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A nonlinear updating algorithm 
captures suboptimal inference in 
the presence of signal-dependent 
noise
Seth W. Egger   1,2 & Mehrdad Jazayeri   1,2

Bayesian models have advanced the idea that humans combine prior beliefs and sensory observations 
to optimize behavior. How the brain implements Bayes-optimal inference, however, remains poorly 
understood. Simple behavioral tasks suggest that the brain can flexibly represent probability 
distributions. An alternative view is that the brain relies on simple algorithms that can implement 
Bayes-optimal behavior only when the computational demands are low. To distinguish between these 
alternatives, we devised a task in which Bayes-optimal performance could not be matched by simple 
algorithms. We asked subjects to estimate and reproduce a time interval by combining prior information 
with one or two sequential measurements. In the domain of time, measurement noise increases with 
duration. This property takes the integration of multiple measurements beyond the reach of simple 
algorithms. We found that subjects were able to update their estimates using the second measurement 
but their performance was suboptimal, suggesting that they were unable to update full probability 
distributions. Instead, subjects’ behavior was consistent with an algorithm that predicts upcoming 
sensory signals, and applies a nonlinear function to errors in prediction to update estimates. These 
results indicate that the inference strategies employed by humans may deviate from Bayes-optimal 
integration when the computational demands are high.

Sensorimotor control depends on accurate estimation of internal state variables1–5. Numerous experiments have 
used Bayesian estimation theory to demonstrate that humans estimate internal states by integrating multiple 
sources of information including prior beliefs and sensory cues from various modalities6–16. Bayesian estimation 
is typically formulated in terms of three components: prior distributions representing a priori beliefs about state 
variables, likelihood functions derived from noisy sensory measurements, and cost functions that characterize 
reward contingencies17. In this formulation, the likelihood function and prior distribution are combined to com-
pute a posterior distribution and the cost function is used to extract an estimate that maximizes expected reward. 
This formulation is the basis of most psychophysical studies of Bayesian integration9–15,18–20.

Implicit in this formulation is the assumption that the brain has access to priors, likelihoods, and cost func-
tions. Access to these quantities is appealing as it could support rapid and optimal state estimation without the 
need to learn new policies for novel behavioral contexts21,22. However, in most experiments, Bayes-optimal behav-
ior can also be achieved by simpler algorithms that do not depend on direct access to likelihoods, priors and cost 
functions21–23. For example, optimal cue combination in the presence of Gaussian noise may be implemented by a 
weighted sum of measurements6. Similarly, integration of noisy evidence with prior beliefs may be implemented 
by a suitable functional mapping between measurements and estimates24,25. Finally, online estimation of a varia-
ble from sequential measurements that are subject to Gaussian noise can be achieved by a Kalman filter that only 
keeps track of the mean and variance26 without representing and updating the full posterior distribution.

In contrast to simple laboratory tasks, optimal inference in natural settings is often intractable and involves 
approximations that may deviate from optimality27. Therefore, it is critical to go beyond statements of optimality 
and suboptimality, and assess the inference algorithms humans use during sensorimotor and cognitive tasks28,29. 
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Further, as articulated by Marr30, characterization of the underlying algorithms could establish a bridge between 
behaviorally relevant computations and neurobiological mechanisms.

We devised an experiment in which the computational demands for optimal Bayesian estimation were incom-
patible with simple algorithmic solutions. Subjects had to reproduce an interval by integrating their prior belief 
with one or two measurements of the interval. Several previous experiments have reported a decrease in percep-
tual or motor variability when subjects are given multiple intervals to measure31–40, but the underlying algorithms 
are not characterized. An important constraint for developing a suitable algorithmic model is that noise associ-
ated with measurement and production of time intervals scales with duration41. A consequence of this so-called 
scalar property of noise is that simple algorithms that only update certain parameters of the posterior (e.g., mean 
and/or variance) cannot emulate Bayes-optimal behavior. Therefore, optimal behavior in this paradigm would 
provide strong evidence that the underlying inference algorithm involves updating probability distributions. 
Conversely, suboptimal behavior would suggest that subjects rely on a simpler algorithm. We found that when 
subjects made two measurements their performance was suboptimal. Furthermore, comparison of behavior with 
various models indicated that subjects relied on an inference algorithm that used measurements to update point 
estimates using point nonlinearities.

Results
Subjects integrate interval measurements with prior knowledge.  Subjects performed an interval 
reproduction task consisting of two randomly interleaved trial types (Fig. 1A,B). In “1-2-Go” trials, two flashes 
(S1 followed by S2) demarcated a sample interval (ts). Subjects had to reproduce ts immediately after S2. The 
interval between the onset of S2 and when the keyboard was pressed was designated as the production interval 
(tp). In “1-2-3-Go” trials, ts was presented twice, demarcated once by S1 and S2 and once by S2 and S3, providing 
the opportunity to make two measurements (Fig. 1B). Similar to 1-2-Go, subjects had to match tp (the interval 
between S3 and keyboard press) to ts. Across trials, ts was drawn from a discrete uniform distribution ranging 
between 600 and 1000 ms (Fig. 1C). Subjects received two forms of trial-by-trial feedback based on the magnitude 
and sign of the error. First, a feedback stimulus was presented whose location relative to the warning stimulus 
reflected the magnitude and sign of the error (Fig. 1A,B; see Methods). Second, if the error exceeded a threshold 
window (Fig. 1D), stimuli remained white and a tone denoting incorrect response was presented. Otherwise, the 
stimuli turned green and a tone denoting correct was presented. The threshold window for correct performance 
was proportionally larger for longer ts to accommodate the scalar variability of timing due to signal-dependent 
noise34,42–46. The threshold was adjusted adaptively and on a trial-by-trial basis according to performance (see 
Methods).

Subjects’ timing behavior exhibited three characteristic features (Fig. 2). First, tp increased monotonically with 
ts. Second, tp was systematically biased toward the mean of the prior, as evident from the tendency of responses 
to deviate from ts (diagonal) and gravitate toward the mean ts. As proposed previously24,47–49, this so-called 

Figure 1.  The 1-2-Go and 1-2-3-Go interval reproduction task. (A,B) Task design. Each trial began with the 
appearance of a fixation spot (Fix on). The color of the fixation spot informed the subject of the trial type: 
blue for 1-2-Go, and red for 1-2-3-Go. After a random delay, a warning stimulus (large white circle) appeared. 
Additionally, two or three small white rectangles were presented above the fixation spot. The number of 
rectangles was associated with the number of upcoming flashes. After another random delay, two (S1 and S2 
for 1-2-Go) or three (S1, S2 and S3 for 1-2-3-Go) white annulae were flashed for 100 ms in a sequence around 
the fixation spot. Consecutive flashes were separated by the duration of the sample interval (ts). With the 
disappearance of each flash, one of the small rectangles also disappeared (rightmost first and leftmost last). 
The white rectangles were provided to help subjects keep track of events during the trial. Subjects had to press 
a button after the last flash to produce an interval (tp) that matched ts. Immediately after button press, subjects 
received feedback. The feedback was a small circle that was presented to the left or right of the warning stimulus 
depending on whether tp was larger or smaller than ts, respectively. The distance of the feedback circle to the 
center of the warning stimulus was proportional to the magnitude of the error (tp − ts). (C) Experimental 
distribution of sample intervals. (D) Feedback. Subjects received positive feedback if production times fell 
within the green region. The width of the positive feedback window was scaled with ts.
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regression to the mean indicated that subjects relied on their knowledge of the prior distribution of ts. Third, 
performance was better in 1-2-3-Go condition in which subjects made two measurements, as evidenced by a 
lower root-mean-square error (RMSE) in 1-2-3-Go compared to 1-2-Go condition (Fig. 2C; permutation test; 
p-value < 0.01 for all subjects; see Supplementary Table 1 for a summary of RMSE data by subject and condition). 
This observation indicates that subjects combined the two measurements to improve their estimates by decreas-
ing variability and systematic biases, corroborating reports from other behavioral paradigms31–40,50,51. Combined 
with the systematic bias toward the mean of ts, these results indicated that subjects integrated prior information 
with one or two measurements to improve their performance.

A Bayesian model of behavior.  Building on previous work11,18,22,52, we asked whether subjects’ behavior 
could be accounted for by a Bayesian observer model based on the Bayes-Least Squares (BLS) estimator. For the 
1-2-Go trials, the observer model (1) makes a noisy measurement of ts, which we denote by tm1

, (2) combines the 
likelihood function associated with tm1

, p t t( )m s1
| , with the prior distribution of ts, p(ts), to compute the posterior, 

|p t t( )s m1
, and (3) uses the mean of the posterior as the optimal estimate, te1

. We modeled |p t t( )m s1
 as a Gaussian 

distribution centered at ts with standard deviation, σm, proportional to ts with constant of proportionality, wm; i.e., 
σm = wmts (Fig. 3A, left box). We assumed that the production process was also perturbed by noise and modeled 
tp as a sample from a Gaussian distribution centered at te1

 with standard deviation, σp, proportional to te1
 with 

constant of proportionality, wp; i.e., σ = w tp p e1
 (Fig. 3A, right box). Note that the entire operation of the BLS esti-

mator can be described in terms of a deterministic mapping of tm1
 to te1

 using a nonlinear function, which we 
denote as ( )f tBLS m1 1

 (Fig. 3B)24.
For the 1-2-3-Go trials, the observer model (1) makes two measurements, tm1

 and tm2
, (2) combines the like-

lihood, |p t t t( , )m m s1 2
, with the prior, p(ts), to compute the posterior, |p t t t( , )s m m1 2

, and (3) uses the mean of the 
posterior to derive an optimal estimate, te2

. When the measurements are conditionally independent, the posterior 
is proportional to | |p t t p t t p t( ) ( ) ( )m s m s s2 1

 which can be rewritten as p t t p t t( ) ( )m s s m2 1
| | . This revised formulation can 

be interpreted in terms of an updating strategy in which the observer uses the posterior after one measurement, 
|p t t( )s m1

, as the prior for the second measurement (Fig. 3C; see Methods). In these trials, the mapping from tm1
 

and tm2
 to te2

 can be described in terms of a two-dimensional nonlinear function, denoted by f t t( , )BLS m m2 1 2
 

(Fig. 3D). Note that the iso-estimate contours of f t t( , )BLS m m2 1 2
 are nonlinear and convex (Fig. 3D, red). The 

nonlinearity indicates that the effect of tm1
 and tm2

 on te2
 is non-separable, and the convexity indicates that te2

 is 
more strongly influenced by the larger of the two measurements. These features are direct consequences of scalar 
noise and are not present when measurements are perturbed by Gaussian noise (see Appendix). Note that the BLS 
model for the 1-2-3-Go task reduces RMSE by reducing both prior-induced biases and variability, as previous 
studies have reported31–40,50,51.

We fit the model to each subject’s data assuming that responses in both 1-2-Go and 1-2-3-Go conditions were 
associated with the same wm and wp (Methods). The model was augmented in two ways to ensure that estimates 
of wm and wp were accurate. First, we included an offset parameter to absorb interval-independent biases (e.g., 
consistently pressing the button too early or too late). Second, trials in which tp grossly deviated from ts were 
designated as “lapse” trials (see Methods).

Model fits captured subjects’ behavior for both conditions as shown by a few representative subjects (Figs 2A,B, 
4A; see Supplementary Fig. 1 for fits to all the subjects). Following previous work24, we evaluated model fits using 
two statistics, an overall bias, BIAS, and an overall variability, VAR (see Methods). As shown in Fig. 4B, the 
model broadly captured the bias and variance for all subjects in both 1-2-Go and 1-2-3-Go conditions. We did not 

Figure 2.  Performance in the interval reproduction task. (A) Production interval (tp) as a function of sample 
interval (ts) for a low sensitivity subject (GB). Filled circles and error bars show the mean and standard deviation 
of tp for each ts in the 1-2-Go (blue) and 1-2-3-Go (red) conditions. The dotted unity line represents perfect 
performance and the colored lines show the expected tp from a Bayes Least-Squares (BLS) model fit to the data. 
Inset: root-mean-square error (RMSE) in the 1-2-Go (blue) and 1-2-3-Go (red) conditions differed significantly 
(asterisk, p-value < 0.01; permutation test). (B) Same as (A) for a high sensitivity subject (LB). (C) The 
histogram of changes in RMSE across conditions for all subjects. See also Supplementary Table 1.
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find any systematic difference in VAR between the model and data (see Supplementary Fig. 2). In contrast, the 
observed BIAS was significantly larger than predicted by the model fits in the 1-2-3-Go condition (Fig. 4B, inset; 
two tailed t-test, t(8) = 4.6982, p-value = 0.0015), but not in the 1-2-Go condition (two tailed t-test, 
t(8) = −0.3236, p-value = 0.7546).

We quantified this observation across subjects by normalizing each subject’s RMSE in the 1-2-Go and 1-2-
3-Go conditions to the RMSE expected from the BLS model in the 1-2-3-Go condition (Fig. 4C). We found 
that the observed RMSE in the 1-2-3-Go condition was significantly larger than expected (two tailed t-test, 
t(8) = 3.5484, p-value = 0.007). Further, the drop in observed RMSE in the 1-2-3-Go was significantly less than 
expected by the BLS model (see Supplementary Fig. 3). These analyses indicate that subjects were able to integrate 
the two measurements but failed to optimally update the posterior by the likelihood information associated with 
the second measurement.

Our original BLS model assumed that the noise statistics for tm1
 and tm2

 were identical. However, for two rea-
sons, the noise statistics between the two measurements may differ. First, the internal representation of the first 
measurement may be subject to additional noise since it has to be held longer in working memory. Second, after 
the first measurement is made, subjects may be able to benefit from anticipatory and attentional mechanisms to 
make a more accurate second measurement. Both possibilities can be straightforwardly modeled by a modified 
BLS model that accommodates different levels of noise for the two measurements. Therefore, we also formulated 
an optimal estimator, BLSmem, in which the two measurements were associated with different noise statistics (see 
Methods, Supplementary Fig. 4). Despite having additional parameters, BLSmem failed to capture the BIAS 
observed from data in 1-2-3-Go trials (two-tailed t-test, t(8) = 4.9690, p-value = 0.0011; Supplementary Fig. 4).

Figure 3.  BLS model of interval integration. (A) BLS model for 1-2-Go trials. The left panel illustrates the 
measurement process. The measured interval, tm1

, is perturbed by zero-mean Gaussian noise whose standard 
deviation is proportional to the sample interval, ts, with constant of proportionality wm (σm = wmts). The middle 
panel illustrates the estimation process. The model multiplies the likelihood function associated with tm1

 
(middle panel, green) with the prior (bottom), and uses the mean of the posterior (top) to derive an interval 
estimate (te1

, black vertical line on the posterior). The right panel illustrates the production process. The 
produced interval, tp, is perturbed by zero-mean Gaussian noise with standard deviation proportional to te1

, 
with constant of proportionality wp ( w tp p e1

σ = ). (B) The effective mapping function ( fBLS1
, black curve) from 

the first measurement, tm1
, to the optimal estimate, te1

. The dashed line indicates unity. (C) BLS model for 1-2-3-
Go trials. The model uses the posterior after the first measurement, p t t( )s m1

| , as the prior and combines it with 
the likelihood of the second measurement (tm2

, orange) to compute an updated posterior, |p t t t( , )s m m1 2
. The 

mean of the updated posterior is taken as the interval estimate (te2
). (D) The effective mapping function ( fBLS2

, 
grayscale) from each combination of measurements, tm1

 and tm2
, to the optimal the estimate, te2

. Red lines 
indicate combinations of measurements that lead to identical estimates (shown for =te2

 700, 750, 800, 850, and 
900 ms).
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An algorithmic view of Bayesian integration.  The success of the BLS model in capturing behavior in 
the 1-2-Go condition24,47,49 and its failure in the 1-2-3-Go condition suggests that subjects were unable to update 
the posterior by the second measurement. We examined a number of simple inference algorithms that could 
account for this limitation. One of the simplest algorithms proposed for integrating sequential measurements 
is the Kalman filter. The Kalman filter only updates the mean and variance of the posterior26. This strategy is 
optimal when measurement noise is Gaussian because a Gaussian distribution is fully determined by its mean 
and variance. More generally, when integrating the likelihood function leaves the parametric form of the poste-
rior distribution unchanged, a simple inference algorithm that updates those parameters can implement optimal 
integration.

First, we asked whether there exists a similarly simple and optimal updating algorithm when the noise is 
signal-dependent (i.e., scalar noise). For the posterior to have the same parametric form after one and two meas-
urements, it is necessary that the product of two likelihood functions have the same parametric form as a single 
likelihood function. We tested this property analytically and verified that the parametric form of the likelihood 
function associated with scalar noise was not invariant under multiplication (see Appendix). As a result, the 
updating algorithm requires adjustment within each trial depending on tm1

 (Supplementary Fig. 5). In other 
words, any inference algorithm that only updates certain statistics of the posterior (e.g., mean and variance) is 
expected to behave suboptimally when multiple time intervals have to be integrated. Therefore, we hypothesized 
that subjects might have used a simple updating algorithm analogous to the Kalman filter to integrate multiple 
measurements.

A linear-nonlinear estimator (LNE) model for approximate Bayesian inference.  The first algo-
rithm we tested was one in which the observer combines the last estimate −tn 1, with the current measurement, tmn

, 
using a linear updating strategy. If we denote the corresponding weights by 1−kn and kn and set kn = 1/n, this 
algorithm tracks the running average of the measurements, tn (k1 and k2 are 1 and 0.5, respectively). This and 
similar models with linear updating schemes32,53–60 would certainly fail to account for the observed nonlinearities 
in subjects’ behavior (Supplementary Fig. 6). Therefore, we constructed a linear-nonlinear estimator (LNE) that 
augmented the linear updating by a point nonlinearity that could account for the observed prior dependent biases 
in tp (Fig. 5A). The nonlinear function, f t( )BLS n1

, was chosen to match the BLS estimator for a single measurement 
(n = 1), which is determined by wm.

Simulation of LNE verified that it could indeed integrate multiple measurements and exhibit prior-dependent 
biases (see Supplementary Fig. 7). However, the behavior of LNE was qualitatively different from BLS. The con-
trast between the two models was evident from a comparison of the relationship between measurements and 
estimates. Unlike BLS (Fig. 3D), estimates derived from LNE are linear with respect to tm1

 and tm2
, a feature that 

can be visualized by the linear iso-estimate contours of the LNE model (Fig. 5B).
We fitted LNE to each subject independently and asked how well it accounted for the observed statistics. The 

LNE model broadly captured the observed regression to the mean (Fig. 5C,D; see Supplementary Fig. 8 for fits to 
all subjects), but had a qualitative failure: subject’s behavior exhibited significantly more BIAS in 1-2-Go condition 
(Fig. 5D, inset; two tailed t-test, t(8) = 4.9304, p-value = 0.001) and significantly less BIAS in 1-2-3-Go condition 

Figure 4.  BLS model fits to data. (A) Behavior of two subjects and the corresponding BLS model fits with the 
same format as in Fig. 2A,B. (B) BIAS (circles) and VAR (squares) of each subject (abscissa) and the 
corresponding values computed from simulations of the fitted BLS model (ordinate). Red and blue points 
correspond to 1-2-Go and 1-2-3-Go, respectively. The dotted line plots unity. Data points corresponding to 
subjects SM and CV are marked by light green and light blue, respectively. Inset: difference between the BIAS 
observed from data and that expected by the BLS model fit for 1-2-Go (blue) and 1-2-3-Go (red) conditions. (C) 
Comparison of behavioral performance to model predictions. Each line connects the RMSE for 1-2-Go (left) 
and 1-2-3-Go (right) conditions for one subject. To facilitate comparison across subjects, RMSE values for each 
subject were normalized by the RMSE of the BLS model in the 1-2-3-Go condition. The black circles and error 
bars correspond to the mean and standard error of the normalized RMSE across subjects. See also 
Supplementary Figs 1, 2, and 3.
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(Fig. 5D, inset; two tailed t-test, t(8) = −2.3782, p-value = 0.045) than the biases predicted by the model. This 
failure can be readily explained in terms of how LNE functions. Since the static nonlinearity in LNE is the same 
for one and two measurements, the bias LNE generates is the same for the 1-2-Go and 1-2-3-Go conditions and 
improvements in estimation are achieved mainly through a reduction in VAR. Therefore, when we fitted LNE to 
data from both conditions, the model consistently underestimated BIAS for the 1-2-Go condition, and overesti-
mated BIAS for the 1-2-3-Go condition (Fig. 5C, red and blue lines nearly overlap). Further, the LNE model made 
systematic errors predicting subject VAR in 1-2-Go trials (Supplementary Fig. 2).

We further evaluated LNE by asking how it accounted for the observed performance improvement in the 
1-2-3-Go condition compared to the 1-2-Go condition. We normalized each subject’s RMSE from the 1-2-Go 
and 1-2-3-Go conditions to the RMSE expected from the behavior of the fitted LNE model in the 1-2-3-Go 
condition (Fig. 5E). Most subjects surpassed the predictions of the LNE model (horizontal line) for the 1-2-3-Go 

Figure 5.  A linear-nonlinear estimator (LNE) model and its fits to the data. (A) LNE algorithm. LNE derives an 
estimate by applying a nonlinear function, fBLS1

, to the average of the measurements. In the 1-2-Go trials (top), 
the average, t1, is the same as the first measurement, tm1

, and the estimate, te1
, is f t( )BLS 11

. In 1-2-3-Go trials 
(bottom), the average, t2, is updated by the second measurement, tm2

 (t t t0 5[ ]m2 1 2
¯ ¯= . + ), and the estimate, te2

, is 
f t( )BLS 21

. In both conditions, the produced interval, tp, is perturbed by zero-mean Gaussian noise with standard 
deviation proportional to the final estimate (te1

 for 1-2-Go and te2
 for 1-2-3-Go) with the constant of 

proportionality wp, as in the BLS model. (B) The mapping from measurements to estimates (grayscale) for the 
LNE estimator in the 1-2-3-Go trials. Red lines indicate combinations of measurements that lead to identical 
estimates (shown for te2

= 700, 750, 800, 850, and 900 ms). (C) Mean and standard deviation of tp as a function of 
ts for two example subjects (circles and error bars) along with the corresponding fits of the LNE model (lines). 
(D) BIAS (circles) and VAR (squares) of each subject (abscissa) and the corresponding values computed from 
simulations of the fitted LNE model (ordinate). Conventions match Fig. 4B. (E) The RMSE in the 1-2-Go and 
1-2-3-Go conditions relative to the corresponding predictions from the LNE model (conventions as in Fig. 4C). 
See also Supplementary Figs 2, 3, 7, and 8.
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condition, and average RMSE reached values that were significantly lower than expected (0.990; two tailed t-test, 
t(8) = −2.463, p-value = 0.039). Based on these results, we concluded that LNE fails to capture subjects’ behavior 
both qualitatively and quantitatively.

An extended Kalman filter (EKF) model for approximate Bayesian inference.  We considered 
a moderately more sophisticated algorithm inspired by the extended Kalman filter (EKF)61. This algorithm is 

Figure 6.  An extended Kalman filter (EKF) model and its fits to the data. (A) EKF algorithm. EKF is a real-time 
inference algorithm that uses each measurement to update the estimate. After the first flash, EKF uses the mean 
of the prior as its initial estimate, te0

. The second flash furnishes the first measurement, tm1
. EKF computes a new 

estimate, te1
, using the following procedure: (1) it measures the difference between tm1

 and te0
 to compute an 

error, x1, (2) it applies a nonlinear function, f x( ) , to x1, (3) it scales f x( )1
  by a gain factor, k1, whose magnitude 

depends on the relative reliability of tm1
 and te0

, and (4) it adds k f x( )1 1  to te0
 to compute te1

. In the 1-2-Go 
condition (top), te1

 is the final estimate used for the production of tp. In the 1-2-3-Go condition (bottom), the 
updating procedure is repeated to compute a new estimate te2

 by adding te1
 to k f x( )2 2  where x2 is the difference 

between the second measurement, tm2
, and te1

, and k2 is the scale factor determined by the relative reliability of te1
 

and tm2
. te2

 is then used as the final estimate for the production of tp. We assumed that the produced interval, tp, is 
perturbed by zero-mean Gaussian noise with standard deviation proportional to the final estimate (te1

 for 1-2-
Go and te2

 for 1-2-3-Go) with the constant of proportionality wp, as in the BLS model. (B) The mapping from 
measurements to estimates (grayscale) for the EKF estimator in the 1-2-3-Go condition. Red lines indicate 
combinations of measurements that lead to identical estimates (shown for te2

= 700, 750, 800, 850, and 900 ms). 
(C) Mean and standard deviation of tp as a function of ts for two example subjects (circles and error bars) along 
with the corresponding fits of the EKF model (lines). (D) BIAS (circles) and VAR (squares) of each subject 
(abscissa) and the corresponding values computed from simulations of the fitted EKF model (ordinate). 
Conventions match Fig. 4B. (E) The RMSE in the 1-2-Go and 1-2-3-Go conditions relative to the corresponding 
predictions from the EKF model (conventions as in Fig. 4C). See also Supplementary Figs 2, 3, 9, and 10.
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shown in Fig. 6A. Upon each new measurement, EKF uses the error between the previous estimate and the 
current measurement to generate a new estimate. The difference between EKF and the Kalman filter is that the 
error is subjected to a nonlinear function before being used to update the previous estimate. This nonlinearity is 
necessary for the algorithm to be able to account for the nonlinear prior-dependent biases observed in behavior.

In our experiment, immediately after the first flash, the only information about the sample interval, ts, comes 
from the prior distribution. Accordingly, we set the initial estimate, te0

, to the mean of the prior distribution. After 
the first measurement, EKF computes an “innovation” term by applying a static nonlinearity, f x( ) to the error, 
x1, between tm1

 and te0
. This innovation is multiplied by a gain, k1, and added to te0

 to compute the new estimate, 
te1

. In the 1-2-Go condition in which only one measurement is available, te1
 serves as the final estimate that the 

model aims to reproduce.
For the 1-2-3-Go condition, EKF repeats the updating procedure after the second measurement, tm2

. It com-
putes the difference between tm2

 and te1
 to derive a prediction error, x2, which is subjected to the same nonlinear 

function, f x( ), to yield a second innovation. This innovation is then scaled by an appropriate gain, k2, and added 
to te1

 to generate an updated estimate, te2
, which the model aims to reproduce.

The two important elements that determine the overall behavior of EKF are the nonlinear function f x( ) and 
the gain factor(s) applied to the innovation(s) (k1 and k2) to update the estimate(s). We set the form of the nonlin-
ear function f x( )  such that biases in te1

 after one measurement are the same between EKF and BLS models. This 
ensures that EKF and BLS behave identically in the 1-2-Go condition. Note that our implementation of EKF 
assumes that the same nonlinear function is applied after every measurement. If one allows this nonlinear func-
tion to be optimized separately for each measurement, EKF would be able to replicate the behavior of BLS exactly 
(Supplementary Fig. 5).

For the gain factors, we reasoned that the most rational choice is to set the weight of each innovation based on 
the expected reliability of the corresponding estimate, 

−
ten 1

, relative to the new measurement, tmn
, as in the Kalman 

filter (see Methods). This causes the gain factor to decrease with the number of measurements, and ensures that 
the influence of each new measurement is appropriately titrated. With these assumptions, EKF remains subopti-
mal for the 1-2-3-Go condition. However, it captures certain aspects of the nonlinearities associated with the 
optimal BLS estimator as shown by Fig. 6B (compare to Fig. 3D).

The algorithm implemented by EKF is appealing as it uses a simple updating strategy that can be straight-
forwardly extended to multiple sequential measurements and is a nonlinear version of error correcting mecha-
nisms proposed for related synchronization tasks54,56,58. Furthermore, EKF captures important features of human 
behavior. First, integration of each new measurement causes a reduction in RMSE, as seen in 1-2-3-Go compared 
to 1-2-Go condition. Second, the nonlinear function applied to innovations allows EKF to incorporate prior 
information and capture prior-dependent biases. Third, since the nonlinearity is applied to each innovation (as 
opposed to the final estimate), EKF, unlike LNE, is able to capture the reduction in BIAS in 1-2-3-Go compared 
to 1-2-Go condition.

After simulating the model to ensure it integrates measurements and exhibits prior-dependent biases 
(Supplementary Fig. 9), we fitted EKF to each subject independently and asked how well it accounted for the 
observed statistics. Similar to BLS and LNE, EKF broadly captured the observed regression to the mean in the 
1-2-Go trials (Fig. 6C,D, blue). This is not surprising since the EKF algorithm is identical to BLS when the prior 
is integrated with a single measurement. EKF was also able to capture the mean tp as a function of ts in the 1-2-
3-Go trials (Fig. 6C,D red). Across subjects, EKF provided a better match to the data when compared to BLS 
and LNE although it modestly underestimated the BIAS in 1-2-3-Go condition (Fig. 6D, inset; two tailed t-test, 
t(8) = 4.6055, p-value = 0.02639). See Supplementary Fig. 10 for fits of the EKF model to all subjects.

We also asked if EKF could account for the observed RMSEs. To do so, we performed the same analysis 
we used to evaluate the BLS and LNE models. We normalized each subject’s RMSE from the 1-2-Go and 1-2-
3-Go conditions to the RMSE expected from the EKF model for 1-2-3-Go (Fig. 6E). We found no significant 
difference between observed and predicted RMSEs for the 1-2-3-Go condition (two-tailed t-test, t(8) = 1.5506, 
p-value = 0.160), and no significant difference between the observed and predicted change in RMSE from the 
1-2-Go to the 1-2-3-Go condition (Supplementary Fig. 3). These results indicate that subjects’ suboptimal behav-
ior is consistent with the approximate Bayesian integration implemented by the EKF algorithm.

To further validate the superiority of the EKF model, we directly compared various models to BLS using log 
likelihood ratio. Specifically, we computed the ratio of the log likelihood of the data given each model and maxi-
mum likelihood parameters ( L M| Θt tlog ( , , )e s p i

ML  see Methods) to the log likelihood of the BLS model, 
t tlog ( , , )e s p BLS

ML| ΘL M , for each subject. We found that EKF provided the best fit for 8 out of 9 subjects 
(Table 1). For one of the subjects, the fits were poor for all models but LNE provided the best fit.

Model

Subject

CV GB LB PG SM SE TA VR VD

LNE 1.1678 (0.5012) −1.8267 (0.2976) −0.3094 (0.2020) 0.1516 (0.3407) 0.4896 (0.3427) −1.7151 (0.3493) −0.0365 (0.2806) 0.3456 (0.3593) 0.3793 (0.2175)

EKF 1.1900 (0.1998) 0.0380 (0.1326) 0.7168 (0.2234) 0.3828 (0.1428) −1.4262 (0.2755) 1.0909 (0.1543) 0.2358 (0.1250) 0.3623 (0.1581) 0.6537 (0.1002)

BLSmem 0.4621 (0.1832) −0.0821 (0.0267) −0.2445 (0.0743) 0.0086 (0.0518) −0.0637 (0.2714) 0.0440 (0.0876) −0.0191 (0.0195) −0.0359 (0.0249) −0.0421 (0.0268)

Table 1.  Predictive log likelihood ratio for each model and subject. For each subject, the model with the highest 
predictive log likelihood is shown in bold. All log likelihood ratios were all smaller than 2 and consistent with 
what is expected based on simulations of each model (Supplementary Figs 7, 9 and 11).
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Discussion
The neural systems implementing sensorimotor transformations must rapidly compute state estimates to effec-
tively implement online control of behavior. Behavioral studies indicate that, at a computational level, state esti-
mation may be described in terms of Bayesian integration6–15. However, describing behavior with a Bayesian 
model does not necessarily indicate that the brain implements these computations by representing probability 
distributions21,22,62. Here, we focused on integration of multiple time intervals and found evidence that the brain 
relies on simpler algorithms that approximate optimal Bayesian inference.

We demonstrated that humans integrate prior knowledge with one or two measurements to improve their 
performance. A key observation was that the integration was nearly optimal for one measurement but not for 
two measurements. In particular, when two measurements were provided, subjects systematically exhibited more 
BIAS toward the mean of the prior than expected from an optimal Bayesian model. This observation motivated 
us to investigate various algorithms that could lead to similar patterns of behavior.

Analytical and numerical analyses suggested that simple inference algorithms that update certain param-
eters of the posterior instead of the full distribution can not integrate multiple measurements optimally when 
the noise is signal-dependent. We then systematically explored simple inference algorithms that could perform 
sequential updating and account for the behavioral observations. One of the simplest updating algorithms is the 
Kalman filter63. However, this algorithm updates estimates linearly and thus cannot account for the nonlinearities 
in subjects’ behavior, even for a single measurement (Supplementary Fig. 6). The LNE model augmented the 
Kalman filter such that the final estimate was subjected to a point-nonlinearity. This allowed LNE to generate 
nonlinear biases but since the nonlinearity was applied to the final estimate, LNE failed to capture the decrease 
in bias observed in the 1-2-3-Go compared to 1-2-Go condition. Finally, we adapted the EKF, which is a more 
sophisticated variant of the Kalman filter that applies a static nonlinearity to the errors in estimation at every 
stage of updating. This algorithm accounted for optimal behavior in the 1-2-Go condition and exhibited the same 
patterns of suboptimality observed in humans in the 1-2-3-Go condition. Therefore, EKF provides a good charac-
terization of the algorithm the brain uses when there is need to integrate multiple pieces of information presented 
sequentially. This finding implies that subjects may only rely on the first few moments of a distribution and use 
nonlinear updating strategy to track those instead of updating the entire posterior. This strategy is simple and in 
many scenarios could lead to optimal behavior with little computational cost. Moreover, the recursive nature of 
EKF’s updating strategy allows it to readily generalize to scenarios when it is necessary to update estimates in real 
time, even when the number of available samples is not known a priori, which could be tested by extensions of our 
experiment. Finally, the error-correcting nature of the EKF updates are consistent with the correlations between 
response intervals observed in synchronization and continuation tasks53,57,64–66, corrections to timing pertur-
bations during synchronization53,58,67, and the influence of recent temporal inputs on the perception of interval 
duration68–70. Therefore, EKF may provide an algorithmic understanding across a range of timing tasks including 
interval estimation, synchronization, discrimination, and reproduction.

Maintaining and updating probability distributions is computationally expensive. Moreover, it is not currently 
known how neural networks might implement such operations22. In contrast, EKF is relatively simple to imple-
ment. The only requirement is to use the current estimate to predict the next sample, and use a nonlinear function 
of the error in prediction to update estimates sequentially. Predictive mechanisms that EKF relies on are thought 
to be an integral part of how brain circuits support perception and sensorimotor function1,5,8,71–74. As such, the 
relative success of EKF may be in part due to its compatibility with predictive mechanisms that the brain uses to 
perform sequential updating. This observation makes the following intriguing prediction: when performing 1-2-
3-Go task, subjects do not make two measurements; instead, they use the prior to predict the time of the second 
flash, use the prediction error to update their estimate, and the new estimate to predict the third flash. Two lines 
of evidence from recent physiological experiments support this prediction. First, individual neurons in the pri-
mate medial frontal cortex encode interval duration similarly for single and multiple interval tasks75, providing a 
basis for maintaining the current interval estimate during a given task. Second, neural signals in several regions 
of the brain encode intervals prospectively76–80, providing a basis for predicting the timing of upcoming sensory 
inputs. Future modeling efforts and electrophysiological experiments will be required to link neural signals to the 
implementation of the EKF algorithm.

While EKF provides a better account of the observed data in our experiments, it may be that our specific for-
mulation of the Bayesian model did not capture the underlying process. Our BLS model was based on three 
assumptions: (1) that likelihood function is characterized by signal-dependent noise, (2) that the subjective prior 
matches the experimentally imposed uniform prior distribution, and (3) that the final estimates are derived from 
the mean of the posterior, which implicitly assumes that subject rely on a quadratic cost function, as was previ-
ously demonstrated24. Our formulation of the likelihood function is particularly important, as it is the key factor 
that prohibits simple algorithms such as EKF to optimally integrate multiple measurements. The inherent 
signal-dependent noise in timing causes the likelihood function to be skewed toward longer intervals (see 
Appendix). This characteristic feature was particularly important for explaining human behavior in a task requir-
ing interval estimation following several measurements40. Moreover, it has been shown that subjects exhibit larger 
biases for longer intervals within the domain of the prior indicating that the brain has an internal model of this 
signal-dependent noise24,49,81,82. These results support our formulation of the likelihood function. However, one 
aspect of our formulation that deserves further scrutiny is the assumption that noise perturbing the two measure-
ments was independent. This may need revision given the long-range positive autocorrelations in behavioral 
variability83–85, and because S2 is shared between the two measurements, which may lead to correlations between 
tm1

 and tm2
.

Our formulation of the prior and cost function should also be further evaluated. For example, humans may 
not be able to correctly encode a uniform prior probability distribution for interval estimation47,49. Similarly, 
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the cost function may not be quadratic86. However, since priors and the cost functions impact both 1-2-Go and 
1-2-3-Go conditions, moderate inaccuracies in modeling these components may not be able to explain optimal 
behavior in 1-2-Go and suboptimal behavior in the 1-2-3-Go condition simultaneously. Finally, recent results 
suggest the performance may be limited by imperfect integration87,88 and imperfect memory38,89, which future 
models of sequential updating should incorporate.

Methods
Subjects and apparatus.  All experiments were performed in accordance with relevant regulations 
and guidelines for the ethical treatment of subjects, as approved by the Committee on the Use of Humans as 
Experimental Subjects at MIT, after receiving informed consent. Eleven human subjects (6 male and 5 female) 
between 18 and 33 years of age participated in the interval reproduction experiment. Of the 11 subjects, 10 were 
naive to the purpose of the study.

Subjects sat in a dark, quiet room at a distance of approximately 50 cm from a display monitor. The display 
monitor had a refresh rate of 60 Hz, a resolution of 1920 by 1200, and was controlled by a custom software 
(MWorks; http://mworks-project.org/) on an Apple Macintosh platform.

Interval reproduction task.  Experiment consisted of several 1 hour sessions in which subjects performed 
an interval reproduction task (Fig. 1). The task consisted of two randomly interleaved trial types referred to 
as “1-2-Go” and “1-2-3-Go”. On 1-2-Go trials, two flashes (S1 followed by S2) demarcated a sample interval (ts) 
that subjects had to measure24. On 1-2-3-Go trials, ts was presented twice, once demarcated by S1 and S2 flashes, 
and once by S2 and S3 flashes. For both trial types, subjects had to reproduce ts immediately after the last flash (S2 
for 1-2-Go and S3 for 1-2-3-Go) by pressing a button on a standard Apple keyboard. On all trials, subjects had 
to initiate their response proactively and without any additional cue (no explicit Go cue was presented). Subjects 
received graded feedback on their accuracy.

Each trial began with the presentation of a 0.5 deg circular fixation point at the center of a monitor display. The 
color of the fixation was blue or red for the 1-2-Go and 1-2-3-Go trials, respectively. Subjects were asked to shift 
their gaze to the fixation point and maintain fixation throughout the trial. Eye movements were not monitored. 
After a random delay with a uniform hazard (100 ms minimum plus and interval drawn from an exponential dis-
tribution with a mean of 300 ms), a warning stimulus and a trial cue were presented. The warning stimulus was a 
white circle that subtended 1.5 deg and was presented 10 deg to the left of the fixation point. The trial cue consisted 
of 2 or 3 small rectangles 0.6 deg above the fixation point (subtending 0.2 × 0.4 deg, 0.5 deg apart) for the 1-2-Go 
and 1-2-3-Go trials, respectively. After a random delay with a uniform hazard (250 ms minimum plus an interval 
drawn from an exponential distribution with mean of 500 ms), flashes demarcating ts were presented. Each flash 
(S1 and S2 for 1-2-Go and S1, S2, and S3 for 1-2-3-Go) lasted for 6 frames (100 ms) and was presented as an annu-
lus around the fixation point with an inside and outside diameter of 2.5 and 3 deg, respectively (Fig. 1A,B). The 
time between consecutive flashes, which determined ts, was sampled from a discrete uniform distribution ranging 
between 600 and 1000 ms with a 5 samples (Fig. 1C). To help subjects track the progression of events throughout 
the trial, after each flash, one rectangle from the trial cue would disappear (starting from the rightmost).

Produced interval (tp) was measured as the interval between the time of the last flash and the time when the 
subject pressed a designated key on the keyboard (Fig. 1A,B). Subjects received trial-by-trial visual feedback 
based on the magnitude and sign of the relative error, (tp − ts)/ts. A 0.5 deg circle (“analog feedback”) was pre-
sented to the right (for error < 0) or left (error > 0) of the the warning stimulus at a distance that scaled with the 
magnitude of the error. Additionally, when the error was smaller than a threshold, both the warning stimulus and 
the analog feedback turned green and a tone denoting “correct” was presented. If the production error was larger 
than the threshold, the warning stimulus and analog feedback remained white and a tone denoting “incorrect” 
was presented. The threshold was constant as a function of the relative error and therefore scaled with the sample 
interval (Fig. 1D). This accommodated the scalar variability of timing that leads to more variable production 
intervals for longer sample intervals. The scaling factor was initialized at 0.15 at the start of every session and 
adjusted adaptively using a one-up, one-down scheme that added or subtracted 0.001 to the scaling factor for 
incorrect or correct responses, respectively. These manipulations ensured that the performance across conditions, 
subjects, and trials remained approximately at a steady state of 50% correct trials.

To ensure subjects understood the task design, the first session included a number of training blocks. Training 
blocks were conducted with the supervision of an experimenter. Training trials were arranged in 25 trial blocks. 
In the first block, the subjects performed the 1-2-Go condition with the sample interval fixed at 600 ms. In the 
second block, we fixed the interval to be 1000 ms. In the third block, the subject performed the 1-2-3-Go task with 
the interval fixed at 1000 ms. In the fourth block, the subject continued to perform the 1-2-3-Go task, but with 
the intervals chosen at random from the experimental distribution. In the final training block, the task condition 
and sample intervals were fully randomized, as in the main experiment. The subject then performed 400 trials 
of the main experiment. Subjects completed 10 sessions total, performing 800 trials in each of the remaining 9 
experimental sessions. To ensure subjects were adapted to the statistics of the prior24, we discarded the first 99 
trials of each session. We also discarded any trial when the subject responded before S2 (for 1-2-Go) or S3 (for 
1-2-3-Go) or 1000 ms after the veridical ts. Supplementary Table 2 summarizes the number of completed trials 
for each subject. Data from two subjects were not included in the analyses because they were not sensitive to the 
range of sample intervals we tested and their production interval distributions were not significantly different for 
the longest and shortest sample intervals.

Models.  We considered several models for the interval estimation: (1) an optimal Bayes Least-Squares model 
(BLS), (2) an optimal Bayes Least-Squares model that allowed different noise levels for the two measurements in 
1-2-3-Go trials, (3) an extended Kalman filter model (EKF), and (4) a linear-nonlinear estimation model (LNE). 

http://mworks-project.org/
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All models were designed to be identical for the 1-2-Go task where only one measurement was available but dif-
fered in their prediction for the 1-2-3-Go trials.

BLS model.  We used the Bayesian integration model that was previously shown to capture behavior in the 
1-2-Go task24. This model assumes that subjects combine the measurements and the prior distribution probabil-
istically according to Bayes’ rule:
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where p(ts) represents the prior distribution of the sample intervals and p(tm) the probability distribution of the 
measurements. The likelihood function, λ(tm|ts), was formulated based on the assumption that measurement 
noise was Gaussian and had zero mean. To incorporate scalar variability into our model, we further assumed 
that the the standard deviation of noise scales with ts with constant of proportionality wm representing the Weber 
fraction for measurement.

Following previous work24, we further assumed that subjects’ behavior can be described by a BLS estimator 
that minimizes the expected squared error, and uses the expected value of the posterior distribution as the opti-
mal estimate:
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where fBLS1
 denotes the BLS function that maps the measurement (tm1

) to the Bayesian estimate after one meas-
urement (te1

). The subscript 1 is added to clarify that this equation corresponds to the condition with a single 
measurement (i.e., 1-2-Go). The notation E[•] denotes expected value. Given a uniform prior distribution with a 
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We assume that ts
min and ts

max match the minimum and maximum of the experimentally imposed sample inter-
val distribution. We extended this model for the 1-2-3-Go task to two measurements. To do so, we incorporated 
two likelihood functions in the derivation of the posterior. Assuming that the two measurements are condition-
ally independent, the posterior can be written as:
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where tm1
 and tm2

 denote the first and second measurements, respectively, and the likelihood function, λ, is from 
Eq (2). Because measurements are taken in a sequence, it is intuitive to rewrite Eq (5) in a recursive form:
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where |( )p t ts m1
 is the posterior as specified in Eq (1) and Z is a normalization factor which ensures the integral 

over the density sums to one. Note that Z includes terms related to p t( )m1
, allowing it to appropriately normalize 

the density after propagating the posterior related to the first measurement forward. Therefore, although the 
posterior for Eqs (5) and (6) are identical, specifying the posterior in this way allows for the algorithm to be 
updated sequentially.

The corresponding BLS estimator can again be written as the expected value of the posterior:
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where fBLS2
 denotes the BLS function that uses two measurements (tm1

 and tm2
) to compute te2

. The subscript 2 
indicates the mapping function is for two measurements (i.e., 1-2-3-Go). We performed the integrations for the 
BLS model numerically using Simpson’s quadrature.
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BLSmem model.  We also considered the possibility that the brain may not be able to hold representations of 
the first measurement or the associated posterior perfectly over time until the time for integration. To model this 
we assumed two Weber fractions − wm as formulated in the BLS model and wmem which adjusts the Weber frac-
tion of the first measurement in 1-2-3-Go trials to account for noisy memory or inference processes. In 1-2-Go 
trials, the posterior was set according to Eq (1) with wm controlling the signal dependent noise. In 1-2-3-Go trials, 
the posterior was set according to:
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This formulation allows the measurement noise to be different for the two measurements. The optimal esti-
mator was then calculated as:
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EKF model.  EKF implements an updating algorithm in which, after each flash, the observer updates the esti-
mate, ten

, based on the previous estimate, 
−

ten 1
, and the current measurement, tmn

. The updating rule changes ten 1−
 

by a nonlinear function of the error between ten 1−
 and tmn

, which we denote by xn.
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f  is a nonlinear function based on the BLS estimator, fBLS1
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which were formulated in terms of two Weber fractions, wn−1 and wm, respectively:

k w
w w

,
(15)

n
n

n m

1
2

1
2 2=

+
−

−

To track the reliability of ten
 we used a formulation based on optimal cue combination under Gaussian noise. 

For Gaussian likelihoods, the reliability of the estimate is related to the inverse of the variance of the posterior. 
Similarly, the reliability of the interval estimate is related to the inverse of the Weber fraction. Therefore, we used 
the following algorithm to track the Weber fraction of the estimate, wn:
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As in the case of Gaussians, this algorithm ensures that wn decreases with each additional measurement, 
reflecting the increased reliability of the estimate relative to the measurement. This ensures that the weight of the 
innovation respects information already integrated into the estimate by previous iterations of the EKF algorithm.

At S1, no measurements are available. Therefore, we set the initial estimate, te0
 to the mean of the prior, and its 

reliability, w0, to ∞. After S2 (one measurement), the EKF estimate is identical to the BLS model. For two meas-
urements, the process is repeated to compute te2

, but the estimate is suboptimal. This formulation can be readily 
extended to more than two measurements.

LNE model.  LNE uses a linear updating strategy similar to a Kalman filter to update estimates by measure-
ments as follows:

t k t k t(1 ) , (17)n n n n m1 n
= − +−

The algorithm is initialized such that t tm1 1
=  and we chose the weighting to be kn = 1/n. This choice minimizes 

the squared errors in 1-2-3-Go trials. Note that any other choice for kn would deteriorate LNE’s performance. 
Following this sequential and linear updating scheme, LNE passes the final estimate through a nonlinear transfer 
function specified by the BLS model for one measurement ( fBLS1

):



www.nature.com/scientificreports/

13SCIenTIfIC REPOrTS |  (2018) 8:12597  | DOI:10.1038/s41598-018-30722-0

... =f t t f t( , , ) ( ), (18)LNE m m BLS nn n1 1

where fLNEn
 denotes the linear-nonlinear estimator after n measurements. This formulation ensures that LNE is 

identical to the BLS in 1-2-Go trials.

Interval production model.  In all models, the final estimate is used for the production phase. Following 
previous work24, we assumed that the production of an interval is perturbed by Gaussian noise whose standard 
deviation scales with the estimated interval. The model was additionally augmented by an offset term to account 
for stimulus-independent biases observed in responses:
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where wp is the Weber fraction for production, b is the offset term, and te can refer to the estimate for either 
1-2-Go and 1-2-3-Go trials.

All models accommodated “lapse trials” in which the produced interval was outside the mass of the produc-
tion interval distribution. The lapse trials were modeled as trials in which the production interval was sampled 
from a fixed uniform distribution, p(tp|lapse), independent of ts. With this modification, the production interval 
distribution can be written as:

p t t p t t p t( , ) (1 ) ( ) ( lapse), (20)p e p e pγ γ γ| = − | + |

where γ represents the lapse rate. With this formulation, we could identify lapse trials as those for which the 
likelihood of lapse exceeded the likelihood of a nonlapse. To limit cases of falsely identified lapse trials, we set the 
width of this uniform distribution conservatively to the range of possible production intervals (between 0 and 
2000 ms).

Using simulations, we verified that our model was able to detect lapses for the range of wm, wp, and γ values 
inferred from the behavior of our subject pool. Most subjects had a small probability of a lapse trial that was con-
sistent with previous reports24. Two subjects had relatively unreliable performance with a larger number of lapse 
trials. However, our conclusions do not depend on the inclusion of these two subjects.

Analysis and model fitting.  All analyses were performed using MATLAB R2014b or MATLAB R2017a, 
The MathWorks, Inc., Natick, Massachusetts, United States. We used a predictive maximum likelihood procedure 
to fit each model to the data. The likelihood of tp given ts and a set of parameters Θ (specific to each model) was 
defined as:

p t t p t t t dt( , ) ( , , ) , (21)p s p m s m∫| Θ = | Θ

For 1-2-Go trials and

∫ ∫| Θ = | Θp t t p t t t t dt dt( , ) ( , , , ) , (22)p s p m m s m m1 2 1 2

For 1-2-3-Go trials. The integrand for Equation 22 is

λ λ| Θ = | Θ | Θ | 
 Θ

 Θ( )( ) ( )p t t t t t t t t p t f t t( , , , ) , , , , , , (23)p m m s m s m s p X m m1 2 1 2 1 2

With the output of 
 Θ

f t t, ,X m m1 2
 corresponding to the equivalent mapping function for fBLS, fLNE, fEKF, or 

fBLSmem
. λ | Θ( )t t ,m si

 corresponds to the likelihood function as defined above, with its dependence on the param-
eters Θ made explicit.

Assuming that production intervals are conditionally independent across trials, the log likelihood of model 
parameters can be formulated as:

∑... | Θ = | Θ
=

( )p t t t t p t tlog , , , , log ( , ),
(24)e p p p

N
s

i

N

e p
i

s
1 2

1

where the superscripts denote trial number. Maximum likelihood fits were derived from N-100 trials and cross 
validated on the remaining 100 trials (leave N out cross validation, LNOCV). This process was performed itera-
tively until all the data was fit. The final model parameters were taken as the average of parameter values across 
all the fits to the data. Fits were robust to changes in the amount of left out data,. See Supplementary Figs 1, 8, and 
10 for a summary of maximum likelihood parameters and predictions of each model fit to our subjects. We also 
computed the maximum likelihood parameters using the full data set for each subject. Parameters found using 
either the full data set or LNOCV were nearly identical (see Supplementary Table 3).

We evaluated model fits by generating simulated data from that model and comparing various summary sta-
tistics (BIAS, VAR, and RMSE) observed for each subject to those generated by model simulations. For the 
observed data, summary statistics were computed for non-lapse trials and after removing the offset (b). Model 
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simulations were performed without the lapse term and after setting the offset to zero. The summary statistics 
were computed as follows:

∑= −
=

( )N
t tBIAS 1 ,

(25)i

N

p s
2

1

2

i i

∑σ=
=N

VAR 1 ,
(26)i

N

i
1

2

RMSE BIAS VAR , (27)2= +

BIAS2 and VAR represent the average squared bias and average variance over the N distinct ts’s of the prior 
distribution. The terms t pi

, σi
2 represent the mean and variance of production intervals for the i-th sample interval 

(tsi
). The overall RMSE was computed as the square root of the sum of BIAS2 and VAR. To find the BIAS2 and VAR 

of each model we took the mean value of each after 1000 simulations of the model with the trial number matched 
to each subject. This ensured an accurate estimate of these quantities that includes the systematic deviations from 
the true model behavior due to a finite number of trials.

To perform model comparison, we measured the likelihood of the data, given a model and the maximum 
likelihood model parameters fit to training data, L Mt t( , , )s p i

ML| Θ . We then computed the ratio 
t t( , , )s p i

MLL M| Θ  and L Mt t( , , )s p BLS
ML| Θ , the likelihood of the BLS model, and computed the logarithm of 

that value to measure the log likelihood ratio. To generate confidence intervals, we evaluated the likelihoods using 
100 trials of test data that were left out of model fitting. We iterated this process until all the data was used as 
training data, allowing us to measure the variability of the log likelihood ratio for each subject.

Finally, we further validated our fitting procedure, analyses, and model comparison on data simulated using 
a generative process that emulates each model. Using this as ground truth data, we confirmed that our analyses 
identify the correct model and parameters using similar numbers of trials and subjects (Supplementary Figs 7, 
9, and 11).
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