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Abstract

Synapses across different brain regions display distinct structure-function relationships. We investigated the
interplay of fundamental design constraints that shape the transmission properties of the excitatory CA3-CA1
pyramidal cell connection, a prototypic synapse for studying the mechanisms of learning in the mammalian
hippocampus. This small synapse is characterized by probabilistic release of transmitter, which is markedly fa-
cilitated in response to naturally occurring trains of action potentials. Based on a physiologically motivated
computational model of the rat CA3 presynaptic terminal, we show how unreliability and short-term dynamics
of vesicular release work together to regulate the trade-off of information transfer versus energy use. We pro-
pose that individual CA3-CA1 synapses are designed to operate near the maximum possible capacity of infor-
mation transmission in an efficient manner. Experimental measurements reveal a wide range of vesicular
release probabilities at hippocampal synapses, which may be a necessary consequence of long-term plasticity
and homeostatic mechanisms that manifest as presynaptic modifications of the release probability. We show
that the timescales and magnitude of short-term plasticity (STP) render synaptic information transfer nearly in-
dependent of differences in release probability. Thus, individual synapses transmit optimally while maintaining
a heterogeneous distribution of presynaptic strengths indicative of synaptically-encoded memory representa-
tions. Our results support the view that organizing principles that are evident on higher scales of neural organi-
zation percolate down to the design of an individual synapse.

Key words: efficient signaling; hippocampal representation; information theory; short-term plasticity; synaptic fa-
cilitation; synaptic failures

Significance Statement

Synapses across the brain widely vary in morphology and dynamics, suggesting diversity in underlying de-
sign principles. The Schaffer collateral-CA1 synapse is a crucial component of the hippocampal circuit as-
sociated with learning. We used information transmission and energy utilization, fundamental constraints
that govern neural organization, to gain insights into the form-function relationship at this synapse which is
characterized by unreliable neurotransmitter release. We show that short-lasting activity-dependent en-
hancement, a distinguishing attribute of this synapse, ensures that information carried by transmitter release
is maximized in an energetically cost-effective manner. Remarkably, we find that synapse-specific quirks
ensure information rate is independent of the release probability; thus, even as ongoing long-term memory
storage continues to feed heterogeneity in presynaptic strengths, individual synapses maintain robust infor-
mation transmission. Our analysis reveals the unique design compromises implicit in the distinctive features
of this synapse, sharing design principles with higher levels of brain organization.
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Introduction
Chemical synaptic transmission accounts for a signifi-

cant proportion of metabolic costs during normal neural
activity in the mammalian brain (Attwell and Laughlin,
2001). Understanding the role of competing demands
imposed by energy consumption and information processing
in shaping nervous systems has been an enduring question
in neuroscience research (Laughlin, 2001; Balasubramanian
et al., 2001; Laughlin and Sejnowski, 2003; Hasenstaub et al.,
2010); one may then ask if the notion of energetic efficiency
trickles down to the level of individual synapses. In this con-
text, failures of transmitter release, while unsuccessful in
relaying presynaptic action potentials, may help conserve
synaptic resources by lowering average release rates.
Indeed, probabilistic release is a characterizing feature found
across a number of synapses (Borst, 2010), and a fundamen-
tal source of stochasticity in neural dynamics (Deco et al.,
2009). Previous studies have suggested that synaptic failures
support both efficient neural coding (Levy and Baxter, 2002)
and communication between neurons (Harris et al., 2012),
but these studies did not include the effect of use-dependent
short-term plasticity (STP) that typically accompanies proba-
bilistic release and which can significantly modulate the time
course of synaptic responses to natural activity patterns
(Tsodyks and Markram, 1997; Matveev and Wang, 2000;
Zucker and Regehr, 2002).
Excitatory Schaffer collateral-CA1 pyramidal cell con-

nections, a crucial component of the hippocampal cir-
cuitry engaged during spatial navigation and implicated in
experience-dependent learning (Gruart et al., 2006; Basu
and Siegelbaum, 2015; Choi et al., 2018), provide a dis-
tinctive example of low release probability synapses
(Allen and Stevens, 1994). Individual synapses show
strong enhancement of release probabilities in response
to natural spike trains (Dobrunz and Stevens, 1999), in
contrast to their low transmission rates for single spikes;
this short-term facilitation (STF) is observed over time-
scales of milliseconds to seconds. It was previously pro-
posed that the CA3-CA1 pathway is optimized for
conveying information on spike times in short bursts oc-
curring at physiologically relevant frequencies (Rotman et
al., 2011). However, the concomitant energy costs associ-
ated with vesicular release and recycling supporting this
form of transmission are not known.
Here, we use a computational model to investigate the

relevance of energetic constraints to the design and function
of single hippocampal synapses that are characterized

by low initial release probabilities but marked activity-de-
pendent STP. Our study addressing individual synapses is
thus distinct from earlier work based on synaptic population
readouts (Klyachko and Stevens, 2006; Rotman et al.,
2011). Other previous studies of information transmission at
cortical synapses considered short-time dynamics arising
from vesicle depletion alone (Manwani and Koch, 2001;
Goldman, 2004; Rosenbaum et al., 2012; Salmasi et al.,
2019a), or made simplifying model assumptions about pre-
synaptic organization (e.g., availability of at most one vesicle
per release site; Harris et al., 2012; Zhang and Peskin, 2015;
Salmasi et al., 2019b), limiting their physiological relevance
for describing facilitating hippocampal synapses. Another
distinguishing feature of our study is that we do not ascribe
a notion of information to “a” spike as is often done
(Goldman, 2004; Rotman et al., 2011; Harris et al., 2012), as
it is unclear whether every presynaptic spike can be as-
signed equivalent meaning at the CA3-CA1 synapse. In the
hippocampus, neural information may be encoded by brief
increases in firing rate rather than the precise timing of indi-
vidual spikes. A relevant example is provided by the selec-
tive activation of specific subsets of CA3 pyramidal cells
whenever the animal enters their preferred spatial location
(O’Keefe and Dostrovsky, 1971); such brief increases in fir-
ing frequency punctuating a low-activity background are re-
garded as discrete units of information (Lisman, 1997),
which may be further modulated by additional task-relevant
variables (Fenton and Muller, 1998). Thus, instead of a
spike-centric approach assessing how reliably presynaptic
spike times are conveyed to the target cell, we make the
conceptual distinction that information is more correctly an
attribute of the underlying physiologically identifiable tempo-
ral “signal” encoded in the irregular firing activity of the pre-
synaptic neuron.
Vesicular release properties are seen to vary widely

across synapses, being tuned to the functional demands
of the circuits in which they are embedded (Thomson,
2000; Dittman et al., 2000; Abbott and Regehr, 2004).
Thus, addressing design principles on a generic level is
hindered by the diversity of synapse types found in the
nervous system and the neural activity patterns that they
process. How a small hippocampal synapse defined by
low release probability and a limited pool of available
vesicles, equipped with STP, regulates the local balance
between reliability and economy of signaling in a physio-
logical setting has not been addressed thus far. Our
model includes relevant biological details and character-
izes the role of activity-dependent, short-term release dy-
namics in modulating the transmission of rate-coded
behaviorally relevant presynaptic signals at single syn-
apses, providing an apt description of the Schaffer col-
lateral pathway that is characterized by a preponderance
of monosynaptic connections between CA3/CA1 cell
pairs (Debanne et al., 1995). CA3 synaptic populations
display considerable heterogeneity in their transmitter re-
lease properties (Allen and Stevens, 1994; Dobrunz and
Stevens, 1997; Holderith et al., 2012), and we particularly
sought to address how these differences among synap-
ses impact their ability to relay information-carrying spike
trains. We show that the vesicle code operates within a

This work was supported by the Science & Engineering Research Board,
India, Grant PDF/2017/001803 (to G.M.) and the Wellcome Trust/DBT India
Alliance, Grant IA/I/12/1/500529 (to S.N.).
Acknowledgements: We thank IISER, Pune for supporting this study. G.M.

acknowledges helpful discussions on an earlier version of this work at the
OIST Computational Neuroscience Course 2018.
Correspondence should be addressed to Suhita Nadkarni at suhita@

iiserpune.ac.in.
https://doi.org/10.1523/ENEURO.0521-19.2020

Copyright © 2020 Mahajan and Nadkarni

This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

Research Article: New Research 2 of 16

September/October 2020, 7(5) ENEURO.0521-19.2020 eNeuro.org

mailto:suhita@iiserpune.ac.in
mailto:suhita@iiserpune.ac.in
https://doi.org/10.1523/ENEURO.0521-19.2020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


range that maintains low energy costs while maximizing
information dynamically via STP for the entire heterogene-
ous population of intrinsic release probabilities seen at
these synapses.

Materials and Methods
Experimental studies have provided valuable information

about the ultrastructural organization and distribution of dy-
namic properties at rat CA3-CA1 presynaptic terminals
(Dobrunz and Stevens, 1997; Schikorski and Stevens,
1997). Individual CA3 presynaptic boutons typically have a
single active zone (Schikorski and Stevens, 1997), where
glutamate release occurs in a probabilistic manner (Allen
and Stevens, 1994) and shows a complex mix of use-de-
pendent depression because of refractoriness in vesicle re-
covery and rapid calcium-mediated facilitation of the release
machinery (Stevens and Wang, 1995; Dittman et al., 2000).
We adopted a mathematical description of this synapse

which captures key attributes of its short-time release dy-
namics (Fig. 1A), and quantified through numerical simula-
tions its responses to irregular spike trains mimicking
naturally occurring presynaptic cell activity. The model de-
tails and setup for our analysis are briefly described below.

Estimating synaptic information rates
Experimental recordings from rodent hippocampus

suggest that individual pyramidal cells in area CA3 show
location-specific (place cell) firing during free exploration
(Fenton and Muller, 1998; Mizuseki et al., 2012). Further, it
has been argued that variability seen in these brief in-
creases in firing during individual passes through the pre-
ferred location may encode additional attributes, such as
aspects of the animal’s trajectory (Allen et al., 2012;
Grieves et al., 2016), its motion relative to goal direction
(Aoki et al., 2019), variable attentional state of the animal
(Olypher et al., 2002; Fenton et al., 2010), modulation by

Figure 1. Modeling short-term plasticity (STP) at stochastic hippocampal synapses. A, Outline of the reduced model of presynaptic
STP used in the study, which includes activity-dependent facilitation of neurotransmitter release and depression because of slower
recovery of released vesicles. Facilitation strength is tuned by the dimensionless gain parameter af. B, left, Distribution of PPRs
over a realistic range of RRP sizes (1–15) and basal per-vesicle release probabilities (p0

v ranging from 10–4 to 1) in the STP model
(ISI = 40ms). Different magnitudes of facilitation (af) are represented by different colors. The dashed curve captures the empirical
distribution of PPR values (from Dobrunz and Stevens, 1997), and the solid black line corresponds to PPR=1. Right, Dependence of
PPR on the interspike interval (ISI) for representative facilitating synapses with the same maximum RRP size and different basal trans-
mitter release probabilities. C, Example of STP dynamics at realistic synapses with low (P0

s= 0.1) and high (P0
s= 0.9) initial release prob-

ability during the response to sustained presynaptic spiking at 30Hz. Solid and dashed curves correspond to synapses with
facilitation and lacking facilitation (constant pv), respectively. Results shown as mean 6 SEM over 104 independent trials; Nmax= 8.
D, Regimes of facilitation and depression illustrated by the frequency dependence of normalized asymptotic/steady-state response for
synapses with different basal failure rates (different colors). All synapses have the same maximum RRP size of 8. Results shown as
mean 6 SEM over 104 trials per parameter combination. E, Dependence of synaptic filtering on the number of available vesicles illus-
trated by the frequency-response curves for synapses with the same initial release probability (P0

s= 0.2) and varying maximum RRP
size (different colors represent different Nmax). Results shown as mean 6 SEM over 104 trials per parameter combination.
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contextual cues (Shapiro et al., 1997; Leutgeb et al.,
2005) (besides simply the variable duration, or equiva-
lently, the running speed, at each pass), etc. These obser-
vations motivate our model wherein we consider synaptic
processing of integrated spatial and contextual signals
represented by the occurrences and variable size (number
or frequency of spikes) of place field (PF) discharges of
the CA3 neuron. We thus define an effective “input” sig-
nal, f (t), underlying the variable firing activity of the pre-
synaptic cell which is assumed to be zero everywhere
except whenever the trajectory crosses the cell’s pre-
ferred location. Every pass through the PF is associated
with a non-zero value of f , f i, which in our model is
sampled from a uniform random distribution on the inter-
val [fmin; fmax]. This range is adjusted to be compatible
with the statistics of experimentally recorded hippocam-
pal spike train data (described below).
Individual PF passes are assumed to be uncorrelated in

time and to occur sparsely, at a mean rate of rs s
�1 (here-

after, we use the term “input rate” to refer to the mean
rate of PF passes). In order to estimate the information
rate carried by f (t), time is uniformly divided into suffi-
ciently short steps of Dt (�1=rs), which is taken to be the
(fixed) duration of every pass; every time step is thus
treated as an independent realization of the probability
distribution of f , P(f ), that is determined by the value of
rs. The time-averaged, discretized, entropy rate of the
input signal is quantified in the usual manner using
Shannon’s measure (Cover and Thomas, 2012):

Rs ¼ �ð1=DtÞ
X
f

Pðf Þlog2Pðf Þðbits=sÞ; (1)

where the sum runs over all values that f can assume,
with P(f ) being approximated by a discrete distribution
over nf possible states (set to 20 in our analysis). The
value of f during every PF pass determines the corre-
sponding burst size; the number of spikes comprising
every burst is thus given by a second, conditional,
Poisson distribution with mean l (f ) (the exact form of
which depends on the specific interpretation of the f
variable; see “Model implementation” below), and these
spikes are assumed to occur at random times within the
corresponding pass of duration Dt. To be consistent with
experimental data, a small amount of “noise” is also
added to the system, modeled as a constant background
presynaptic spiking rate of rn s�1 (this spiking is uncorre-
lated with the spatial context and could arise, say, from
synaptic or channel noise).
The synaptic response to presynaptic spike patterns

consists of a sequence of evoked transmitter release
events, and we quantify how well this discrete temporal
sequence conveys the temporal modulation of the signal
f underlying the irregular firing behavior of the presynap-
tic neuron. By analogy with the input, we discretize the
CA3 synaptic output by binning the releases occurring
within every time step Dt. Thus, every burst evokes a vari-
able amount of transmitter, proportional to the number of
release events, nr, and the vesicular response profile is
given by a sequence of nr values (one number per Dt step,
and that are assumed to produce graded postsynaptic

responses via temporal summation of EPSPs or NMDA
receptor-gated Ca21 transients). Under the assumption of
low noise level, synaptic transmission is characterized by
the stationary joint probability distribution P(f , nr) � P(f )
P(nrjf ) which is (implicitly) sampled at every time step in
our simulations. The conditional distribution P(nrjf ) is
governed by the form of the synaptic dynamics used in
the model and encapsulates the effects of STP. Synaptic
responses to successive bursts can be considered to be
uncorrelated, which is a valid approximation when the
typical interval between PF passes is longer than the
slowest timescale in the model of synaptic dynamics (this
is set by the recovery rate of the release-ready vesicle
pool; see below). We characterize the fidelity of informa-
tion coding at an individual synapse in terms of a discre-
tized version of the average mutual information rate (Rrs),
a standard nonparametric measure of statistical related-
ness of two variables, which can be expressed as a differ-
ence between the total entropy of the synaptic response
and the noise entropy (Cover and Thomas, 2012):

Rrs ¼ �ð1=DtÞ�X
nr

PðnrÞlog2PðnrÞ �
X
f

X
nr

Pðf ÞPðnrjf Þlog2Pðnrjf Þ
� �

ðbits=sÞ: (2)

This rate is numerically estimated from the pooled data
from simulations run for sufficiently long duration.

Estimating efficiency of the vesicle code
Following previous studies (Goldman, 2004; Harris et

al., 2012; James et al., 2019), local energetic efficiency of
the synaptic code is quantified in terms of the average
number of releases per bit transmitted per synapse (i.e.,
the specific cost of information), and we use the measure
Eðs�1Þ ¼ Rves=ðRrs=RsÞ, where Rves denotes the mean
rate of fusion events at the synapse (averaged over every
simulation run). Rves accounts for the use of synaptic re-
sources during signal transmission and also provides a
proxy for the net energy expenditure associated with
transmitter release and recycling (Harris et al., 2012). The
specific or unit cost of information as defined above is in-
versely related to the notion of efficiency, i.e., higher effi-
ciency synapses are expected to require fewer vesicles to
carry information at a given rate.

Modeling release dynamics at probabilistic synapses
Every synaptic release site is characterized by its basal

spike-evoked transmission probability, P0
s , and maximum

size of the docked pool of release-ready vesicles [readily-re-
leasable pool (RRP)], Nmax. The synaptic release probability
(Ps) is distinct from the fusion probability per docked vesicle
(pv), and under the assumption that docked vesicles can
fuse independently of each other (Dobrunz and Stevens,
1997), the two are related by Ps = 1 – (1 – pv)NRRP; NRRP being
the instantaneous RRP size at the release site.
We model the synchronous component of vesicular re-

lease evoked by presynaptic spikes (Dobrunz and
Stevens, 1997) and assume that every spike can trigger
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release of at most one vesicle per synapse. This assump-
tion of uniquantal release at glutamatergic CA3-CA1 syn-
apses is compatible with experimental findings (Stevens
and Wang, 1995) suggesting a refractory phase associ-
ated with fusion of a vesicle, which may inhibit subse-
quent release events in a short time period (;10ms)
following the initial spike during which the local calcium
concentration at the release site is high. Following its re-
lease, every vesicle is assumed to be recovered inde-
pendently, and this replenishment is also modeled as a
stochastic process with mean recovery timescale of t r
per vesicle. During bouts of intense spiking activity, rapid
depletion of the docked vesicle pool can occur, mediating
a form of transient depression whose strength and dura-
tion are controlled by t r together with the resting pool size
at the synapse. We set t r to 2 s, consistent with experi-
mentally measured refilling rates at rat hippocampal syn-
apses (Klyachko and Stevens, 2006).
Transient depression because of slow recycling of re-

leased vesicles is complemented by activity-dependent
changes in vesicle fusion at the release site. We adopt a
reduced kinetic model (Fig. 1A) to describe this STF regu-
lated by spike-driven calcium dynamics at the active
zone, which follows from a number of previous studies of
presynaptic plasticity (Tsodyks and Markram, 1997;
Hennig, 2013). The spike-triggered per-vesicle release
probability, pv, is treated as a dynamical variable whose
dependence on the presynaptic spiking history is gov-
erned by the following equation:

dpv

dt
¼ ðp0

v � pvÞ
t f

1afð1� pvÞ
X

i

d ðt� tiÞ; (3)

with the sum running over the set of all spike times. Thus,
the arrival of every presynaptic spike increments the value
of pv by an amount proportional to the synaptic gain pa-
rameter af, and the factor (1 – pv) ensures that pv, being a
probability, does not exceed 1. The first term on the RHS
of Equation 1 describes the exponential relaxation of pv to
its baseline value p0

v in the absence of spiking activity.
Interspike intervals shorter than the facilitation time con-
stant, t f, are expected to induce strong enhancement of
vesicle release. Following previous studies, we model a
rapid form of STF with t f = 150ms (Klyachko and
Stevens, 2006; Cai et al., 2007). Longer-lasting forms of
presynaptic plasticity such as augmentation are not con-
sidered here; these components are normally induced in
experimental settings with sustained high-frequency syn-
aptic stimulation (Zucker and Regehr, 2002), and unlikely
to be of significance during the sparse, sporadic spiking
activity observed in the physiological conditions modeled
here.
The form of STF given by Equation 3 implies a general

trend of decreasing facilitation with increase in the basal
synaptic release efficacy, which is supported by experi-
mental recordings of individual hippocampal synapses
(Dobrunz and Stevens, 1997; Murthy et al., 1997). In order
to select a physiologically relevant value for the gain param-
eter af, we refer to previous experimental data on paired-
pulse stimulation at rat CA3-CA1 synapses [Dobrunz and
Stevens, 1997; sex of animal(s) not mentioned in source

publication]. This synaptic population displayed a broad
range of baseline Ps values (;0.05–1), and the release prob-
abilities recorded in response to two spikes separated by a
short interval (40ms) yielded a distribution of paired-pulse
facilitation ratios (PPRs) whose dependence on the initial
synaptic release probability (Ps) was well-fit by the relation
PPR = (1 – (1 – Ps) aP

b
s )/Ps (a=1.246 0.15, b =�0.416 0.05).

Using our simplified description of presynaptic dynamics, we
analytically estimated the PPR in our model over a realistic
range of basal per-vesicle release probabilities (p0

v = 10– 4 to
1) and RRP sizes (Nmax = 1–15), and found the value of af for
which this distribution of values was optimally fit by the
above empirical model. The mean-squared error was mini-
mized at af � 0.03. We thus set ap

f = 0.03 as the biological
reference value of the gain parameter in our simulations,
and, separately, also examined the effects of reducing or in-
creasing the level of facilitation on synaptic coding properties
(Fig. 1B).

Model implementation
Realistic values of various parameters for the input

stimulus were chosen in accordance with in vivo CA3
spike recordings from awake, freely moving rodents (adult
male Long–Evans rats; Fenton and Muller, 1998), which
have been used in previous STP studies (Klyachko and
Stevens, 2006; Kandaswamy et al., 2010; Rotman et al.,
2011). This dataset comprises inhomogeneous spike
trains spanning a broad range of discharge frequencies
(;5–60Hz) and burst sizes (;3–30 spikes per burst), with
typically long (approximately several seconds) quiescent
periods separating individual discharges. We modeled
two specific implementations of the temporal signal f (t)
shaping presynaptic spiking activity: one describing fre-
quency modulation of sporadic PF firing (rate remapping),
and another wherein it represents the variable duration
(with fixed discharge frequency) of individual PF passes.
Non-zero instances of f were sampled randomly from an
appropriate dynamic range accordingly. For the variable
frequency case, spike rate for every pass was sampled
from the 6- to 60-Hz range, and the step size was set to
Dt=0.5 s, which also gives a consistent range of spike
numbers per burst (3–30 on average). Alternately, vari-
able-duration passes were modeled with a fixed in-field
firing rate of 30Hz (the average discharge frequency from
experimental recordings) and individual passes spanning
0.1–1 s, again giving between 3 and 30 spikes per burst
on average. Further, to simplify estimation of information
rates in this case, the step size was fixed at Dt=0.1 s, and
every time a PF pass was reckoned to occur, that step
was assigned a variable number of spikes, based on the
duration (value of f ) corresponding to that instance.
Thus, variable duration bursts were rescaled to a constant
step Dt; this is a valid approximation when estimating av-
erage information rates over very long times, provided
that burst durations �1/rs, which is compatible with the
available data. To reduce errors in estimation of Rinfo in
this approximation, facilitation and refilling time constants
were also appropriately rescaled when implementing STP
dynamics within every PF crossing by the corresponding
duration tB (t f ! t fDt/tB and t r ! t rDt/tB), to mitigate
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over- (under-)estimating the effect of activity-dependent
facilitation (vesicle recycling).
Monte Carlo simulations of the STP model were con-

ducted for a range of input rates (rs = 0.05–0.2 s�1),
low noise levels (rn = 0–1 s�1) and maximum RRP sizes
(Nmax = 1–15), and dependence of results on the basal p0

v
was characterized over approximately four orders of mag-
nitude (p0

v = 0.0001–1). For every distinct combination of
parameter values, 20 independent runs (each of 3� 104 s
in duration) were simulated, and the time-averaged rates
of information flow and release events were estimated for
every trial. The averages from our simulations were found to
provide accurate estimates of the asymptotic information
rates, justifying comparisons between different synaptic
configurations in terms of the corresponding across-trial
averages. To specifically assess the differential effect of STF
on synaptic function, every synapse with STF (referred to as
a dynamic synapse) was compared with an equivalent static
synapse which lacks facilitation while still exhibiting activity-
dependent vesicle depletion (this corresponds to setting
af = 0 in Eq. 3). In the following, only the results for the
model with variable burst frequency are presented, although
we have separately verified that the findings are closely re-
produced for the variable-duration model as well.

Code accessibility
All simulations, data analysis, and visualization were per-

formed in Python using the NumPy, SciPy, and Matplotlib
modules. Simulations were carried out on a desktop PC
(Intel Xeon CPU @ 3.5GHz � 8, 32 GB RAM) running
Ubuntu 16.04 operating system. Basic code implementing
the model is freely available online at GitHub (https://github.
com/gmcoderepo/stp_at_ca3synapse). The code is avail-
able as a Python file in Extended Data 1.

Results
Improved signaling at unreliable synapses with STF
How does STF shape the vesicle code conveying infor-

mation about presynaptic cell activity at stochastic hippo-
campal synapses? Experimental measurements reveal
considerable diversity in the RRP size, release probability
and STP properties across individual CA3-CA1 synapses
(Dobrunz and Stevens, 1997; Schikorski and Stevens,
1997) that is invoked in our synaptic model (outlined in
Materials and Methods and Fig. 1B). To explore the role of
various synaptic attributes in modulating its transmission
properties, we simulated the synaptic response to regular
presynaptic spike trains occurring at different rates.
Figure 1C shows the response of a synapse to persistent
spiking at 30Hz (the average frequency in experimentally
recorded bursts) for low and high initial release rates (P0

s =
0.1 and 0.9) and a canonical maximum RRP size of Nmax =
8. For the low Ps synapse, the time-dependent release
probability initially increases because of strong activity-
dependent facilitation and reaches a maximum, before
the effect of vesicle depletion and slower recovery takes
over, causing a drop in the response which eventually
settles at a steady state value determined by the firing fre-
quency. In contrast, the high Ps synapse shows a monot-
onically decreasing response with time, as it undergoes

weaker facilitation and a larger initial Ps also implies faster
depletion of the readily-releasable vesicle pool. The
above qualitative differences illustrate the regimes of syn-
aptic enhancement and depression encompassed by the
STP model (Fig. 1A) that is based on physiological param-
eters for facilitation and depletion. To further bring out the
differences between these two limits, we quantified the
asymptotic/steady-state response amplitude of the dy-
namic synapse to input trains spanning a wide range of
frequencies (0.1–100Hz) as a function of the initial trans-
mitter release probability. Figure 1D shows the normalized
synaptic response profiles for different base synaptic fail-
ure rates at a fixed RRP size (Nmax = 8). High Ps synapses
are most effective at transmitting spikes arriving at low
frequencies, and with increasing facilitation (lower Ps), the
optimal transmission frequency is shifted to higher fre-
quencies, demonstrating a transition from depression-do-
minated to facilitation-dominated behavior governed by
the overall nature of STP dynamics (Eq. 3).
It is to be noted that RRP size also influences synaptic

behavior along with the value of P0
s , the latter being a

function of the maximum number of vesicles available for
release as well as the basal per-vesicle fusion probability
(p0

v ). To demonstrate the role of RRP size in modulating
synaptic behavior, the frequency-response relation esti-
mated for different numbers of release-ready vesicles
with a fixed basal synaptic release rate (P0

s = 0.2) is shown
in Figure 1E. These curves highlight the role of RRP size in
tuning the response profile of the synapse: synapses with
a given fixed initial probability of release (P0

s ) but differing
in their number of available vesicles show a range of re-
sponses, from low-pass filtering for smaller Nmax (corre-
sponding to high basal p0

v ) to higher optimal transmission
frequencies for larger RRP sizes (lower basal p0

v ). Taken
together, the above examples (Fig. 1C-E) capture the
broad repertoire of behavior displayed across an ensem-
ble of facilitating probabilistic synapses in the physiologi-
cal regime (Dobrunz and Stevens, 1997), that is controlled
by the interplay among key synaptic parameters govern-
ing transmitter release and recovery.
Naturally occurring firing patterns in the CA3 region are

characterized by brief increases in firing frequency (spike
bursts) separated by long periods of low activity (Klyachko
and Stevens, 2006) and were shown to encode behavior-
ally relevant integrated spatial and contextual signals.
These observations inform our model, and we next exam-
ine synaptic processing of spike trains mimicking such ac-
tivity patterns. Figure 2A illustrates the steps involved in
our simulation of STP dynamics for a synapse with P0

s = 0.2
when the presynaptic spiking pattern carries information in
the temporal sequence of burst occurrences and the vari-
able firing frequency associated with every burst. The sto-
chastic, time-varying signal (effectively an inhomogeneous
Poisson process) is reflected in the brief spike discharges
of the presynaptic neuron during passages through its pre-
ferred location (PF); this spiking activity drives the temporal
dynamics of pv and the transmitter release probability (Ps),
eliciting a sequence of vesicular release events. We used a
binning procedure to estimate the mean information content
in the quantal release profile about the presynaptic signal (for
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details, see Materials and Methods). Figure 2B, top left,
shows the relative mutual information rate, Rinfo � Rrs=Rs,
as a function of the basal probability of vesicle release (p0

v ) for
different noise levels, for both a canonical synapse exhibiting
STP (green lines) and an equivalent synapse which does not
show facilitation (black lines). Figure 2B, top right, illustrates
the dependence of synaptic information rates on the RRP
size for a fixed noise level of rn = 0.1Hz. These examples indi-
cate a general enhancement of synaptic information transfer

with STF, significantly expanding the scope of previous re-
sults from spike-based studies (Pfister et al., 2010; Rotman et
al., 2011). Further, this increase is more pronounced for
synapses with lower release probability, aligning with our ex-
pectation that smaller basal p0

v combined with stronger facili-
tation (Fig. 1B) accentuates the differential response to bursts
versus single spikes, enhancing the ability of the synapse to
selectively transmit information-carrying brief, high-frequency
spike discharges. To address the generality of the above

Figure 2. Elevated transmission of presynaptic information with STP of vesicular release. A, Time trace illustrating the conversion of
an input signal [f (t)] to a sequence of synaptic release events governed by STP. For this example, P0

s= 0.2, Nmax = 8, and rs = rn =
0.1 s–1. The uniform distribution of spiking frequencies from which individual burst instances are randomly sampled is shown in the
top right corner. B, top left, Time-averaged rate of information carried by synaptic release events (Rinfo) as a function of the basal
per-vesicle fusion probability (p0

v ) for a synapse with STF (green curves) and an equivalent non-facilitating synapse (black curves).
Different markers indicate different noise levels. (Results shown as mean 6 SEM over 20 independent simulations; Nmax= 8 and
input rate rs = 0.1 s.) Top right, Synaptic information transfer rates with STP (green curves) and without facilitation (black curves) for
different numbers of available vesicles (different markers). (Results shown as mean 6 SEM over 20 independent trials; rn = rs = 0.1
s–1.) Error bars being smaller than the marker size are not visible. Bottom, Enhancement of synaptic information transmission with
facilitation summarized as a distribution of relative changes (% difference of means relative to the static synapse) over a biologically
relevant range of input/model parameters (for details, see Materials and Methods). Inset shows a magnified view of the 0.01 � p0

v �
1 interval. Color coding indicates statistical significance of pairwise differences (blue: significant at FDR ,0.001 level, red: not signif-
icant). C, Synaptic response (i) and progressive depletion of the readily releasable vesicle pool (ii) as functions of the number of
input spikes for a synapse with STF (green) and lacking facilitation (black). Response fluctuations are quantified in terms of the CV
of number of release events (iii) and separability of responses to bursts differing in size by a single spike (iv). Results in i, ii shown as
mean 6 SD (1000 independent trials); P0

s = 0.2, Nmax = 8, and spikes are Poisson-distributed with mean frequency of 30Hz.
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results, we repeated our simulations over a biologically rele-
vant range of parameter values (input rate/mean rate of PF
passes=0.05–0.2Hz, noise level=0–1Hz and RRP size=1–
15). The overall difference in synaptic information capacity in
the presence and absence of STF is summarized as a distri-
bution of relative changes in Rinfo (percent difference of
means) in Figure 2B, bottom, and the color coding represents
statistical significance of pairwise differences [two-sided
Wilcoxon rank-sum test followed by Benjamini–Hochberg ad-
justment for multiple comparisons; blue: significant at false
discovery rate (FDR) ,0.001, red: not significant]. STF is
found to robustly improve the fidelity of synaptic signaling in
the physiological regime. The differential effect of facilitation
scales inversely with the basal synaptic release efficacy, and
is more marked for higher synaptic failure rates (lower p0

v ).
The effect of facilitation is diminished with increase in the
basal release probability, and there is little difference in trans-
mission efficacy between the dynamic and static synapses
for p0

v values above;0.1.
How can this improved reliability of synaptic information

transmission be understood in simple terms? We recall
that the synaptic response to information-carrying brief
spike discharges consists of a variable number of release
events; thus, the information content of the vesicle code
in our formulation is essentially determined by how well
the different output sizes (total number of releases trig-
gered by a spike discharge) can discriminate between dif-
ferent input states (i.e., the variable spiking frequency, or
duration, associated with every burst). We characterize
the reliability of this mapping in terms of the cumulative
number of released vesicles as a function of the burst size
(number of spikes). Figure 2Ci compares the responses of
a canonical synapse (basal p0

v = 0.03 and maximum RRP
size = 8) with and without STF to Poisson spiking at a
mean rate of 30Hz. In the presence of facilitation, not only
is the average response amplitude (total number of re-
lease events for a given burst size) larger, but more impor-
tantly, it is also a more reliable readout of the burst size,
because of reduced variability of responses relative to the
static synapse. This difference is clearly seen in Figure
2Ciii,iv, where two distinct measures for response fluctua-
tions are plotted as functions of the number of spikes (n).
The coefficient of variation (CV; defined as the standard
deviation of the response relative to its mean) is lower for
the synapse with facilitation, and the separability, defined
as Sn = (mn11 � mn)/(sn11 1 sn) (mn and sn denoting the
mean and SD, respectively, of the total response to n
spikes), is correspondingly larger. The initial steeper in-
crease in the mean response with the number of spikes
(Fig. 2Ci), together with smaller dispersion of responses
(Fig. 2Ciii,iv), implies better correspondence between the
response amplitude and the burst length when STF is in-
cluded. It is to be noted, though, that this increased reli-
ability is also accompanied by faster depletion of the
readily-releasable vesicle pool at the facilitating synapse
(Fig. 2Cii), implying a reduced dynamic range of burst
sizes that can be conveyed by synaptic release events
(this is indicated by a sharp change in the slope of the re-
sponse profile for the facilitating synapse beyond some
threshold spike number in Fig. 2Ci). However, our results

indicate that, in the biologically relevant parameter
range considered here, this downside of STP is more
than offset by the advantage of increased reliability of
responses to the shorter bursts (Fig. 2Ciii,iv) in the pres-
ence of facilitation, leading to significant net improve-
ment in synaptic information transfer (Fig. 2B). In sum,
our simulations of STP dynamics highlight a crucial
functional role for activity-dependent facilitation at un-
reliable hippocampal synapses, in conferring distinct
advantage for the transmission of information repre-
sented by time-varying presynaptic cell activity in a
physiologically relevant setting.

Reliable signaling at realistic STP synapses is nearly
independent of their basal release properties
The results in the previous section (Fig. 2B) indicate

that, for realistic number of vesicles, the signaling ca-
pacity of an STP synapse is not only increased relative to
a static synapse, but, notably, also independent of its
initial per-vesicle release rate (p0

v ) for the characteristic
inhomogeneous spiking patterns associated with CA3
pyramidal cells studied here. To elaborate on the depend-
ence of synaptic information transfer on its basal trans-
mission probability, we scaled the mean information rate
estimated for each value of p0

v by the maximum value at-
tained across the full range of p0

v values considered (this
was done separately for every combination of input rate,
noise rate, and vesicle pool size). This rescaling factors
out the dependence on the other model parameters, and
reveals the general trend in dependence of synaptic infor-
mation transfer on its intrinsic reliability.
Figure 3A, top, shows the distribution of rescaled infor-

mation capacity values separately for synapses with STF
(green points) and lacking facilitation (gray points); each
point represents a particular combination of model pa-
rameter values and p0

v . These results indicate that synap-
tic information coding is robust to differences in the basal
pv at dynamic synapses. In other words, STP ensures that
synapses with widely different basal fusion probabilities
transmit at comparable rates (median of values for each
p0
vZ 95% over the full range of p0

v values considered here).
By contrast, information carried by synapses lacking facilita-
tion shows clear dependence on the magnitude of the basal
pv, and is strongly impaired for synapses with p0

v . 0.1.
These data are especially interesting in the light of the

considerable heterogeneity in the magnitude of p0
v at hip-

pocampal CA3 synaptic populations as reported by ex-
perimental studies (Dobrunz and Stevens, 1997; Murthy
et al., 1997; Holderith et al., 2012). Our analysis indicates
that synaptic information transfer in the presence of dy-
namic gain control (Eq. 3) is nearly invariant to differences
in the basal fusion probability per vesicle (Fig. 3A, bot-
tom), and there is no appreciable change in the overall in-
formation transfer profile over nearly four orders of p0

v
(Fig. 3A, top). Recalling that the information rate (Eq. 2)
provides a measure of how well the different presynaptic
input states (spiking frequencies) are discriminated by the
output states (total transmitter release per spike burst),
the form of STP (Eq. 3) with physiological facilitation
strength is such that low release probability synapses
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achieve a discriminability comparable to synapses with
more reliable release. Although we have demonstrated
this for a specific dynamic range of CA3 spiking fre-
quencies consistent with available experimental data,
the invariance of synaptic information capacity to the
basal release probability is found to hold fairly robustly
over a range of input distributions [maximum burst

frequency (fmax) Z 40Hz; data not shown]. Thus, we
propose that physiologically realistic STP works to
counteract degradation of presynaptic signals at syn-
apses with small release probabilities, and enables
CA3-CA1 synapses to maintain stable information rates
in the face of necessary heterogeneity in the basal pv,
arising from long-term changes associated with learning

Figure 3. Information transmission properties in an ensemble of facilitating CA3-CA1 synapses. A, top, Dependence of information
rate estimates (rescaled values) on the basal probability of vesicle release (p0

v ) for synapses with physiological facilitation strength
(green) and non-facilitating synapses (black) over a realistic range of input/model parameters (for details, see Materials and
Methods). Every point represents a distinct parameter combination, and continuous lines connect the medians (one per value of p0

v ).
Bottom, Distribution of rescaled information rates in a representative population of static (black) and facilitating (green) synapses
with variable per-vesicle basal release probability (p0

v ; n=1000 synapses, randomly sampled from 0.05 � P0
s � 0:6 and 1 � Nmax �

15; input rate and noise rate were also randomly set for each synapse). B, Estimated time-averaged information transfer rate as a
function of the initial per-vesicle release probability (p0

v ) for synapses with different levels of facilitation (approximately three decades
in the facilitation parameter af). Results shown as mean 6 SEM (20 independent trials) for each choice of af. Nmax = 8; rate of burst
occurrences = noise rate = 0.1 s–1. The non-facilitating static synapse is shown in black. C, Distributions of rescaled information
rates over a realistic range of inputs/model parameters for different magnitudes of the synaptic gain af (0.001–1). Each distribution
is displayed in terms of the medians and 25th –75th percentile (interquartile) ranges (per value of p0

v ).
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or homeostatic plasticity mechanisms on the cellular/net-
work level.
The above analysis reveals significant overall difference

in the profile of information transfer at stochastic synap-
ses in the presence of STF (Fig. 3A). How sensitive are
these effects to its magnitude? Recalling that the dynam-
ics of the release probability in our effective description of
STP (Eq. 3) is essentially controlled by the gain parameter
af, which was adjusted to be compatible with experimen-
tal findings, we ask how the behavior of synapses
changes for weaker or stronger facilitation. Figure 3B
shows an example of the (unscaled) synaptic information
rate (mean6 SEM) as a function of the basal p0

v for a syn-
apse with Nmax = 8 vesicles, across a range of af values
spanning approximately three orders of magnitude
(0.001–1). Figure 3C compares the distributions of the
rescaled information rate (estimated as before over a
broad range of model parameters) for different facilita-
tion strengths. The dispersion of estimates for each p0

v is
represented in terms of the median (solid line) 6 inter-
quartile range (IQR) separately for every af. These results
indicate that the profile of scaled synaptic information
capacity is strongly modulated by changes in af espe-
cially at the smaller p0

v values (.0.1). This is a reflection
of the greater sensitivity of facilitation at smaller basal re-
lease probabilities to changes in af in the STF model (Fig.
1B). In particular, reduction of af below the biological es-
timate (ap

f ) suppresses information transfer for smaller
release probabilities and introduces heterogeneity in the
ensemble behavior, whereas for af Zap

f , the rescaled in-
formation capacity is nearly independent of the basal
synaptic failure rate.

Short-term release dynamics regulates the capacity-
cost trade-off at probabilistic synapses
In the previous section, we showed that STF, in general,

enables probabilistic synapses to signal the occurrence
and length of brief high-frequency spike discharges more
reliably. What is the theoretical limit on synaptic informa-
tion capacity achievable at individual facilitating synap-
ses, when transmitter release is governed by the STP
model analyzed here (Fig. 1A)? For every combination of
stimulus rate (rs), noise (rn), and RRP size (Nmax), we esti-
mated the maximum rate of synaptic information transfer
attainable when af and p0

v are allowed to vary, and we ex-
amined how well biological synapses (corresponding to
af = ap

f ) compare against this upper bound on Rinfo (de-
noted as Rp

info). Figure 4A displays the distributions of the
normalized channel capacity (Rinfo/Rp

info) for different
choices of af (different colors); for every p0

v , the distribu-
tion over a range of input parameters and RRP sizes is
represented in terms of the median and IQR. Our results
show that biological synapses (af � ap

f ) uniformly reach
high, near-optimal, information rates under physiological
conditions over approximately four orders of magnitude
of the basal per-vesicle release probability examined here
(the median of normalized estimates for each p0

v exceeds
90% over the full range of p0

v values considered). By con-
trast, probabilistic synapses with weaker facilitation (by a
factor of 10 relative to the physiological level), or no

facilitation altogether, are much less effective at convey-
ing information about presynaptic spiking activity, and the
fidelity of information transfer at these synapses is mark-
edly suppressed for p0

v . 0.1 (Fig. 4A).
Previous studies have emphasized the relevance of

energetic constraints for a better understanding of neuro-
biological design on diverse scales (Laughlin, 2001;
Laughlin and Sejnowski, 2003); examples from sensory
systems, in particular, suggest that synaptic function may
be significantly influenced by energy (resource) limitations
(Laughlin et al., 1998; Harris et al., 2015). To evaluate the
potential role of energy constraints in shaping synaptic in-
formation processing in the hippocampus, we revisit the
example in Figure 3B, and quantify the synaptic resource
use vis-à-vis information transfer at individual facilitating
synapses. Figure 4B shows the dependence of the aver-
age vesicular release rate and the energy efficiency of in-
formation transduction (;average number of vesicles
needed to transmit a bit), respectively, on the basal pv for
different levels of synaptic facilitation (different colors) at a
canonical CA3 synapse (Nmax = 8). In general, energy use
scales up with the basal probability of release (p0

v ) and
with the strength of synaptic facilitation (af), as expected
(Fig. 4B, left). Notably, though, an increase in synaptic in-
formation transfer with stronger facilitation is accompa-
nied by reduction in the synaptic energy efficiency, i.e.,
each released vesicle packs a smaller punch on average
(Fig. 4B, right). The supralinear scaling of energy costs
with synaptic information capacity implied by these ex-
amples suggests that in the context of realistic spiking
patterns, individual CA3 synapses do not operate at op-
timal energy efficiency (according to the local measure
of efficiency examined here), or minimize energy con-
sumption; in fact, synapses lacking STP (Fig. 4B, black
curves) require fewer releases per unit of information
transmitted, albeit at significantly reduced overall infor-
mation capacity, relative to dynamic synapses.
Do energy constraints, then, play no significant role in

shaping the vesicle code at probabilistic hippocampal
synapses? Examining the regime of stronger facilitation
(af Zap

f ) in the above example provides a potential clue
in this regard. Figures 3B, 4B together indicate that a ca-
nonical synapse operating in the physiological range (af

� ap
f ) transmits information at near-optimal capacity,

and further increase in af (by one order of magnitude,
from 0.03 to 0.3 or 1) provides little additional benefit;
the increased facilitation is, however, accompanied by a
disproportionately larger increase in energy costs of syn-
aptic transmission, which may be seen by comparing the
green with the red/brown curves separately in Figures
3B, 4B. This specific example suggests that biological
CA3 synapses may be poised to operate near the upper
bound on information transfer rate while energy usage is
economized to the extent that performance is not
compromised.
To elaborate on the nature and generality of this en-

ergy-function trade-off, we compared biological STP syn-
apses (af ; ap

f ) with synapses exhibiting weaker or
stronger facilitation over approximately three decades of
magnitude, estimating the relative change in the mean
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signaling capacity and mean energy cost per synapse
when af is scaled up or down by a factor of;10 relative to
its physiological reference value (ap

f ). Figure 4C, top,
shows the distribution of relative changes over a range of
model parameters (see Materials and Methods) for the
specific example of p0

v = 0.03, and each cluster of data
points represents a different comparison (ap

f ! af). This
aggregated data from our simulations indicates that

stronger synaptic facilitation relative to the biological set-
point provides little improvement in information transfer
rates, but a relatively larger increase in energy expendi-
ture; reducing facilitation, on the other hand, is associated
with a sharp reduction in synaptic information capacity.
The overall differences evident in Figure 4C, top, are
found to be quite general and hold across a broad range
of p0

v values examined (Fig. 4C, bottom).

Figure 4. Optimal signaling and synaptic energy efficiency with physiologically realistic STP dynamics. A, Distributions of normal-
ized synaptic information rate (fraction of maximum capacity) over a biologically relevant range of parameters for different choices
of the facilitation parameter af (different colors). Each distribution is displayed in terms of the data medians and IQRs over a broad
range of p0

v values. Realistic synapses (ap
f � 0.03) transmit at close to maximum capacity overall (median values. 90% across all

p0
v ). B, Example profiles of the time-averaged energy usage (left) and the specific cost of information transfer, i.e., inverse of the effi-

ciency (right) for synapses with different facilitation strengths (all other parameter settings are same as in the example in Fig. 3B).
Data shown as mean 6 SEM (20 independent simulations). C, top, Box-plots of relative changes (%) in synaptic information ca-
pacity and energy requirement when the synaptic gain is scaled either up or down by a factor of ;10 relative to its physiological
level (ap

f ) for a synapse with basal p0
v = 0.03. Each distribution covers a biologically relevant range of input parameters and maximum

RRP sizes (n=180 points; for details, see Materials and Methods). Bottom, Summary statistics of relative changes (%) in synaptic
information rate (left) and average frequency of release events (right) when af is scaled up (orange) or down (blue) by 10�, for a wide
range of p0

v values. D, Estimates of normalized information capacity (top) and normalized energy expenditure (bottom) as functions
of the synaptic facilitation strength af which spans approximately three orders of magnitude (also shown, for reference, are results
for the static synapse, corresponding to af = 0). Each box summarizes the results over a biologically relevant range of input/model
parameters, and lines connect the median values for each choice of af; profiles for different choices of the basal p0

v are represented
by different colors. Vertical dashed lines highlight the biological operating point (ap

f � 0.03).
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The general trends suggested by Figure 4C are brought
out clearly in Figure 4D, which shows how the normalized
synaptic information capacity (Rinfo/Rp

info) and normalized
average frequency of release events (Rves/Rp

ves) vary with
the strength of synaptic facilitation (af). Each box (median
6 IQR) summarizes the distribution of values for a particu-
lar p0

v , and the different colored lines connect the median
values corresponding to each choice of p0

v . Simulations of
our STP model suggest that synaptic information capacity
is in general an increasing function of the strength of facili-
tation (af), but saturates around the physiological level
(af � ap

f ; Fig. 4D, top). Comparing it to Figure 4D, bottom,
further increase in synaptic gain comes at a larger energy
cost, bringing diminishing returns. By contrast, reducing
facilitation below the biological operating point (af � ap

f )
by approximately one order of magnitude compromises
synaptic channel capacity considerably, and the suppres-
sion of information transfer rates is particularly marked at
smaller vesicular release probabilities (p0

v ). In sum, our re-
sults quantitatively demonstrate a novel form of local opti-
mization embodied by STP of vesicular release at
probabilistic CA3-CA1 synapses, and suggest that, under
physiological conditions, individual synapses do not con-
sume more resources than necessary while supporting
highest-possible fidelity of information transmission over
a wide range of presynaptic strengths.

Discussion
Does an evolutionary drive toward energy-efficient sig-

naling provide a relevant design principle to account for
the salient properties of probabilistic transmitter release
at individual hippocampal synapses? Previous investiga-
tions have focused on understanding energetic optimality
at sensory pathway synapses (Laughlin et al., 1998; Harris
et al., 2015, 2019; James et al., 2019). Given the diversity
in synaptic morphology and tight structure-function rela-
tionships in synapses observed across brain areas, ques-
tions on synaptic design must be specific and addressed
in a local context. In line with this, we examined STP at a
cortical facilitating synapse, specifically the hippocampal
Schaffer collateral-CA1 connection. Our synaptic model
invoked detailed characterizing properties of single CA3
presynaptic terminals such as RRP size, release probabil-
ity per vesicle and facilitation profiles derived from experi-
ments and evaluated their impact on gating of realistic
activity patterns. This allowed us to obtain biologically rel-
evant insights into synapse-specific transmission proper-
ties in the hippocampus. Our results potentially suggest a
normative account of biologically observed synaptic facil-
itation in terms of a local trade-off between two funda-
mental design constraints, vesicular information coding
and energy utilization.
We estimated the capacity of a dynamic synapse,

viewed as an unreliable channel, to relay behaviorally rele-
vant temporal signals coded in presynaptic spiking activ-
ity via discrete vesicular release events. Our quantitative
analysis shows how STF significantly improves the fidelity
of synaptic information transduction. Remarkably, our
simulations demonstrate that realistic STP enables vesic-
ular release with widely different basal failure rates (p0

v ) to

convey brief, variable high-frequency spike bursts with
comparable fidelity; notably, this invariance is absent at
static or weakly facilitating synapses, and is also not
found in a phenomenological STP model used previously
(Tsodyks and Markram, 1997; Pfister et al., 2010), high-
lighting the importance of incorporating synapse-specific
experimental data to arrive at physiologically relevant
findings about synaptic function. Further, physiological in-
formation rates over a broad range of release probabilities
closely approach the predicted maximum capacity of a
facilitating synapse of this type, i.e., within the limits im-
posed by the overall form of the model of presynaptic dy-
namics analyzed here. We estimated synaptic energy
expenditure in terms of the average quantal release rate;
this definition has been used previously to address energy
efficiency of information processing in other neural con-
texts at both the synaptic and cellular levels (Levy and
Baxter, 2002; Goldman, 2004; Harris et al., 2012; James
et al., 2019). The metabolic cost of transmission at chemi-
cal synapses is primarily accounted for by pumps that
reset the postsynaptic membrane potential and calcium
transients to their resting values; additional but relatively
smaller demands are made by reuptake of released gluta-
mate from the synaptic cleft via the action of surrounding
astrocytic glutamate transporters, and by the endocytic
machinery involved in transmitter vesicle recycling and re-
placement at the presynaptic terminal (Harris et al., 2012).
All of these energy-requiring processes scale up in direct
proportion to the number of vesicular releases occurring,
hence, the vesicle use, i.e., mean rate of release events,
provides an accurate, equivalent measure of the net syn-
aptic energy cost.
Altogether, our results suggest a nuanced form of opti-

mality that is at odds with maximization of synaptic effi-
ciency (average number of quanta released per bit
transmitted). Instead, our findings are consistent with the
view that realistic STP synapses are poised, to within one
order of magnitude in the gain parameter af, to maintain
near-maximal information transmission rates while penal-
izing excessive energy use (Fig. 5). Thus, we present evi-
dence that energetic costs may also be important for
regulating the properties of short-lived facilitation at low-
release probability synapses. Interestingly, an analogous
form of optimality was previously proposed in the context
of the mammalian visual system (Vincent and Baddeley,
2003). Here, it was shown that synaptic energy restric-
tions can significantly shape early stimulus representa-
tions in the retina, and that the observed center-surround
neural receptive fields provide the best balance between
efficiency and performance, enabling near-maximal infor-
mation transmission with largest possible synaptic energy
savings. It remains to be seen, to what extent our findings
are relevant to some of the other facilitating synapses in
the mammalian central nervous system (Atluri and
Regehr, 1996; Henze et al., 2002).
A key insight from our model is that synaptic informa-

tion rates with physiological STP are nearly invariant to
differences in the basal fusion probability per vesicle (p0

v )
that are present among individual CA3-CA1 synapses.
This synaptic diversity, on the one hand, may represent
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the intrinsic, across-synapse differences in the ultrastruc-
tural details regulating transmitter release (Atwood and
Karunanithi, 2002). On the other hand, a heterogeneous
distribution of release probabilities may be a reflection of
synaptically encoded memories, which are thought to be
stored as distributed patterns of synaptic strength changes
via activity-dependent long-term plasticity (McNaughton
and Morris, 1987; Moser et al., 1998). Experimental evi-
dence, besides theoretical considerations, suggests that
both Hebbian and heterosynaptic plasticity in the hippo-
campus can have a presynaptic as well as postsynaptic
locus of expression (Stevens and Wang, 1994; Enoki et al.,
2009; Bliss and Collingridge, 2013; Letellier et al., 2016;
Costa et al., 2017), which may, in part, be instantiated as
persistent changes in p0

v . Additionally, variation in presyn-
aptic strengths may arise as a consequence of homeo-
static (Branco et al., 2008; Zhao et al., 2011; Davis and
Müller, 2015; Soares et al., 2017) or neuromodulatory (Qian
and Saggau, 1997; Fernández de Sevilla and Buño, 2003)
regulation of presynaptic calcium influx. In summary, sev-
eral ongoing processes likely underlie the observed disper-
sion in CA3 presynaptic efficacies. Our analysis suggests
that realistic STP dynamics operates at a set-point that
compensates for this synaptic heterogeneity to support
stable information rates. This implies a possible mecha-
nism to insulate the dynamic synaptic interactions shaping
short-timescale information processing of behaviorally
evoked activity in the hippocampal circuit from the slower,
longer-term adaptive changes that may be happening at
these synapses because of learning or homeostatic adjust-
ments. However, STP does not preclude other functional

effects of enduring changes in synaptic efficacy, which
can, e.g., continue to crucially affect retrieval of stored net-
work patterns through associative recall, promote replay of
activity sequences generated during navigational tasks
that contributes to spatial memory consolidation, or govern
the homeostatic regulation of neuronal activity levels.
While the focus of our work is the presynaptic terminal,
the long-term up or down-regulation of transmission at
Schaffer collaterals can, in fact, occur postsynaptically as
well, as shown by numerous experimental studies
(Malenka and Bear, 2004); the postsynaptic changes, not
explicitly considered here, would not directly impact our
analysis of information capacity of presynaptic transmitter
release. Overall, our findings add to the functional reper-
toire of short-term synaptic dynamics, which complements
longer-lasting plasticity mechanisms to significantly en-
hance the functional complexity of biological synapses.
The use of synaptic resources versus the information

transmitted is constrained by the synaptic gain parameter
af, which essentially controls the steepness of the facilita-
tion profile for low release probabilities (Fig. 1B, left) and
decides the operating point of the ensemble of CA3 syn-
apses (Figs. 4D, 5). af may be tuned over evolutionary
timescales to some suitable optimum determined by the
relative influence of different, competing selective pres-
sures. This aligns with recent understanding of the evolu-
tionary diversification of the synaptic proteome that may
have contributed to functional specializations in brain
areas and emergent behavior (Emes and Grant, 2012). In
the context of the biophysical machinery governing trans-
mitter release, what does the parameter af correspond
to? The basal probability of spike-evoked release is gov-
erned by the synchronous activation of the fast calcium
sensor, Synaptotagmin-1 (Syt1; Geppert et al., 1994;
Fernández-Chacón et al., 2001). On the other hand, recent
findings have identified a separate calcium sensor, Syt7,
carrying a high-affinity binding site for Ca21 but with rela-
tively slower kinetics (Bacaj et al., 2013), which was shown
to be essential for progressive synaptic facilitation at CA3-
CA1 terminals during persistent stimulation but not for the
initial (basal) synaptic response (Jackman et al., 2016).
Efficacy of its interaction with the protein machinery media-
ting vesicle fusion, or the kinetic parameters governing its
sensitivity to calcium, could thus provide a possible bio-
physical basis to interpret the parameter af. Alternately, ki-
netic parameters regulating calcium-induced calcium
release from intracellular stores which has been implicated
in enabling STF at hippocampal synapses (Emptage et al.,
2001; Zhang et al., 2009), or developmental parameters
regulating the relative arrangement of calcium channels
and the release machinery (Nadkarni et al., 2012; Vyleta
and Jonas, 2014), may determine the magnitude of af.
Biophysically detailed computational models of presynap-
tic calcium dynamics (Nadkarni et al., 2010; Hamid et al.,
2019), outside the scope of the present study, can poten-
tially shed more light on the molecular underpinnings of
STP approximated by the reduced description in Equation
3 and help suggest mechanistic interpretations of af.
Although our study specifically examines the role of

local constraints in shaping synaptic release properties, it

Figure 5. Activity-dependent STF regulates the cost-versus-ca-
pacity trade-off at unreliable CA3-CA1 synapses. The feasible
“configurational space” of an STP synapse (schematically rep-
resented by the gray curve) is parametrized by the strength of
synaptic gain, which constrains the relation between informa-
tion transmitted across the synapse and the corresponding
usage of synaptic resources. Our results suggest that biological
synapses localize to the optimal set-point indicated in green.
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is expected that synapse design also carries imprints of
selection pressures at higher levels of neural organization.
A number of previous studies have elaborated on the
functional implications of synaptic STP for collective dy-
namics on neuronal networks (Levina et al., 2007;
Mongillo et al., 2008; Mejias and Torres, 2009). It is thus
plausible that properties of individual synapses reflect
such system-level design considerations as well. The
present work, in particular, does not account for the typi-
cal RRP size of CA3 synapses, which is experimentally
found to be close to ;10 vesicles per bouton (Dobrunz
and Stevens, 1997; Schikorski and Stevens, 1997). Our
analysis, in fact, indicates that average synaptic informa-
tion capacity is a monotonically increasing function of the
size of the RRP; thus, if information transfer is to be im-
proved, larger synapses ought be favored, which runs
somewhat counter to the limit on synapse size reported
by experiments. We surmise that an optimal RRP size
might represent a compromise between reliability of sig-
naling at individual synapses and information processing
capacity on the network level. Given strong constraints on
neural volume (or equivalently, on total availability of syn-
aptic resources) as proposed previously (Laughlin and
Sejnowski, 2003; Varshney et al., 2006), cortical connec-
tivity might trade off high-fidelity synaptic transmission
(proportional to the RRP size) for increased network com-
plexity from a higher density of smaller, albeit less reliable,
synapses (based on scaling arguments; Newman, 1988;
Chklovskii et al., 2002). Detailed analysis of network infor-
mation processing under physical constraints will be
needed to evaluate the role of such an interaction across
scales in shaping the design of fundamental processing
elements in the brain.
To conclude, we propose that quantitative properties of

probabilistic vesicular release at individual hippocampal
synapses can be meaningfully interpreted in terms of a
local cost-versus-capacity trade-off. The present analysis
for a synapse in a higher brain circuit crucial to learning
resonates with a growing body of work on the generality
of information processing principles in understanding di-
verse cellular processes (Tka�cik and Bialek, 2016). Our re-
sults suggest that the design of single synapses is
primarily adapted to ensure optimal performance for di-
verse synaptic strengths, and this is achieved in an ener-
getically cost-effective manner.
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