Research

Institute, Daegu, Republic of Korea

Deep neural network (DNN) models realize
human-equivalent performance in tasks such as object
recognition. Recent developments in the field have
enabled testing the hierarchical similarity of object
representation between the human brain and DNNs.
However, the representational geometry of object
exemplars within a single category using DNNs is unclear.
In this study, we investigate which DNN model has the
greatest ability to explain invariant within-category
object representations by computing the similarity
between representational geometries of visual features
extracted at the high-level layers of different DNN
models. We also test for the invariability of
within-category object representations of these models
by identifying object exemplars. Our results show that
transfer learning models based on ResNet50 best
explained both within-category object representation
and object identification. These results suggest that the
invariability of object representations in deep learning
depends not on deepening the neural network but on
building a better transfer learning model.

Introduction

Visual object recognition refers to the human ability
of accurately identifying objects with substantial
variation in appearance. Human object representations
in the high-level visual cortex are invariant to
event-specific idiosyncratic properties of objects,
such as different viewing conditions (Booth & Rolls,
1998; Grill-Spector et al., 1999), lighting (DiCarlo &
Cox, 2007), mirror reversal (Baylis & Driver, 2001;
Rollenhagen & Olson, 2000), retinal location (DiCarlo
& Maunsell, 2003), object size (Andrews & Ewbank,
2004; Konen & Kastner, 2008), and distance (Andrews
& Ewbank, 2004; Hung, Kreiman, Poggio, & DiCarlo,
2005). These representations allow humans to identify
within-category object exemplars’ proficiency. Most
likely, when we recognize an object, we tend to focus
more on semantic feature representations (e.g., tool
and face) than visual feature representations (e.g.,
orientation and color).

A growing number of studies have investigated the
neural mechanisms of object representation through
neurobiologically inspired feedforward processing
(DiCarlo, Zoccolan, & Rust, 2012; Felleman & Van
Essen, 1991) or deep neural network (DNN) modeling
(Devereux, Clarke, & Tyler, 2018; Khaligh-Razavi &
Kriegeskorte, 2014). It has been demonstrated in these
studies that object representations emerge hierarchically
from lower-level visual areas to higher-level semantic
areas. Specifically, low-level visual features (e.g.,
orientation and edge) are encoded in the early visual
cortex, whereas high-level visual features (e.g., a
hammer and a knife) are encoded in the ventral
temporal cortex (Cadieu et al., 2014; Guclu & van
Gerven, 2015; Khaligh-Razavi &Kriegeskorte, 2014). In
this respect, the manifestation of object representations
from a DNN is becoming increasingly important in
emulating human object recognition.

DNN models based on convolutional neural
networks, which are useful for identifying patterns
in images for object recognition (Krizhevsky,
Sutskever, & Hinton, 2012), have been used in various
cognitive and behavioral neuroscience applications,
yielding remarkable results. Some DNN models are
representative of the structure of the human visual
system. Investigating the hierarchical similarity of
object representations between the brain and DNNs
(Khaligh-Razavi & Kriegeskorte, 2014) and extracting
hierarchical visual features from images (Horikawa
& Kamitani, 2017a, 2017b; Wen et al., 2018) via
transfer learning from a pretrained network of
DNN models is a feasible approach. Importantly,
the DNN models can extract visual features by
applying convolution and pooling repeatedly, even
though images may be different within individual
categories.

With the advance of multivariate analyses based on
machine learning algorithms, multivariate approaches
such as multivariate pattern analysis (MVPA)
classification and representational similarity analysis
(RSA) can be leveraged to investigate how information
is represented. MVPA classification estimates a binary
contrast (correct or incorrect) for new patterns, whereas
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RSA estimates all pairwise similarities (Freund, Etzel,
& Braver, 2021; Lewis-Peacock & Norman, 2013). The
RSA approach is feasible to test the representational
content (or geometry) by comparing a matrix of
pairwise similarities between brains and computational
models, different species, and brain and behavior
(Kriegeskorte & Kievit, 2013; Kriegeskorte, Mur, &
Bandettini, 2008). The underlying representational
content of different visual tasks has been demonstrated
by combining RSA and DNN transfer learning
(Dwivedi & Roig, 2019). However, it has recently been
clarified that convolutional neural network–based DNN
models process visual stimuli in a different manner than
that in humans, owing to noise sensitivity (Zhang, Liu,
& Suen, 2020) or the use of local information only
(Baker, Lu, Erlikhman, & Kellman, 2018; Geirhos et al.,
2018). Additionally, despite the high performance of
DNN models in visual object recognition, the accuracy
of encoding object representations by DNN models
for different exemplars of the same basic object is
unclear.

Object representations for manipulating tools are
one of the important features to discriminate between
humans from animals (Ambrose, 2001). Tool-specific
information (e.g., object manipulation/function
knowledge) is distributed in the tool-preferring brain
regions such as the medial fusiform gyrus and posterior
middle temporal gyrus (Almeida, Fintzi, & Mahon,
2013; Chao & Martin, 2000; Garcea & Mahon, 2014;
Lee, Mahon, & Almeida, 2019; Mahon, Kumar, &
Almeida, 2013; Mahon et al., 2007). In a previous study,
we have demonstrated that the representational content
of within-category tools is stable across different
functional MRI scanning days (Lee & Almeida,
2021). In this regard, we have tried to understand
how the human brain and DNNs perform invariant
within-category representations of tools. We focused on
whether DNNs exhibit distinct representational content
of within-category tools. Our approach agrees well
with the approach of using both object representation
similarity and object identification accuracy to evaluate
DNNs (Majaj, Hong, Solomon, & DiCarlo, 2015).

Thus, we examine different DNN models to evaluate
which model best explains invariant representations
across exemplars of within-category objects using
transfer learning of public deep learning models and
RSA. Specifically, we focus on the similarity between
representational geometries of within-category object
exemplars and identification between the exemplars.
Our results show that deep neural models with high
representation similarity can discriminate between
exemplars of within-category objects, indicating that
deep learning models may demonstrate the invariability
of object representations.

Materials and methods

Data acquisition

Grayscale images of 80 different tools with 10
exemplars per tool (a total of 800 images) were adopted
from our previous study (Lee & Almeida, 2021). All
images were 400 × 400 pixels in size (∼10° of visual
angle). The data are available at https://osf.io/yx7rn/.

Transfer learning of DNN models

Transfer learning, a popular time-saving deep
learning approach, uses pretrained models for a task
to train new models for other similar tasks (Rawat
& Wang, 2017). In this study, we used nine DNN
models pretrained on the ImageNet data set: AlexNet
(Krizhevsky et al., 2012), GoogLeNet (Szegedy et al.,
2015), ResNet (ResNet50, ResNet101; He, Zhang, Ren,
& Sun, 2016), VGGNet (VGG16, VGG19; Simonyan &
Zisserman, 2014), InceptionV3 (Szegedy, Vanhoucke,
Ioffe, Shlens, & Wojna, 2016), and MobileNetV2
(Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018).
Transfer learning was conducted to extract higher-level
(last fully connected layer herein) visual features from
tool images using the Deep Learning Toolbox in
MATLAB 2019b (The MathWorks, Natick, MA) and
Graphics Processing Unit (GPU). To transfer layers
from pretrained models to new models, the following
four steps were conducted:

1. Dividing the tool images into training (n = 720, e.g.,
1st–9th exemplars of each tool) and validation (n =
80, e.g., 10th exemplar of each tool) data sets

2. Replacing the last fully connected layer of each
model with a new fully connected layer with 80
output nodes

3. Training a deep learning model from training images
with predefined labels

4. Passing a validation image through the trained
models to extract features to the new image

This process was conducted using a 10-fold
cross-validation.

Representational similarity analysis

RSA can be used to test computational models
of visual object recognition (Khaligh-Razavi &
Kriegeskorte, 2014; Kriegeskorte et al., 2008; Nili
et al., 2014). To characterize the representational
content of within-category objects, we conducted RSA
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on the higher-level features of tools extracted from
the last fully connected layer in each DNN model.
Representational dissimilarity matrices (RDMs) were
constructed by calculating the correlation distances (i.e.,
1 – Pearson’s r) between all pairs of higher-level features
for 80 tools. The RDMs were separately organized
across exemplars (n = 10) for each DNN model. As
this was the first analysis, a correlation analysis was
also performed to measure representational similarity
between the two RDMs using 45 pairs of the 10
exemplars.

Object identification analysis

Object identification analysis was performed on the
visual features extracted from the last fully connected
layers of the DNN models. The correlation coefficients
between the visual features of objects for the 45 pairs
of 10 exemplars were calculated. The correlation
coefficients were vectorized to label the n objects.
The class label L for a given correlation coefficient
vector r was determined by the class c of the maximal
correlation coefficient as follows:

Ln = argmax
c

(r) (1)

Comparison of DNN and brain representations

To investigate how the brain and DNNs perform
invariant within-category tool representations, we
compared nine DNN representations with neural
representations in the left fusiform gyrus (A37lv,
lateroventral area 37) and posterior middle temporal
gyrus (V5/MT+) in the human Brainnetome Atlas (Fan
et al., 2016) adopted from our previous study (Lee &
Almeida, 2021). Briefly, neural similarity patterns were
elicited by neural responses to 80 tools in tool-preferring
regions (A37lv, V5/MT+). For these tool-preferring
regions, neural RDMs (80 × 80) were constructed by
calculating the correlation distance (1 − Pearson’s r)
between two neural patterns. Then, we conducted a
correlation analysis to calculate the representational
similarity between DNN RDMs and neural RDMs for
80 tools. A detailed description of the neural RDMs
can be found in Lee and Almeida (2021).

Results

Visual features in the higher-level layers (i.e., last
fully connected layers) for the tools were extracted
via transfer learning of DNN models. With these
visual features, we performed RSA to first construct
exemplar-specific RDMs. Then, we characterized DNN
representations of within-category object exemplars

(Figure 1A). To test how a DNN can specifically
discriminate an object among different objects, we
conducted object identification equivalent to N-class
classification, where the correlations between a pair of
objects were compared, and the object with a higher
correlation was chosen for the object label (Lee, Yun,
Jang, & Park, 2017; Venkatesh, Jaja, & Pessoa, 2020)
(Figure 1B). These analyses were repeated for 45
pairwise comparisons of the 10 exemplars. To further
test which DNN can best explain representational
geometries of within-category objects across exemplars,
we calculated the representational similarity between
exemplar-specific RDMs in a pairwise manner using
Pearson’s correlation (Figure 1C).

Object identification accuracy of the DNN
models

Object identification involves identifying the specific
visual features of within-category object exemplars.
Here, we investigated to what degree the DNN models
could correctly discriminate an object among several
similar objects using high-level visual features that are
represented differently in each object. To address this
issue, the correlation coefficients between visual features
of object exemplars were calculated, and each object
was labeled with the highest correlation coefficient. The
identification accuracy of each DNNmodel is displayed
in Figure 2. A significantly higher identification
accuracy was observed in VGG19, ResNet50, and
ResNet101, and there were no differences between the
models with high accuracy. All statistical inferences of
identification accuracy were based on paired t tests (p
< 0.05 with Bonferroni correction for the 36 pairwise
comparisons of the nine models).

Relationships between object identification and
properties of DNN models

Figure 3 shows the correlation results of the object
identification accuracy analysis with respect to the
validation accuracy and number of layers that are
summarized in Table 1. The identification accuracy
showed a significant positive correlation with the
validation accuracy (Figure 4A, r = 0.9706, p = 1.4 ×
10−5), but no significant correlation with the number of
layers (Figure 4B, r = 0.1249, p = 0.7488) was observed.

Object representation similarity of DNN models

To test which DNN model best explained the
invariant representations across the different exemplars
of similar objects, we investigated the similarity
between object representations by computing
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Figure 1. Overview of experimental design. (A) Higher-level visual features for 80 tools were extracted from the last fully connected
layers through transfer learning. Multidimensional scaling was used to visualize DNN representations of within-category object
exemplars. (B) The identification accuracy was computed by labeling an object in the target images as one of the 80 objects in the
testing images. (C) Representational similarity between DNN representations of object exemplars was calculated using the correlation
distance between visual features.

Figure 2. Object identification accuracy for the nine DNN
models. The identification accuracies of ResNet50, ResNet101,
and VGG19 were significantly higher than those of other DNN
models. The lines on the bars indicate the standard error of the
mean. The horizontal lines indicate that the aforementioned
models performed significantly different from the other models.

the Pearson’s correlations between pairs of
RDMs for 10 exemplars in each DNNmodel. As shown
in Figure 4, ResNet50 showed a significantly higher
representation similarity than that of other DNN
models. All statistical inferences of the representation
similarity are based on paired t tests, and Bonferroni
correction was applied for multiple comparisons of the
nine models (adjusted significance level: p < 0.0056).
Transfer learning using ResNet50 is summarized
in Figure 5.

Relationships between DNN and brain
representations for within-category object
exemplars

The principal finding was that ResNet50
best explained within-category object-specific
representations. We employed representational
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Figure 3. Correlation analysis between object identification accuracy and properties of DNN models. The identification accuracy
showed a strong positive correlation with the validation accuracy, whereas no significant correlation was observed between the
identification accuracy and number of DNN layers.

DNN models Validation accuracy (%) Training time (GPU, s) Number of layers Parameters (millions)

ResNet18 74.0 ± 4.1 185.9 ± 9.9 18 11.7
MobileNetV2 75.6 ± 4.4 422.2 ± 6.7 54 3.5
AlexNet 79.9 ± 4.1 131.6 ± 6.7 8 61.0
InceptionV3 80.0 ± 4.1 700.8 ± 21.1 48 23.9
VGG16 84.5 ± 3.6 291.0 ± 3.6 16 138.0
VGG19 86.4 ± 3.7 316.1 ± 4.8 19 144.0
GoogLeNet 86.6 ± 4.0 297.3 ± 8.6 22 7.0
ResNet50 87.3 ± 2.3 428.3 ± 13.3 50 25.6
ResNet101 87.9 ± 4.2 786.4 ± 16.5 101 44.6

Table 1. Training performance of DNN models.M ± SD.

Figure 4. Object representation similarity for nine DNN models.
Representation similarity of ResNet50 was significantly higher
than that of other DNN models. The lines of the bars indicate
the standard error of the mean. The horizontal lines indicate
that the performance of ResNet50 was significantly different
from the other DNN models.

similarity analysis to further assess how the brain and
DNNs perform invariant object representations. As
shown in Figure 6, a significantly greater representation
similarity was observed for ResNet50, ResNet100,

AlexNet, MobileNetV2, InceptionV3, and ResNet10.
The ResNet50 model showed the highest representation
similarity among the DNN models. This finding may
extend our understanding of how humans perform
object recognition within a single category.

Discussion

In this study, we report the capabilities of
DNN models in discerning the invariance to
idiosyncratic properties of within-category object
representation. Our results may aid in reducing the gap
between human ability and deep learning with respect
to object representation. The most important aspect of
human identification of objects is the encoding of visual
information in terms of the representational geometry
for objects. In this respect, it is necessary to note
how computational neural networks are functionally
similar to the human brain in their handling of object
representations (Kriegeskorte et al., 2008). Several
studies have investigated the hierarchical similarity of
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Figure 5. (A) Schematic of transfer learning using the ResNet50 architecture. (B) Object representation similarity using the visual
features with low identification accuracy. (C) Object representation similarity using visual features with high identification accuracy.

object representations between the brain and DNNs
(Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016;
Grill-Spector et al., 1999; Horikawa & Kamitani,
2017a, 2017b; Khaligh-Razavi & Kriegeskorte, 2014;
Lee & Almeida, 2021; Wen et al., 2018). Specifically,
the human brain has been shown to replicate object
representations in the high-level association cortex
(Charest, Kievit, Schmitz, Deca, & Kriegeskorte, 2014).
This ability is related to human object–similarity
judgments that are based on higher-level visual
and semantic representations (Mur et al., 2013).
In consideration of such findings, we investigated
which DNN model best explains invariant object

representations across within-category exemplars,
as within-category representations are a more a
generalizable situation in everyday life than categorical
representations.

Our results show that the VGG19, ResNet50,
and ResNet101 models performed better object
identification than other DNNmodels. These results are
in line with previous findings that indicate that visual
features extracted from the high-level DNN layers (e.g.,
last fully connected layer) are more related to perceived
object processing than veridical (i.e., pixel-to-pixel)
visual processing (Cichy et al., 2016; Horikawa &
Kamitani, 2017b; Lee & Almeida, 2021). These results
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Figure 6. Comparisons of DNN representations in tool-preferring regions. The horizontal lines indicate significant differences in
DNN–brain representation similarity between the DNN models.

also agree with the systematic differences observed in
the representation of visual images between DNNs
and the human brain (Horikawa, Aoki, Tsukamoto,
& Kamitani, 2018). Regarding deep learning, it is
often considered that deeper networks yield better
performance. To test this, we conducted a correlation
analysis of object identification accuracy with respect to
each DNN’s validation accuracy and number of layers.
The object identification accuracy strongly correlated
with the validation accuracy (r = 0.97) but not with
number of layers. Thus, building better models may be
more important for transfer learning than constructing
deeper layers. Importantly, object identification of
within-category exemplars is dependent on the tuning
of training parameters rather than on the deepening of
DNN layers.

By comparing representational geometries for
different exemplars of within-category objects, we
showed that ResNet50 is superior to other DNN
models in within-category object representations across
exemplars. Although several DNNs were evaluated
on a small sample of objects (10 exemplars of 80
tools), the current results are in agreement with studies
that have reported invariant object representations
of event-specific idiosyncratic properties of objects
(Andrews & Ewbank, 2004; DiCarlo & Cox, 2007;
Hung et al., 2005; Konen & Kastner, 2008). These
findings suggest that DNN models can explain the
invariability of object representations for different
exemplars. This invariability seems to be DNN model
specific and is used as a measure of the DNN model’s

goodness of fit for better object representations
(Figure 4).

The principal finding was that ResNet50 had
both higher object identification accuracy and object
representation similarity than other DNN models.
As can be seen in Figure 4, within-category object
representations were specific to DNN models. Some
models exhibited impressive object identification
accuracy but low object representation similarity. For
example, VGG19 and ResNet50 had indistinguishable
accuracies in object identification, but their object
similarities were quite different (i.e., on either end of
the range measured for this class of objects). To clarify
how object representations can differ when object
identification accuracies are similar, we investigated
the representation similarities of objects showing
low identification accuracy and those showing high
identification accuracy (Figure 5). In the representation
of objects showing low accuracy, VGG19 showed low
similarity, whereas ResNet50 showed high similarity
(Figure 5B). Similarly, ResNet50 showed high similarity,
but VGG19 showed low similarity in the representation
of objects showing high accuracy (Figure 5C). These
data indicate that even though ResNet50 is much deeper
than VGG19, the ResNet50 model was optimized for
identification and representation.

One may ask whether DNNs are compared with
the human ability for object-specific representations.
To confirm DNN capacity and human ability
on within-category object representations, we
investigated relationships between within-category
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object representations using DNN and neural
models. When comparing DNN representations and
neural representations, ResNet50 showed the best
representation similarity among deep learning models
(Figure 6). These findings are in agreement with the
invariant object recognition between the brain and
DNNs reported previously (Majaj et al., 2015). This
may be important in understanding how computational
neural networks perform within-category object
representations similar to the brain’s biological neural
network.

The present study has a limitation that should be
addressed. The object identification accuracies were
lower than those of DNNmodels reported previously in
studies on object recognition using ImageNet. This may
be owing to the small sample size, which may have led
to the poorer performance of the trained DNN models.
Thus, transfer learning with a larger sample size should
be explored in future studies. Another potential reason
for the discrepancy in object identification accuracies
may be the complexity of classification. DNN object
classification used outputs from the last fully connected
layer that were transformed into probabilities by a
softmax function, and the probabilities were then used
to classify the object. This process is similar to that of
object categorization, in which an object is recognized
as a member of a single category (i.e., hammer/type
level) when satisfying a set of object-general features
at the superordinate level (Serre, Oliva, & Poggio,
2007; Warrington & McCarthy, 1987). However, object
identification involved recognizing multiple exemplars
(i.e., hammer 1, hammer 2/exemplar level) of the same
type of object in this study.

Conclusions

We showed that object representation and object
identification are most stable across exemplars of
within-category objects when using the ResNet50
model. Furthermore, we demonstrated that object
identification is dependent on the goodness of fit of
the trained DNN. The current results represent a step
forward in understanding invariant within-category
object representations to develop DNN models with
human-equivalent capabilities.

Keywords: invariant object representations, deep
neural networks, object exemplars, representation
similarity, identification accuracy

Acknowledgments

We thank Jorge Almeida for the stimuli and data and
two anonymous reviewers for helpful suggestions.

Supported by the basic research program through
the Korea Brain Research Institute, funded by the
Ministry of Science and Information Communications
Technology (ICT) (21-BR-05-01).

Commercial relationships: none.
Corresponding author: Dongha Lee.
Email: donghalee@kbri.re.kr.
Address: Cognitive Science Research Group, Korea
Brain Research Institute, Daegu, Republic of Korea.

References

Almeida, J., Fintzi, A. R., & Mahon, B. Z. (2013). Tool
manipulation knowledge is retrieved by way of the
ventral visual object processing pathway. Cortex,
49(9), 2334–2344.

Ambrose, S. H. (2001). Paleolithic technology and
human evolution. Science, 291(5509), 1748–1753.

Andrews, T. J., & Ewbank, M. P. (2004). Distinct
representations for facial identity and changeable
aspects of faces in the human temporal lobe.
Neuroimage, 23(3), 905–913.

Baker, N., Lu, H., Erlikhman, G., & Kellman, P. J.
(2018). Deep convolutional networks do not classify
based on global object shape. PLoS Computational
Biology, 14(12), e1006613.

Baylis, G. C., & Driver, J. (2001). Shape-coding in IT
cells generalizes over contrast and mirror reversal,
but not figure-ground reversal.Nature Neuroscience,
4(9), 937–942.

Booth, M. C., & Rolls, E. T. (1998). View-invariant
representations of familiar objects by neurons in
the inferior temporal visual cortex. Cerebral Cortex,
8(6), 510–523.

Cadieu, C. F., Hong, H., Yamins, D. L., Pinto, N.,
Ardila, D., & Solomon, E. A., . . . DiCarlo,
J. J. (2014). Deep neural networks rival the
representation of primate IT cortex for core visual
object recognition. PLoS Computational Biology,
10(12), e1003963.

Chao, L. L., & Martin, A. (2000). Representation
of manipulable man-made objects in the dorsal
stream. Neuroimage, 12(4), 478–484.

Charest, I., Kievit, R. A., Schmitz, T. W., Deca, D., &
Kriegeskorte, N. (2014). Unique semantic space
in the brain of each beholder predicts perceived
similarity. Proceedings of the National Academy
of Sciences United States of America, 111(40),
14565–14570.

Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A.,
& Oliva, A. (2016). Comparison of deep neural



Journal of Vision (2021) 21(10):12, 1–10 Lee 9

networks to spatio-temporal cortical dynamics of
human visual object recognition reveals hierarchical
correspondence. Scientific Reports, 6, 27755.

Devereux, B. J., Clarke, A., & Tyler, L. K. (2018).
Integrated deep visual and semantic attractor neural
networks predict fMRI pattern-information along
the ventral object processing pathway. Scientific
Reports, 8, 10636.

DiCarlo, J. J., & Cox, D. D. (2007). Untangling
invariant object recognition. Trends in Cognitive
Sciences, 11(8), 333–341.

DiCarlo, J. J., & Maunsell, J. H. (2003). Anterior infer-
otemporal neurons of monkeys engaged in object
recognition can be highly sensitive to object retinal
position. Journal of Neurophysiology, 89(6), 3264–
3278.

DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012).
How does the brain solve visual object recognition?
Neuron, 73(3), 415–434.

Dwivedi, K., & Roig, G. (2019). Representation
similarity analysis for efficient task taxonomy &
transfer learning. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 12387–12396.

Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., & Chen,
L., . . . Jiang, T. (2016). The Human Brainnetome
Atlas: A new brain atlas based on connectional
architecture. Cerebral Cortex, 26(8), 3508–3526.

Felleman, D. J., & Van Essen, D. C. (1991). Distributed
hierarchical processing in the primate cerebral
cortex. Cerebral Cortex, 1(1), 1–47.

Freund,M. C., Etzel, J. A., & Braver, T. S. (2021). Neural
coding of cognitive control: The representational
similarity analysis approach. Trends in Cognitive
Sciences, 25(7), 622–638.

Garcea, F. E., & Mahon, B. Z. (2014). Parcellation
of left parietal tool representations by functional
connectivity. Neuropsychologia, 60, 131–143.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge,
M., Wichmann, F. A., & Brendel, W. (2018).
ImageNet-trained CNNs are biased towards texture;
increasing shape bias improves accuracy and
robustness. International Conference on Learning
Representations (ICLR).

Grill-Spector, K., Kushnir, T., Edelman, S., Avidan,
G., Itzchak, Y., & Malach, R. (1999). Differential
processing of objects under various viewing
conditions in the human lateral occipital complex.
Neuron, 24(1), 187–203.

Guclu, U., & van Gerven, M. A. (2015). Deep neural
networks reveal a gradient in the complexity
of neural representations across the ventral
stream. Journal of Neuroscience, 35(27), 10005–
10014.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep
residual learning for image recognition. Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770–778.

Horikawa, T., Aoki, C. S., Tsukamoto, M., & Kamitani,
Y. (2019). Characterization of deep neural network
features by decodability from human brain activity.
Scientific Data, vol. 6, 190012.

Horikawa, T., &Kamitani, Y. (2017a). Generic decoding
of seen and imagined objects using hierarchical
visual features. Nature Communications, 8(1), 1–15.

Horikawa, T., & Kamitani, Y. (2017b). Hierarchical
neural representation of dreamed objects revealed
by brain decoding with deep neural network
features. Frontiers in Computational Neuroscience,
11, 4.

Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J.
J. (2005). Fast readout of object identity from
macaque inferior temporal cortex. Science,
310(5749), 863–866.

Khaligh-Razavi, S. M., & Kriegeskorte, N. (2014).
Deep supervised, but not unsupervised, models
may explain IT cortical representation. PLoS
Computational Biology, 10(11), e1003915.

Konen, C. S., &Kastner, S. (2008). Twohierarchically or-
ganized neural systems for object information in hu-
man visual cortex. Nature Neuroscience, 11(2), 224–
231.

Kriegeskorte, N., & Kievit, R. A. (2013). Repre-
sentational geometry: Integrating cognition,
computation, and the brain. Trends in Cognitive
Sciences, 17(8), 401–412.

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008).
Representational similarity analysis—connecting
the branches of systems neuroscience. Frontiers in
Systems Neuroscience, 2, 4.

Krizhevsky, A., Sutskever, I., & Hinton, E. G. (2012).
Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information
Processing Systems 25 (NIPS).

Lee, D., & Almeida, J. (2021). Within-category
representational stability through the lens of
manipulable objects. Cortex, 137, 282–291.

Lee, D., Mahon, B. Z., & Almeida, J. (2019). Action
at a distance on object-related ventral temporal
representations. Cortex, 117, 157–167.

Lee, D., Yun, S., Jang, C., & Park, H. J. (2017).
Multivariate Bayesian decoding of single-trial
event-related fMRI responses for memory retrieval
of voluntary actions. PLoS One, 12(8), e0182657.

Lewis-Peacock, J. A., & Norman, K. A. (2014).
Multi-voxel pattern analysis of fMRI data. In
M. Gazzaniga, & R. Mangun (Eds.), Cognitive



Journal of Vision (2021) 21(10):12, 1–10 Lee 10

Neurosciences (pp. 911–920). Cambridge, USA:
MIT Press.

Mahon, B. Z., Kumar, N., & Almeida, J. (2013). Spatial
frequency tuning reveals interactions between
the dorsal and ventral visual systems. Journal of
Cognitive Neuroscience, 25(6), 862–871.

Mahon, B. Z., Milleville, S. C., Negri, G. A., Rumiati,
R. I., Caramazza, A., & Martin, A. (2007). Action-
related properties shape object representations in
the ventral stream. Neuron, 55(3), 507–520.

Majaj, N. J., Hong, H., Solomon, E. A., & DiCarlo, J.
J. (2015). Simple learned weighted sums of inferior
temporal neuronal firing rates accurately predict
human core object recognition performance.
Journal of Neuroscience, 35(39), 13402–13418.

Mur, M., Meys, M., Bodurka, J., Goebel, R.,
Bandettini, P. A., & Kriegeskorte, N. (2013).
Human object-similarity judgments reflect and
transcend the primate-IT object representation.
Frontiers in Psychology, 4, 128.

Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-
Wilson, W., & Kriegeskorte, N. (2014). A toolbox
for representational similarity analysis. PLoS
Computational Biology, 10(4), e1003553.

Rawat, W., & Wang, Z. (2017). Deep convolutional
neural networks for image classification: A
comprehensive review. Neural Computation, 29(9),
2352–2449.

Rollenhagen, J. E., & Olson, C. R. (2000). Mirror-image
confusion in single neurons of the macaque
inferotemporal cortex. Science, 287(5457),
1506–1508.

Sandler, M., Howard, A., Zhu, M., Zhmoginov,
A., & Chen, L. (2018). Mobilenetv2: Inverted
residuals and linear bottlenecks. Proceedings of the

IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4510–4520.

Serre, T., Oliva, A., & Poggio, T. (2007). A feedforward
architecture accounts for rapid categorization.
Proceedings of the National Academy of Sciences
United States of America, 104(15), 6424–6429.

Simonyan, K., & Zisserman, A. (2014). Very deep
convolutional networks for large-scale image
recognition. International Conference on Learning
Representations (ICLR).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., &
Anguelov, D., . . . Rabinovich, A. (2015). Going
deeper with convolutions. Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1–9.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J.,
& Wojna, Z. (2016). Rethinking the inception
architecture for computer vision. Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2818–2826.

Venkatesh, M., Jaja, J., & Pessoa, L. (2020). Comparing
functional connectivity matrices: A geometry-aware
approach applied to participant identification.
Neuroimage, 207, 116398.

Warrington, K. E., & McCarthy, A. R. (1987).
Categories of knowledge: Further fractionations
and an attempted integration. Brain, 110(5),
1273–1296.

Wen, H., Shi, J., Zhang, Y., Lu, K., Cao, J., & Liu,
Z. (2018). Neural encoding and decoding with
deep learning for dynamic natural vision. Cerebral
Cortex, 28(12), 4136–4160.

Zhang, X. Y., Liu, C. L., & Suen, C. Y. (2020). Towards
robust pattern recognition: A review. Proceedings
of the IEEE, 108(6), 894–922.


