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Comparative Transcriptomic 
Analysis of Multiple Cardiovascular 
Fates from Embryonic Stem Cells 
Predicts Novel Regulators in 
Human Cardiogenesis
Yang Li, Bo Lin & Lei Yang

Dissecting the gene expression programs which control the early stage cardiovascular development 
is essential for understanding the molecular mechanisms of human heart development and heart 
disease. Here, we performed transcriptome sequencing (RNA-seq) of highly purified human 
Embryonic Stem Cells (hESCs), hESC-derived Multipotential Cardiovascular Progenitors (MCPs) 
and MCP-specified three cardiovascular lineages. A novel algorithm, named as Gene Expression 
Pattern Analyzer (GEPA), was developed to obtain a refined lineage-specificity map of all sequenced 
genes, which reveals dynamic changes of transcriptional factor networks underlying early human 
cardiovascular development. Moreover, our GEPA predictions captured ~90% of top-ranked 
regulatory cardiac genes that were previously predicted based on chromatin signature changes in 
hESCs, and further defined their cardiovascular lineage-specificities, indicating that our multi-fate 
comparison analysis could predict novel regulatory genes. Furthermore, GEPA analysis revealed 
the MCP-specific expressions of genes in ephrin signaling pathway, positive role of which in 
cardiomyocyte differentiation was further validated experimentally. By using RNA-seq plus GEPA 
workflow, we also identified stage-specific RNA splicing switch and lineage-enriched long non-
coding RNAs during human cardiovascular differentiation. Overall, our study utilized multi-cell-fate 
transcriptomic comparison analysis to establish a lineage-specific gene expression map for predicting 
and validating novel regulatory mechanisms underlying early human cardiovascular development.

Early heart formation is a stepwise process, including the consecutive differentiation of mesoderm, car-
diac progenitor, and the terminal specification of cardiovascular lineage cells1–3. Key genes, which exhibit 
temporal and/or cell-type specific expression patterns could play essential roles in maintaining specific 
cell fates, as well as in reprograming differentiated cells back to pluripotency or to other types of cell fates. 
For example, overexpression of four embryonic stem cell (ESC) specific factors, Octamer-binding tran-
scription facor 4 (OCT4), MYC, (Sex-determining region Y)-box 2 (SOX2) and KLF4, can reprogram 
fibroblasts into pluripotent stem cells4,5. The re-introduction of cardiac-specific factors, Gata4, Mef2c and 
Tbx5 converted mouse fibroblasts into induced cardiomyocytes both in vitro and in vivo6,7. Therefore, 
identifying lineage-specific genes, as well as their regulatory networks, could benefit the prediction and 
identification of novel genes and mechanisms that are essential in human cardiogenesis and human 
cardiovascular diseases.
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Figure 1.  Deep-transcriptome sequencing of purified cardiovascular lineages differentiated from hESC. (a) 
Schematic representation of the sampling during cardiovascular differentiation from hESCs. (ES: embryonic 
stem cell; see other abbreviations in the main text; MCP, multipotential cardiovascular progenitors; CM, 
cardiomyocytes; SM, smooth muscle cells; EC, endothelial cells). (b) Summary of the deep-sequencing 
results. (c) Expression of the lineage marker genes quantitated by the normalized FPKM. Types of markers 
are color-coded. Blue: pluripotency markers; dark orange: mesoderm and early cardiac markers; red: 
cardiomyocyte markers; green: smooth muscle cell markers; purple: endothelial cell markers. (d) qRT-PCR 
validation of the marker gene expression. (e) Principle component analysis using FPKM of all the sequenced 
genes of the 5 cell types.

Currently, most of the organ-specific genes in mammalians have been identified at the tissue-specific 
level. However, it is very difficult to obtain purified populations of specific cell types directly from early 
stage human embryo. With the recent advances in stem cell biology, the majority of human somatic cell 
types could be differentiated from human embryonic stem cells (ESCs) or induced pluripotent stem cells 
(iPSCs)2. This provides a unique access to the purified populations of cell lineages of interest at different 
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differentiation stages. Using ESCs as an in vitro model to study early human heart formation, gene 
expression profiles of ESC derived cardiomyocyte-like cells have been extensively studied8–12. However, 
most of previous reports were focused on the differentially expressed gene in ESCs vs. a single type of 
terminally differentiated cell fate, beating cardiomyocytes (CMs). Noticeably, a recent study showed that 
during cardiac differentiation in human ESCs, cardiac regulatory genes, most of which are transcrip-
tional factors, have distinct dynamic patterns of histone modifications from the CM-specific structural 
sarcomeric genes, indicating that combined analysis of histone modification dynamics plus gene expres-
sion profiles could be used to predict regulatory genes in early human CM development13. However, 
this study utilized a hESC-derived heterogeneous population to represent the committed stage of CMs, 
which contained non-CM cells. Therefore, genes specifically enriched in major cardiovascular lineages, 
including cardiomyocytes (CMs), smooth muscle cells (SMs) and endothelial cells (ECs), could not be 
distinguished and predicted by using a single lineage comparative analysis.

Recently, we established a new method for simultaneously enriching multipotential cardiovascular 
progenitor cells (MCPs), as well as MCP-specified CMs, SMs and ECs with a high purity from human 
pluripotent stem cells14. MCPs represent the earliest heart progenitor cells during human heart devel-
opment. Access to MCPs allowed us to investigate two key events in early human heart formation, 
which are the induction of cardiovascular progenitors from pluripotency and the specification of car-
diovascular lineages from the common progenitors. In this study, we performed deep-transcriptome 
sequencing (RNA-seq) of hESCs, MCPs, CMs, SMs and ECs, which represent pluripotency, multipo-
tency and lineage-specification stages of early human heart formation, respectively. Analysis of the 
sequenced genes could profile temporally expressed genes (ESC→MCPs→CMs or SMCs or ECs) and 
genes with lineage-specific expression patterns (CMs vs. SMCs vs. ECs). In order to distinguish those 
lineage-enriched-genes (LEGs) from the genes with the relatively mild expression changes, we developed 
a new algorithm, GEPA, which could obtain single-lineage or multiple-lineages enriched-pattern of every 
single gene in all cell samples. Using optimized parameters, cardiovascular LEGs were identified at low 
false positive and false negative rates. Biological function enrichment of the lineage-specific LEGs mod-
eled and revealed the functional characteristics of individual cardiovascular lineage. We found our GEPA 
predictions captured ~90% of top-ranked cardiac regulatory genes that were previously predicted based 
on their chromatin signatures in human ESCs13, indicating that our analysis could predict novel cardi-
ovascular regulatory genes. We validated the critical role of ephrin/ephrin signaling pathway in human 
iPSCs, which was predicted by GEPA to regulate CMs differentiation from human iPSCs. Furthermore, 
using RNA-seq plus GEPA workflow, we identified dynamic changes of RNA splicing isoforms and 
lineage-enriched lncRNAs during human cardiovascular differentiation. All the results demonstrate that 
the cardiovascular cell resources and multi-cell-fate comparison algorithm could allow us to uncover and 
validate novel regulatory mechanisms during early human cardiovascular development.

Results
Deep-transcriptome sequencing of the five cell types representing different stages and cell 
fates of human cardiovascular development.  To characterize the genome-wide gene expression 
changes during human cardiovascular development, human RUES2 ES cells, RUES2-derived MCPs, as 
well as MCP-derived CMs, SMs and ECs, were enriched with a high purity (>90%) using our previ-
ously described method (Fig.  1a)14. We used RNA-seq to characterize the transcriptomes of the five 
cell types because RNA-seq has higher dynamic range in reporting the low-abundance transcripts than 
regular microarray analysis15. Paired-end RNA-seq using Illumina platform yielded nearly 100 million 
reads for each cell sample. A similar number of expressed genes were detected in each of those 5 cell 
types, ranging from 14136 in ECs to 14826 in CMs (Fig.  1b). Firstly, we examined the expressions of 
known lineage-specific signature genes quantified by RNA-seq (Fig.  1c). Pluripotency marker genes, 
such as Nanog Homeobox (NANOG), POU5F1 (OCT4), and SOX2 were exclusively expressed in hESCs. 
Early cardiac marker genes such as MESP1, ISL1, MIXL1and MSX1, were highly specific in MCPs and 
expressed with decreased levels in the CMs, SMs and ECs. Expression of other cardiac-related maker 
genes, including GATA4, TBX5 and HAND2, were detected from MCPs and specifically enriched in 
CMs, but not found in SMs or ECs. As expected, expression of CM-specific sarcomeric genes, such as 
CTNT, TNNI, MLC2V and MLC2A, were exclusively observed in CMs. SM or EC-specific genes were 
also identified by RNA-seq (Fig.  1c). The lineage-specificity from RNA-seq was further validated by 
qRT-PCR (Fig. 1d and Supplementary Fig. 1). Next, we performed principle component analysis (PCA) 
of all sequenced genes from the five samples (Fig. 1e). PCA revealed that the whole gene expression sig-
nature of MCPs was close to that of hESCs and far from those of the specified cardiovascular lineages, 
indicating a temporal change of whole transcriptional signatures during cardiovascular differentiation. In 
addition, PCA revealed that the whole gene expression signatures of SMs and ECs were more distantly 
related to that of MCPs than CMs (Fig. 1e), suggesting a significant transcriptome change occurs during 
the early segregation of CMs and vascular cells from the same progenitors. Hierarchical clustering of the 
five transcriptomes also demonstrated a similar result (Supplementary Figure 2) as PCA. Overall, using 
our new cardiovascular cell resources, the gene expression profiles by RNA-seq defined the pluripotency, 
multipotency and specification stages during early human heart development, which allowed us to con-
duct temporal and comparative analysis of multiple cell fates in human cardiovascular development.
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GEPA algorithm identified lineage-enriched genes during human cardiovascular develop-
ment.  To compare the relative expression levels of each gene within the five cell types, we developed 
a new algorithm named Gene Expression Pattern Analyzer (GEPA) (Fig. 2a). This algorithm recognized 
the single or multiple lineages enrichment pattern (LEP) of each individual gene within the five cell types 
and the lineage-specificity was set based on the fold change of gene expression over an arbitrary threshold 
(see Methods for details). Using GEPA, all sequenced genes from the five cell types could be grouped 
based on their lineage-specificity. If a clear lineage-specific enrichment was not identified, genes would be 

Figure 2.  GEPA algorithm identified lineage-enriched genes from RNA-seq data. (a) Schematic 
representation of the “GEPA” algorithm workflow to identify the lineage-enriched patterns of the genes. (b) 
Estimation of false positive and false negative ratio of GEPA algorithm at different thresholds of FPKM fold 
change. (c) Distribution of the genes across the expression pattern categories. Lineage-enriched patterns are 
indicated at left side. In the same row, rectangles filled with blue are at least 2.5 fold higher than those in 
light gray. The bars indicating the number of genes are color coded. Blue for single lineage-enriched groups. 
Green, yellow and orange for two, three and four lineage-enriched groups, respectively. Light blue for 
“Gradient” group and purple for “Even” group. (d) qRT-PCR validation of the signature genes for lineage-
enriched categories. Gene name and expression pattern defined by GEPA (in brackets) were shown above 
the plots.
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Figure 3.  During cardiovascular differentiation, both single and multiple lineage-enriched genes showed 
enrichments in specific biological functions or canonical pathways. The lineage specificities of gene groups 
are illustrated as bar charts (left). Bar lengths are indicative of lineage specificity, not showing the actual 
expression levels. (a) Ingenuity biological functions enrichment of the single- and dual-lineage-enriched 
gene groups. (b) Ingenuity canonical pathways enrichment of the single- and dual-lineage-enriched gene 
groups.

grouped into “Gradient” or “Even” categories, which indicate the patterns of commonly expressed genes 
across all five samples with mild or no lineage specificity, respectively (Fig. 2a). Since LEP of a single gene 
is largely relying on the arbitrary setting of fold change thresholds, to estimate the false positive recogni-
tion of the LEP by GEPA, we input 3804 documented human housekeeping genes as negative controls to 
run GEPA under four fold change thresholds, 1.5, 2, 2.5 and 316. Because the 3508 housekeeping genes 
should not exhibit lineage-specificity and should be grouped into “Gradient” or “Even” categories, the 
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less ratio of LEP from the 3508 genes would indicate a higher definition to recognize LEP. We found that 
false positive rates of those housekeeping genes were much lower with thresholds of 2.5 and 3 (3.5% and 
1.9% respectively) when compared to the thresholds of 1.5 and 2 (36.8 and 10.2 respectively) (Fig. 2b). 
Next, we input 49 embryonic stem cell-specific and cardiac-specific genes as positive controls to run 
GEPA and calculated the false negative rates (Supplementary Table. 1). Thresholds 1.5 and 2 captured all 
the positive controls with LEG, whereas thresholds of 2.5 and 3 lost LEG in 4.3% and 16.7% of all inputs, 
respectively. All these tests indicated that thresholds of 1.5 and 2 were too loose and threshold of 3 was 
too stringent. However, threshold of 2.5 kept a high definition for LEG recognition without introducing 
too much falsely identified LEG (Fig. 2b). Thus, we then classified all sequenced genes from the five cell 
types into 32 categories using a threshold of 2.5 (Fig. 2c). Of all sequenced genes, a total of 79% genes 
exhibited no lineage(s)–enrichment, with 48% in the “Even” category and 31% in the “Gradient” cate-
gory. Approximately 21% sequenced genes showed single or multiple lineages-enrichment. In addition, 
we found the categories of single lineage-enrichment contained a higher average number of genes per 
category (total 1680 genes in 5 categories) than that of categories with a multiple-lineages specificity (total 
1560 genes in 25 categories) (Fig.  2c). The genes showing multiple-lineages-specific enrichment were 
mainly distributed in categories of “ES&MCP”, “ES&MCP&CM”, “SM&EC”, and “CM&SM&EC”. This 

Figure 4.  Network connections of lineage-enriched transcription factors in different cardiovascular cell types. 
LEG groups are color-coded and lineage-specificity was shown using the same bar charts as in Fig. 3. The 
connection of transcription factors was built based on IPA (Ingenuity Pathway Analysis, Ingenuity Systems). 
(a) Multipotential cardiovascular progenitor. (b) Cardiomyocyte. (c) Smooth muscle cell. (d) Endothelial cell.
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Figure 5.  LEGs identified by GEPA predict novel regulatory genes and pathways in human cardiovascular 
differentiation. (a) Percent of the genes with or without annotation in “cardiovascular development and 
function” from Ingenuity knowledge database in the LEG groups identified by GEPA. (b) Our GEPA analysis of 
top 100 novel cardiac regulatory genes previously predicted by Paige et al.13 when considering “expression only” 
or “H3K4me3+H3K27me3+expression “ at T5, T9 and T14 of CM differentiation, respectively. (c) Examples of 
predicted functional genes by GEPA. Dynamic expression of these genes is shown in heatmap. Known cardiac 
regulators are highlighted in blue. Our predicted candidates, which are overlapping with chromatin dynamics-
based predictions by Paige et al. and Wamstad et al., are shown in green13,38. Novel regulatory genes solely 
predicted by GEPA are labeled in red. (d) Predicted novel regulatory pathways in cardiovascular differentiation 
using GEPA and Inginuity IPA pathway enrichment analysis. (e) A heat-map showing the lineage-specific 
expression pattern of ephrin and ephrin receptor genes during cardiovascular differentiation. To indicate the 
lineage-specificity, the relative gene expression was shown as percent in the sum of all the cell types in the 
heatmap. (f) Illustrative Ephrin/Ephrin signaling pathway imposed on a pathway map based on Ingenuity IPA 
showing localizations of the LEGs. Color code of the molecule indicates its lineage specificity. Blue indicates 
enrichment in “MCP” ; Orange, both “MCP” and “MCP&CM”; Green, “MCP&CM”.
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Figure 6.  Validation of GEPA predicted regulatory pathways using in vitro cardiovascular differentiation 
from human iPS cells. (a-d) Validating the roles of well-known signaling pathways in human cardiovascular 
differentiation. (a) A scheme of modulating BMP and Wnt pathways from day1 to day4. No factor was 
added from day 0 to day 1 and ActivinA (3 ng/ml) was added into all conditions through day 1 to day 4. (b) 
Representative images showing EBs of day 20. Scale bar, 100 μm. (c) Quantitative analysis of EB numbers 
at day 20. Statistical analysis were performed with unpaired t-test, *p < 0.01 (d) Quantitative analysis of 
ratio of CM at day 20 EBs. EBs were dissociated, immunostained with anti-CTNT antibody and FACS 
analyzed. CTNT+ cells represent CMs. Statistical analysis were performed with unpaired t test, *p < 0.1 (e) 
A scheme of inhibiting ephrin receptor signaling pathway using lithocholic acid (LA), which is a small 
molecule inhibitor of ephrin receptors, from day 4 to day 20 of differentiation in human iPS cells. DMSO 
treatment served as control. (f) Representative images showing day 20 EBs in DMSO and LA treated wells. 
Scale bar, 100 μm. (g) FACS analysis of ratios of CTNT+ CMs from day 20 EBs. Results were represented 
as mean ± S.D., from 3 independent experiments, statistical analysis were performed with unpaired t test, 
*p < 0.01.

lineage enrichment analysis was consistent with the PCA and hierarchical clustering results in Fig.  1e 
and Supplementary Fig. 2, indicating that the more closely related cell types during cardiovascular dif-
ferentiation would share the more commonly expressed genes (Fig.  2c). The LEG distribution pattern 
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was lost when the sequenced genes of 5 cell types were shuffled (Supplementary Table. 2), indicating the 
LEG distribution could genuinely recognize the intrinsic nature of gene expressions in those cell types. 
Noticeably, the LEG patterns from RNA-seq results were highly consistent with the qRT-PCR valida-
tion in Fig.  2d. Therefore, our newly developed GEPA algorithm successfully identified LEG of all the 
sequenced genes for studying human cardiovascular development.

Lineage-enriched genes uncovered functional specialization/transition during human cardi-
ovascular development.  During heart development, cardiac specific genes are expressed in a tem-
poral manner to control the sequential differentiations of mesoderm, cardiac progenitor, and finally 
the commitment of cardiovascular lineages. At each specific differentiation stage or individual lineage, 

Figure 7.  GEPA predicted differentiation-associated alternative RNA splicing and lineage-enriched long 
non-coding RNAs during human cardiovascular differentiation. (a) Genes with exon changes detected by 
RNA-seq during human cardiovascular differentiation. Locations of the genes in Hg18 human genome 
assembly were shown along with total exon number (No. exons) and number of exons with changes (Exon 
diff.). (b) Differential use of the exon 3 of FGFR1 during human cardiovascular differentiation. Stacks of 
sequencing reads in the five lineages were shown. Distances of the exons are NOT the actual intron lengths. 
Change in the expression of exon 3 was highlighted by a red frame. Primers to verify the expression of the 
exon 3 were indicated by red or blue arrows. (c) Semi-quantitative RT-PCR validation of the exon 3 usage 
during human cardiovascular differentiation. (d) Lineage-enriched long non-coding RNAs during human 
cardiovascular differentiation identified by GEPA. To indicate the lineage-specificity, the relative expression 
was shown as percent in the sum of all the cell types in the heatmap. (e) qRT-PCR validation of the lineage-
enriched expressions of lncRNAs.
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a group of LEGs could account for the time-specific and lineage-specific functions. Therefore, we per-
formed Ingenuity IPA analysis to understand biological functions, which are determined by the LEGs. 
IPA revealed that LEGs were strongly enriched into distinct biological functional categories and canoni-
cal pathways (Fig. 3). For example, hESC-enriched genes were involved in functional categories related to 
differentiation of embryonic tissues and differentiation of mes/endoderm, and most MCP-specific genes 
were enriched into the functional categories of embryonic development (development of mesoderm, 
body axis, reproductive organ, digestive organ and morphology of nervous system etc.) (Fig. 3a). These 
results reflect the multi-potential and plasticity of MCPs. Genes with specific enrichment in terminally 
differentiated CMs were mostly responsible for cardiac functions, such as cardiac muscle contraction, 
heart rate, and hypertrophic cardiomyopathy (Fig.  3a). EC-enriched genes were mainly related to the 
development of blood vessel and movement of cells, which is consistent with the known functions of 
ECs17. The SM-specific genes were enriched into similar biofunctional categories as EC enriched genes, 
indicating a close interaction of these two vascular cell types in the formation of blood vessels during 
cardiogenesis (Fig. 3a).

Interestingly, same as the single-lineage-enriched genes, the multi-lineages-enriched genes showed 
specific functional enrichments as well. Genes involved in cell cycle progression, mitosis related func-
tions were enriched in “ES&MCP”, whereas genes enriched in “MCP&CM” were involved in biological 
functions related to cardiogenesis, including development of heart tube, differentiation of cardiomyocytes 
and morphology of heart (Fig.  3a). These indicate the overall shift of a gene regulatory network from 
controlling cell proliferation to cardiovascular differentiation. Genes enriched in “EC&SM” were involved 
in vascular and connective tissue formation related functions, but the genes enriched in “SM&CM” were 
concentrated into the biofunctions of formation of myofibrils and heart disease.

Similarly, canonical pathways also showed specific enrichment of the LEG groups. For example, stem 
cell pluripotency in “ES”; Wnt/β-catenin signaling in “MCP”; calcium signaling in “CM” and “CM&SM”; 
eicosanoid signaling in “EC”; BMP signaling in “MCP&CM” (Fig.  3b). In addition, we observed that 
key component genes of some signaling pathways, which are known to play important roles in cardio-
vascular development, such as Wnt/β-catenin, BMP and Nodal, exhibited temporal and lineage-specific 
enrichments (Supplementary Figure 3). Taken together, these results suggest that LEGs underlie the 
dynamic biofunctional specializations and the temporal activations of signaling pathways to control the 
stepwise development of cardiovascular lineages from pluripotent ESCs. Moreover, comparisons of bio-
logical functions that were enriched by cardiovascular single-lineage LEGs vs. multiple-lineages LEGs 
could further define cardiac muscle vs. vessel related functional differences.

Lineage-specific transcription factor network analysis modeled the temporal development 
of cardiovascular lineages in human ESCs.  Transcription factors are interconnected thus form-
ing networks to specify lineage commitment and cellular function in a temporal manner18. Thus, we 
sought to dissect the early process of human cardiovascular development by analyzing the transcrip-
tion factor networks (TFNs) using the Lineage-Enriched Transcription Factors (LETFs). It has been 
previously demonstrated that NANOG, SOX2, OCT4 are among the central TFNs in hESCs19,20 and 
we observed the same result by using Ingenuity IPA to analyze the ES specific TFs (data not shown). 
Additionally, we built the lineage-specific TFNs in MCP, CM, SM and EC (Fig. 4). TFNs of each single 
lineage indicated the dominant gene programs controlling lineage-specific biofunctions, whereas the 
TFN of “MCP&CM” reflected the dynamic TFN transition during cardiovascular development and TFN 
of “SM&EC” revealed commonly shared mechanisms during vascular cell formation. For example, we 
found the MCP-specific TFN was centered by jun proto-oncogene (JUN), FOS and related genes (JUNB, 
FOSB, JUND, ATF3 and EGR genes) (Fig.  4a), indicating the high proliferative potential of MCPs as 
previously described21. Sub networks of TFNs in cardiac (such as HAND1/2, GATA4 and ISL1) and 
hematopoietic (such as the HOXB genes) developments were also present in MCP, indicating the plas-
ticity of the MCP in its differentiation potential. The expression level of some cardiac specific TFs, such 
as HAND2 and GATA4, remained high in both “MCP” and “CM” (Fig. 4a, b, yellow color labeled genes), 
indicating that these transcription factors may function at stages of both heart progenitor formation and 
CM specification. We term these early onset TFs as “early” cardiac TFs. Transcriptions of CM-specific 
cardiac TFs, such as MEF2C and NKX2.5, were initiated during the differentiation from MCPs to CMs 
and were maintained high in CM, indicating their vital role during CM fate specification (Fig.  4b). 
We term these late onset TFs as “late” cardiac TFs. Therefore, the dynamic transitions of TFNs from 
the proliferation-controlling TFs in MCP (Blue genes in Fig.  4a) to “early’ cardiac TFs (Yellow genes 
in Fig.  4a,b) and subsequently to “late’ cardiac TFs (Orange genes in Fig.  4b) revealed the underlying 
programs controlling human CM development. Interestingly, we found MEF2C, GATA4 and HAND2 
centralized the TFNs of MCP and CM, which is consistent with their essential roles in directly repro-
gramming fibroblasts into cardiomyocytes (Fig. 4b)6,7,22. Almost no TFs were co-enriched in MCP&SM 
or in MCP&EC, indicating a more profound transcriptional change during the early segregation of MCP 
towards vascular cell fate than to cardiac muscle fate. However, many TFs are enriched in both SM and 
EC, such as cyclin-dependent kinase inhibitor 2A (CDKN2A), CCND1 and RUNX1 (Fig.  4c,d), indi-
cating the common regulatory mechanism during vasculogenesis. Therefore, TFNs, which were built by 
the LETFs, could globally reveal the temporally transcriptional and biofunctional changes during human 
cardiovascular development.
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GEPA predicted novel regulators during human cardiovascular development.  Based on the 
gene function annotation from Ingenuity knowledge database, the cardiovascular specific LEGs contain 
up to 40% known cardiovascular functional genes and, as expected, no cardiac regulatory genes were 
found in the ES-specific LEGs (Fig. 5a). Over 60% genes with unknown functions in heart development 
were found in our cardiovascular specific LEGs, implying the existence of potentially novel regulators 
within those genes. To test if GEPA could predict novel cardiac regulatory genes, we next analyzed the 
lineage specificities of a list of previously predicted cardiac regulators during cardiac differentiation in 
human ESCs. By comparing with our list of GEPA defined LEGs, the lineage-specificities of top 100 cardiac 
genes, which were previously ranked by using “expression only” or “H3K4me3+H3K27me3+expression” 
criteria at each of three time points T5, T9 and T14 of CM differentiation in that study, were dis-
tinguished, respectively (Fig.  5b)13. This allowed us to test whether GEPA analysis of this study could 
consistently recapitulate early dynamics of cardiovascular development in human ESCs, and whether 
GEPA analysis could further distinguish the lineage specificity of those novel cardiac genes predicted 
by other research laboratories. As shown in Fig.  5b, of the top 100 genes predicted by the “expression 
only” or “H3K4me3+H3K27me3+expression” criteria, 8 ~ 9% or 14 ~ 15% falls into non-lineage spe-
cific “Gradient” or “Even” categories, respectively. This indicates that our GEPA filtered approximately 
10 ~ 15% non-lineage specific genes from previous predictions and recognized approximately 85 ~ 90% 
of the cardiac genes, which were predicted by considering both transcriptional activity and chromatin 
dynamic. In the previous study13, hESCs were sampled at T5, T9 and T14 of cardiac differentiation to rep-
resent the early, middle and late stages of CM differentiation. After the cardiovascular lineage specificity 
analysis using GEPA, we found approximately 30% of T5, 20% of T9 and 10% of T14 cardiac genes were 
enriched into MCP group, whereas an increased ratio of predicted regulatory genes from T5 to T14 were 
enriched into CM group, indicating the progressively CM commitment from pluripotency. Additionally, 
approximately 30% of previously predicted cardiac genes exhibited a multiple lineage enriched pattern, 
with around 10-20% of them in “ MCP&CM&SM&EC” and 15% in “MCP&CM”. The high incidence of 
multiple-lineage enrichments of previously predictions shows that the comparative analysis using a single 
lineage-CM differentiation in hESCs could not define the real CM-specific transcripts, given that CM/
SM/EC share some commonly expressed cardiovascular-specific genes.

Next, we analyzed the list of genes that are specifically expressed in MCP or CM, which were pre-
dicted by both our GPEA and previous predictions (Fig.  5c). This gene list contained known cardiac 
specific genes (blue color labeled genes in Fig.  5c), as well as genes that were overlappingly predicted 
(green color labeled genes in Fig. 5c) and solely predicted by GEPA (red color labeled genes in Fig. 5c). 
All these predicted novel cardiac genes showed very similar expression patterns as the well-known car-
diac regulatory genes, such as NKX2.5 and TBX20 (Fig.  5c). Although most of those predicted genes 
are transcriptional factors, some of them were found to be components of canonical signaling pathways, 
suggesting that those putative novel cardiac genes might regulate cardiovascular development via mod-
ulating signaling pathways. Interestingly, we found that eprin/ephrin receptor signaling pathway genes 
were highly specifically enriched in MCP and CM categories (Fig.  5d) and most of the LEG genes in 
the eprin/ephrin receptor signaling pathway genes encode ephrin or ephrin receptors (Fig. 5e,f). These 
analyses suggested that ephrin/ephrin receptor signaling might have unclear functions during cardiomy-
ocyte specialization from human ESCs. Alltogher, these results demonstrate that GEPA could be applied 
to predict novel functional or regulatory genes in human cardiovascular development, as well as in other 
biological processes with multi-stages definitions.

Validation of the GEPA predicted regulatory signaling pathways during cardiovascular dif-
ferentiation of hiPSCs.  Since the findings from human ESCs could benefit the generation of 
patient-specific cardiac cells from human iPSCs, we next validated the functions of predicted signaling 
pathways using human iPSCs. Firstly, we examined the roles of several key signaling pathways in ver-
tebrate heart development, including BMP, Wnt and FGF, during cardiovascular differentiation from 
human Y1-iPSCs (Fig.  6). We generated embryoid bodies (EBs) from Y1 iPS cells at day 0 using our 
established cardiac differentiation method (Fig. 6a) , followed with modulations of BMP and Wnt path-
ways before the formation of MCPs, which was from day 1 to day 4 of differentiation. Adding BMP4 
(10 ng/ml) significantly increased the total number of EBs from day 4, when compared with the absence 
of BMP4 or with the adding of BMP antagonist, Dorsomorphin (2 μM). Activating Wnt pathway by add-
ing Wnt3a (100 ng/ml) from day 1 to day 4 increased the number of EBs, whereas blocking Wnt pathway 
by adding a Wnt inhibitor, DKK1, substantially decreased the EB formation efficiency (Fig. 6b,c). Next, 
we changed all the day 4 media, which contained various pathway modulators (Fig. 6a), to basal medium 
without any factor until day 20. The day 20 EBs were dissociated, followed by immunostaining of CTNT, 
which is a marker for CM. Ratio of CMs (CTNT+ cells) was examined using fluorescence-activated cell 
sorting (FACS). Approximately 20% CTNT+ CMs were generated with presence of BMP from day 1 
to day 4, which was significantly higher than that from the control condition containing no BMP/Wnt 
modulators from day 1 (Fig. 6d). Although early presence of Wnt3a increased the number of total EBs 
at day 4 (Fig. 6b,c), only 5% CM was found at day 20, which was similar to the control condition con-
taining no pathway modulators (Fig. 6d). This indicates that Wnt pathway could play different roles in 
early vs. late stages of human cardiovascular development. Additionally, these data demonstrate that our 
cardiac differentiation system could provide an in vitro model for testing the functionality of signaling 
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pathways in early human cardiovascular development. Therefore, we next sought to examine the role 
of ephrin receptor signaling pathway, which was highly enriched in the MCP formation stage by GEPA 
and IPA analyses (Fig.  3b and Fig.  5d) with unknown function during early human heart formation. 
The expressions of ephrin and ephrin receptor genes were highly enriched in “MCP” and “MCP&CM” 
(Fig. 5e), suggesting an essential role of ephrin receptor signaling during early human CM differentiation. 
A previous study indicated that ephrin activity could be completely blocked by adding lithocholic acid 
(LA) at 200 μM, which is a small molecule to inhibit binding of ephrin ligands to EphA/B receptors23. We 
thus added LA into the differentiating EBs from day 4 to 20 with increased doses (Fig. 6e) to examine 
the impact of blocking Ephrin pathway on human MCP formation and CM commitment. Treating with 
LA at 100 and 200 μM did not affect the growth of EBs, whereas the loading of LA at 300 μM showed 
negative effect in EB growth from day 6 (Fig.  6f). To determine the efficiency of CM differentiation 
from human iPS cell post modulating of ephrin signaling, we used FACS to measure the ratios of CTNT 
positive CMs in day 20 EBs and observed a dose-dependent suppressing role of LA in CM-derivation 
from iPS cells (Fig. 6g). Consistently, a lower ratio of beating EBs was found in the LA treated EBs when 
compared with the control DMSO treated EBs (Supplementary Video 1 and 2). These results, together 
with the finding that EphB4-knockout mouse ES cells were deficient in CM differentiation24, demonstrate 
that ephrin signaling plays a key role in mammalian cardiogenesis. Moreover, this demonstrates that the 
GEPA analysis of comparative RNA-seq data could successfully predict novel functional signaling path-
ways in early human cardiovascular development, and possibly in other biological processes.

GEPA predicted splicing alterations associated with differentiation stages and lineage-enriched 
long non-coding RNAs during human cardiovascular differentiation.  Alternative splicing pro-
duces diversities in protein output of the genome. It could play a role as regulatory mechanism in cell fate 
decision. A well established example is that the protein isoforms of FOXP1 gene produced by alternative 
splicing can have differential regulatory activities in maintaining pluripotency or promoting differenti-
ation25. To identify the alternative splicing during human cardiovascular differentiation, we used GEPA 
to analyze the lineage-enrichment pattern of the splicing isoforms of the genes. We found a number of 
genes have differential expression patterns of the isoforms (Fig.  7a). Among them, a typical example 
is the differential usage of the exon 3 of Fibroblast Growth Factor Receptor 1 (FGFR1) gene during 
human cardiovascular differentiation (Fig. 7b). In early stage of differentiation (ES and MCP) sequencing 
reads of exon 3 are at similar levels as adjacent exons. However, exon 3 level is much lower compared 
to adjacent exons when the ES cells differentiated into SMs and ECs, in spite of an overall decrease of 
FGFR1 level in those cells (Fig. 7b). To validate the differential usage of exon 3 of FGFR1, we designed 
two primer pairs to detect the exon 3 present and exon 3 absent isoforms (Listed in Supplementary 
Table. 3). PCR using primers 1 produce a 496 bp product indicating the isoform with exon 3, or a 229 bp 
product without exon 3. PCR primers 2 locate in exon 3 and produce a 134 bp product only if exon 3 
exists (Fig. 7b). Consistent with the RNA-seq, RT-PCR detected progressive decrease of FGFR1 isoform 
with exon 3 during the differentiation of hESC towards cardiovascular cell fates. FGFR1 isoform absent 
of exon 3 were not detectable in ES and MCP, while clearly detected in CMs, SMs and ECs (Fig.  7c). 
These results indicate the expression change of FGFR1 isoforms by skipping exon 3, which encode 89 
amino acids, during the stage of MCP to cardiovascular lineage differentiation. This result suggests that 
our RNA-seq plus GEPA workflow could predict stage-associated splicing switch of genes during human 
cardiovascular differentiation.

Long non-coding RNAs (lncRNAs) are a group of transcripts without protein-coding capacity and 
with lengths greater than 200 nt. Many lncRNAs are expressed in specific tissues and involved in devel-
opment. Recent studies showed that lncRNAs could play a role as key regulators in cardiovascular 
development26–28. In addition to the protein-coding genes, RNA-seq also detected lncRNAs. Since most 
regulatory lncRNAs involved in development are spatiotemporally specific, we applied GEPA to identify 
the lineage-enriched lncRNAs during human cardiovascular differentiation. A number of lncRNAs are 
identified to be specifically expressed in a single lineage during cardiovascular differentiation (Fig. 7d). 
Using qRT-PCR, we validated the expression pattern of some lineage-enriched lncRNAs (Fig. 7e). Among 
them, LINC00881 (NR_034008) is highly specific in cardiomyocytes and NR2F1-AS1 (NR_021490) is 
highly enriched in endothelial cells, indicating that these lncRNAs might play a role in the specification 
or functions of related cell types (Fig. 7e). These results suggest that our RNA-seq plus GEPA workflow 
is able to identify lineage-enriched lncRNAs, which may help to discover functional lncRNAs in human 
cardiovascular differentiation.

Discussion
Early heart formation is precisely controlled by dynamic changes of underlying gene expression pro-
grams. Recently, mouse ES cell and human ES cells have been utilized as an in vitro model to study 
mammalian cardiogenesis29. However, most previous studies were focused on the differentiation of car-
diomyocytes from ESCs, and the majority of previous comparative studies were conducted between ESCs 
and ESC-derived cardiomyocytes8,10,30. In this report, we differentiated and purified a population of early 
stage cardiovascular progenitor cells (MCPs) from hESCs, as well as specified the MCPs into three major 
cardiovascular cell types including CMs, SMs and ECs14,31. This novel cardiovascular differentiation 
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system allowed us to model the early events and study the temporal cell fate transition from pluripotency 
to terminally differentiated cardiovascular cells. Additionally, the introductions of a key intermediate 
state of MCPs and two parallel vascular cell fates including smooth muscle cells and endothelial cells, sig-
nificantly improved the accuracy of the lineage-specificity mapping of cardiovascular specific transcripts. 
In this study, we found that TFN of each single lineage underlies its dominant gene program to control 
the lineage-specific signature biofunction, whereas comparing the TFNs of temporally adjacent lineages 
could recapitulate the dynamic TFN transitions during cardiovascular development. For example, analyz-
ing the changes of TFNs from ESCs→MCP→MCP&CM→CM could dissect the mechanisms underlying 
temporal CM development in hESCs. In addition, the multiple-lineage GEPA analysis could distinguish 
cardiovascular cell fate specificity of genes with a significantly increased resolution. For example, the 
CM-enriched genes could be distinguished from the genes enriched in CM&SM or CM&SM&EC groups. 
The refined lineage-specificity map may benefit the identification of key factors pertaining to specific 
temporal window(s) during differentiation, or to a specific cell fate.

Cluster analysis is the classic method to conduct multiple-state-comparing analysis32. Genes with 
similar expression patterns are clustered together and compared. In our study, we developed a new algo-
rithm, which was named as Gene Expression Pattern Analyzer (GEPA), to analyze the gene expression 
pattern in the five lineages. GEPA is basically the combination of two widely used methods: sorting and 
binary comparison. It calculates expression pattern of each gene and doesn’t need comparisons between 
genes. GEPA can directly output transcriptional enrichment pattern of each single gene within multiple 
compared lineages without the need of further manual identification of clusters from original large data 
table. Instead, a simple application of sorting in a table processing software such as Microsoft Excel will 
group the genes with the same expression pattern together. Therefore, GEPA is more user-friendly for 
researchers without strong computational background. Because GEPA calculates the expression pattern 
for each gene one by one, it does not need much memory to run large set of data in parallel. Our data 
sets (15132 genes in five lineages) could be analyzed on commonly built PCs within a few seconds. 
Using our RNA-seq data sets, we got low false positive rates and false negative rates at the fold change 
threshold 2.5. However, the threshold of fold change can be manually adjusted to optimize the outcome 
stringency according to the false positive and false negative rates. Theoretically, there is no limit of the 
number of states (samples/lineages) for GEPA. In addition to the RNA-seq data, GEPA could be applied 
to comparative analysis of other data sets with comparable states, such as data from microarray and 
ChIP-seq etc. Therefore, GEPA could be widely useful for pattern analysis of multiple states/samples in 
a wide variety of biological studies.

What genes determine a distinct cell type is a long-standing question in developmental biology. With 
the refined lineage-specificity map in human cardiovascular differentiation, we found that majority 
(80 ~ 84%) of the genes are expressed at similar levels throughout the whole cardiovascular development 
process. The single lineage-enriched genes take up only 1.43 ~ 3.19% of all the detected genes in a certain 
cell type. Identification and comparison of single-lineage-enriched genes versus multi-lineage-enriched 
genes could distinguish gene groups underlying functional transitions during cardiovascular develop-
ment. For example, in MCPs, we found high expression levels of genes related to mitosis, mesoderm 
development and cardiogenesis. Although ESCs express high level of mitosis related genes and CMs 
express high level of cardiogenesis related genes as well, the transient and simultaneous expressions 
of those genes in MCPs makes MCP unique in its plasticity, high proliferative potent and proclivity to 
differentiate into cardiomyocytes (Fig. 3). Our results suggest that the comparative cell-fate analysis may 
reveal combinatorial gene modules that determine unique cell types.

Determining the ontogenetic tree of cell lineages is important for understanding the developmental 
origin of a specific cell type. Using PCA and hierarchical clustering analyses, we found that CM was more 
correlated to MCP than to SM and EC during cardiovascular differentiation, indicating that the differ-
entiation of MCPs towards vascular cells would require a more profound gene expression change than 
MCP differentiation to cardiac muscles (Fig. 1e and Supplementary Figure 2). This observation is con-
sistent with the finding of more enriched genes in “MCP&CM” than those in “MCP&SM” or “MCP&EC” 
(Fig.  2b). On the other hand, SM and EC were found to share some core transcription factors (Fig.  3 
and Fig. 4). All these results suggest the existence of a bi-potential vascular progenitor for SM/EC during 
human heart formation. However, further investigation is needed.

Cell-fate establishment often coincides with the expression of lineage-specific signature genes. A few 
of those key genes were shown to change cell identity. For example, induced pluripotency could be 
established by introducing four pluripotency marker genes into fibroblast, and functional neuron or car-
diomyocytes could be transdifferentiation from fibroblast by overexpressing lineage-specific TFs4–7,33–35. 
Therefore, identification of key lineage-specific regulatory genes is of great significance for uncovering 
cell fate-determinant genes. Here, the LEGs, which were identified by GEPA from RNA-seq data, could 
predict novel regulatory genes and functional mechanisms in human cardiovascular development and 
fate-determination. Such capacity has been proved in this study by defining the lineage-specificity of a list 
of novel cardiac regulatory genes, which were previously predicted by considering both dynamic histone 
modification and gene expression changes during cardiac differentiation in human ESCs13. Additionally, 
we predicted putative function of ephrin pathway in CM differentiation from hESCs. This prediction was 
further validated by blocking the activity of eprin/eprin receptor signaling during the differentiation of 
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human iPSC towards cardiomyocytes. Such experimental validation further confirmed the predictability 
of novel regulatory genes/pathways in early human cardiovascular development using our multi-cell-fate 
comparison system. In addition to lineage-enriched protein-coding genes, we also applied the RNA-seq 
plus GEPA workflow to detect differentiation-associated RNA splicing isoforms and lineage-enriched 
lncRNAs during human cardiovascular differentiation (Fig.  7). A number of genes showing splicing 
switch during human cardiovascular differentiation were observed. Specifically, the progressive decrease 
of FGFR1 isoform with exon 3 and the emergence of FGFR1 isoform without exon 3 during MCP spec-
ification to cardiovascular lineages were validated, suggesting the change of FGF signaling sensitivity 
or differential intracellular cascades during pluripotency to cardiovascular specification. Moreover, we 
identified a number of lncRNAs with lineage-enriched expression pattern during human cardiovascular 
differentiation, such as a highly CM–specific long non-coding RNA LINC00881. This is consistent with 
a previous finding that LINC00881has the highest expression level in heart compared to other tissues36, 
implying that LINC0081 might have some unknown functions in human cardiomyocytes. Taken together, 
this study provided a new and comprehensive system to recapitulate and dissect early events of human 
heart formation, as well as to predict and validate novel regulatory genes, alternative RNA splicing, 
lncRNAs and mechanisms underling human cardiovascular development, which will benefit the basic 
research of mammalian heart development and the mechanistic study of human cardiovascular diseases.

Methods
Cell culture and cardiovascular differentiation.  RUES2 human ES cells were obtained from 
Rockefeller University. Human Y1-iPS cells were reprogrammed from human dermal fibroblasts 
(HDF-α) (Cell Applications, USA) in our laboratory as previously described14. Human ES and iPS cells 
were maintained on MEFs and differentiated as described14. All growth factor were from R&D System. 
And chemicals were from Sigma Aldrich. Lithocholic acid was purchased from Sigma-Aldrich Co. LLC.

Sample preparation and deep-transcriptome sequencing.  Human RUES2, RUES2-derived-MCPs, 
cardiomyocytes, smooth muscle cells and endothelial cells were isolated and enriched as previously 
described14. Total RNAs were purified from the collected five cell samples using Qiagen RNeasy kit. 
Paired-end deep-transcriptome sequencing was performed using a service from LC Sciences (Houston, 
TX) with the Illumina platform.

Sequencing data processing.  Reads are mapped to human reference genome UCSC hg18 (ftp://
igenome:G3nom3s4u @ftp.illumina.com/Homo_sapiens/UCSC/hg18) using Bowtie version 0.12.7 and 
Tophat version 1.3.237. Expression intensity was estimated using Cufflinks version 1.2.1 as Fragment Per 
Kilobase of exon per Million reads (FPKM)37. Sum of all the isoforms with usable FPKM (quality status 
is “OK”) was used as the FPKM of each gene. Genes were removed if the FPKMs in the samples are all 
0. After that, sum of the gene FPKM was calculated for each cell type. The value was then normalized 
to FPKM in 1 million of sum. Finally, we added 1 to all the normalized FPKM. Principle component 
analysis (PCA) and hierarchical clustering was performed using R (http://www.r-project.org/).

Identification of the lineage-specific genes.  The Gene Expression Pattern Analyzer (GEPA) algo-
rithm was designed to recognize genes that were expressed at higher level in some lineages than in 
other lineages above a threshold of fold change. For each single gene, the lineage-specific expression 
pattern was recognized through the following steps. 1. Get the expression intensity values of each single 
gene in the samples (five samples in our study). 2. Sort the of the samples based on the gene expression 
values in descending order. 3. Compare the gene expression values in two samples as one cycle, starting 
the comparison of the highest value vs. the next highest. If the fold change is greater or equivalent to 
the threshold, stop and classify the gene with higher expression value as a specific-gene of that (those) 
sample(s) before the stopping point (not including the sample of lower value in current comparison). If 
the fold change is lower than the threshold, continue to compare the next two samples with the highest 
gene expression values. 4. If all the fold changes are less than the threshold, the expression pattern will 
be designated as “even” or “gradient” in all samples. If the fold change between the highest value and 
the lowest value is smaller than the threshold, the gene expression pattern will be designated as “even”. 
Otherwise the gene expression pattern will be referred to as “gradient”. In both “even” and “gradient” 
groups, fold change of gene expression level between any pair of samples that have closest FPKM values 
was below the threshold. The difference is that if the fold change between the maximal and minimal 
FPKM values is below the threshold the expression pattern would be recognized as “even”, while above 
the threshold would be a “gradient” pattern. For example, consider one gene that shows the highest 
FPKM in CM, second in MCP, third in SM, fourth in EC and lowest in ES and the threshold is set to 
2.5. If the FPKM in CM is no less than 2.5 fold higher than MCP, the pattern will be recognized as CM 
specific. Otherwise, the algorithm will continue to compare MCP and SM. If MCP is no less than 2.5 
fold higher than SM, the pattern will be MCP&CM specific. Otherwise, continue to compare next pairs 
of samples with closest FPKMs, such as SM and EC, until a pattern is designated. If the pattern cannot 
be designated in this way (that means all fold changes between two closest FPKMs are below 2.5), the 
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FPKM in CM (highest) and ES (lowest) will next be compared. If the fold change is greater than 2.5, 
the pattern will be “gradient”, while lower than 2.5 would be “even”. We tested GEPA with thresholds 
of 1.5, 2.5 and 3.0 and set the threshold to 2.5 in all our analysis in this study because it has the lowest 
false positive plus false negative rates. List of housekeeping gene were downloaded from http://www.
tau.ac.il/~elieis/HKG/. List of positive control gene sets were listed in Supplementary Table. 2. Lists of 
predicted cardiac development regulators based on histone modification markers and expression levels 
were from Paige et al.13. A Perl module implementing the GEPA algorithm can be accessed through 
http://sourceforge.net/projects/gepa/files/. Expression profiles of the genes in this study are provided in 
the Supplementary data sets.

Function and canonical pathway enrichment analysis.  Function and canonical pathway analyses 
were performed using Ingenuity IPA (http://www.ingenuity.com/products/pathways_analysis.html).

Quantitative reverse transcription PCR (qRT-PCR) analysis.  qRT-PCR was performed on a 
7900HT Fast Real-Time PCR System (Applied Biosystems) with Fast SYBR Green Master Mix (Applied 
Biosystems). The results were analyzed using Excel, normalized to Cyclophinin gene expression, and 
compared to the undifferentiated ES cells. Primer sequences are described in Supplementary Table. 3. 
qRT-PCR results were presented as mean ± S.D. from three independent experiments in the Figures. 
Primers are listed in Supplementary Table. 3.

Immunofluorescence Microscopy.  The following antibodies were used: anti-human PECAM1 
(CD31) (R&D System); anti-Cardiac Troponin T (CTNT) and anti-Smooth Muscle Actin (SMA) (Lab 
Vision); All secondary antibodies were from Life Technologies.
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