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A B S T R A C T

Children are less susceptible to coronavirus disease 2019 (COVID-19), and they have manifested lower

morbidity and mortality after infection, for which a multitude of mechanisms may be considered. Whether

the normal development of the gut-airway microbiome in children is affected by COVID-19 has not been

evaluated. Here, we demonstrate that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

infection alters the upper respiratory tract and the gut microbiomes in nine children. The alteration of the

microbiome is dominated by the genus Pseudomonas, and it sustains for up to 25e58 days in different

individuals. Moreover, the patterns of alternation are different between the upper respiratory tract and the

gut. Longitudinal investigation shows that the upper respiratory tract and the gut microbiomes are

extremely variable among children during the course of COVID-19. The dysbiosis of microbiome persists in

7 of 8 children for at least 19e24 days after discharge from the hospital. Disturbed development of both the

gut and the upper respiratory microbiomes and prolonged dysbiosis in these nine children imply possible

long-term complications after clinical recovery from COVID-19, such as predisposition to the increased

health risk in the post-COVID-19 era.

Copyright © 2021, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and

Genetics Society of China. Published by Elsevier Limited and Science Press. All rights reserved.
Introduction

Coronavirus disease 2019 (COVID-19) caused by severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) has been diag-

nosed in more than 140 million people around the world (https://

coronavirus.jhu.edu/data). Although children are often susceptible

to respiratory virus infections, and experience recurrent respiratory

virus infections (Santee et al., 2016; Dubourg et al., 2019; Li et al.,

2019), compared with adults, they seem to be less susceptible to

COVID-19 and have extremely low morbidity and mortality
), zhangzhigang@ynu.edu.cn
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postinfection (Guan et al., 2020; Onder et al., 2020; Wu and

McGoogan, 2020). In fact, children afflicted by COVID-19 usually

have mild symptoms but a faster recovery and a better prognosis, for

which the reasons are not clear. It is known that early-life develop-

ment and maturation of human microbiomes shape health status in

later life (Teo et al., 2015; Man et al., 2017; Derrien et al., 2019;

Dubourg et al., 2019), and delayed development or dysbiosis of the

microbiomes during childhood has been linked to predisposition to

various health problems in adulthood (Cox et al., 2014; Blanton et al.,

2016; Man et al., 2017; Derrien et al., 2019; Dubourg et al., 2019;

Gehrig et al., 2019). The effect of COVID-19 on the gut microbiome

had just began to be evaluated in adults (Gu et al., 2020; Zuo et al.,

2020), but not in children. We recently evaluated the longitudinal

effects of COVID-19 on both the upper respiratory tract and gut

microbiomes in adults and revealed that the respiratory and the gut
ademy of Sciences, and Genetics Society of China. Published by Elsevier Limited and
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microbiomes presented a contemporaneous change from early

dysbiosis toward late incomplete restoration during the course of

disease (Xu et al., 2021). How COVID-19 impacts the respiratory tract

and gut microbiomes in children is unknown. Here, we report the

temporal dynamics of the upper respiratory tract and gut microbiome

in children afflicted by COVID-19.
Results

Study cohort

Nine COVID-19 children aged between 7 and 139 months were

enrolled, together with 14 age-matched healthy control children

(Table S1). A total of 103 specimens, including 27 sets of paired

specimens of throat swabs, nasal swabs, or feces, were collected

from children with COVID-19 (Fig. S1). These children were followed

for 25e58 days after symptom onset. All samples were subjected to

high-throughput sequencing of the V4-region of bacterial 16S-rRNA

gene.
Comparison of the microbiomes between COVID-19 children

and healthy controls

We analyzed the 16S-rRNA gene sequences of all specimens

from three body sites (throat, nose, and gut) and obtained 2187

amplicon sequence variants (ASVs) that represent 15 known phyla,

including 200 known genera (Dataset S1). We first compared the

diversity of the microbiomes in throat swabs, nasal swabs, and

feces (Figs. S2A and S3A). The microbiomes in all three body sites

were significantly separated between the COVID-19 children and

the healthy controls (R: 0.431e0.761, P < 0.003; Fig. S2A) and

characterized by distinct bacterial compositions (Figs. S2B and

S3B). Interestingly, the microbiomes in the throat and nasal

swabs had significantly lower richness in COVID-19 children than

that of healthy controls. In addition, significantly higher evenness

was observed in the gut microbiome of COVID-19 children than that

of healthy controls (P < 0.05; Fig. S3A). At phylum level, Bacter-

oidetes (mean ± standard deviation: 34.9 ± 24.4%) and Firmicutes

(37.5 ± 21.6%) were significantly enriched in the gut (feces) of

COVID-19 children, whereas Proteobacteria (48.3 ± 30.2%) was

enriched in the gut of healthy controls (Fig. S3B). In contrast to the

gut, Bacteroidetes (throat: 29.5 ± 7.2%; nasal: 36.5 ± 11.4%) and

Firmicutes (throat: 30.9 ± 20.8%; nasal: 39.3 ± 11.5%) were

significantly enriched in the upper respiratory tract of healthy con-

trols, whereas Proteobacteria appeared to be enriched in the upper

respiratory tract (throat: 48.3 ± 28.4%; nasal: 49.3 ± 24.9%) of

COVID-19 children (Fig. S3B). Although the enrichment of bacterial

phyla was different between different groups, the variations

appeared to be remarkably high among individuals within each

group. To further evaluate the difference in bacterial composition

between COVID-19 children and healthy controls, the relative

abundance of each genus was analyzed. The vast majority of resi-

dent commensals showed a significantly higher abundance in both

the upper respiratory tract and the gut of healthy controls than the

COVID-19 children, and a significantly increased abundance of

opportunistic pathogenic and environmental bacteria was observed

in the latter (Fig. S2B). In particular, Pseudomonas, Herbaspirillum,

and Burkholderia were significantly enriched in both the upper

respiratory tract and the gut of the COVID-19 children, and

Comamonadaceae_U was significantly enriched in the upper res-

piratory tract. These results strongly indicate that COVID-19

infection altered both the upper respiratory tract and the gut

microbiomes in children.
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Dynamics of the upper respiratory tract and the gut

microbiomes in children with COVID-19

Because of the high variability in bacterial composition among

individuals within each group, we further characterized the patterns

of bacterial community composition using the Dirichlet multinomial

mixtures (DMMs) method and identified eight community types

(Fig. 1A). The specimens from healthy children were clustered into 2

community types, one bearing the signature of stool samples (83.3%)

and being named as H-GUT and another representing the collection

of all 3 types of samples (6 throat swabs, 12 nasal swabs, and 6

feces) and being called H-MIX (Fig. S4). Because early development

of the infant microbiome is influenced by maternal materials from

multiple sites (gut, vagina, mouth, and skin), among which bacteria

from maternal gut are the most important contributor to the micro-

biome of children (Ferretti et al., 2018); therefore, infants and children

may share the same or very similar microbial community structures of

the nasal cavity, throat, and gut of their mothers (Ding and Schloss,

2014; Stewart et al., 2018). Our data indicate that the community

type H-MIX may reflect the characteristics of the microbiome

development in childhood. The H-GUT was significantly separated

from the H-MIX (Fig. 1B) and had significantly lower richness and

evenness than the H-MIX (Fig. 1C). The separation of the H-GUT from

the H-MIX possibly implies a divergence of the gut microbiome from

the early symbiotic microbial community structure shared by various

organs.

The vast majority (94.2%, 97/103) of the specimens of COVID-19

patients were divided into 6 bacterial community clusters except 1 in

the H-GUT and 5 in the H-MIX (Fig. 1A). All COVID-19-related com-

munity types were significantly separated from that in the H-MIX and

H-GUT groups (Fig. 1B) and had lower richness and evenness than

that in the H-MIX (Fig. 1C), except one small cluster (COVID-TN-I)

that partly overlapped with the H-MIX and another cluster (COVID-

GUT-I) that had similar alpha diversity as the H-MIX. These results

further support that COVID-19 infection altered both the upper res-

piratory tract and the gut microbiomes in children. Furthermore, the

microbiomes of the upper respiratory tract and the gut were signifi-

cantly separated from each other (Fig. 1B). Given that healthy chil-

dren shared similar community type as the H-MIX in both organs, the

separation of the respiratory and the gut microbiomes indicates that

COVID-19 may affect the normal development of the microbiomes in

both organs of children.

The vast majority (97.8%, 44/45) of stool specimens of COVID-19

children fell into 3 distinct community types, which were designated

as COVID-GUT IeIII (Figs. 1A and S4). Similarly, the vast majority

(91.5%, 54/59) of nasal and throat swabs formed another 3 distinct

types, which were designated as COVID-TN I-III (Figs. 1A and S4).

Three upper respiratory tract-related types and three GUT-related

types of COVID-19 children were significantly separated from each

other (Fig. 1B). The community types from the same organ, regard-

less of the upper respiratory tract and the gut, were also separated

from each other, and their alpha diversity orderly decreased from

type I to type III (Fig. 1C). The decreased alpha diversity from type I to

type III may represent different levels of microbiome homeostasis

(dysbiosis) in both the upper respiratory tract and the gut.

Indicator genera of eight DMM clusters

To characterize 8 microbial community types, we identified 35

indicator genera (Fig. 2A). The H-MIX type was characterized by 11

genera with predominant commensal bacteria of Prevotella, Veillo-

nella, Streptococcus, unclassified Pasteurellaceae, Actinomyces,

Porphyromonas, Finegoldia, and Fusobacterium (Fig. 2A). The pres-

ence of some normal upper respiratory commensals (Prevotella,

Veillonella) and the gut core functional bacteria (Finegoldia,



Fig. 1. Dirichlet multinomial mixtures (DMMs) clustering analyses of 16S rRNA data separate COVID-19 children into groups with distinctive features (N ¼ 128). A: Eight distinct clusters

were identified based on lowest Laplace approximation for control and patient samples from gut or nasal and throat cavities. Heat map shows the relative abundance of top 40 bacterial

genera contributing to 70% of cumulative difference for DMM clustering. The stars represent unclassified genera. Eight community clusters/types were identified. Type H-GUT indicates

abnormal gut microbial community structure of healthy children. H-MIX contains a mixture of bacteria from fecal, nasal, and throat samples of healthy individuals, representing the

normal microbial community structure. COVID-GUT types I-III are enriched in fecal samples of COVID-19 children, and COVID-TN types I-III are enriched in both nasal and throat

samples of COVID-19 children. B: Nonmetric multidimensional scaling (NMDS) visualization of DMM clusters using Bray-Curtis distance of bacterial genera. Significant separation of

microbial community structures was implicated by the ANOSIM statistic R closer to 1 with P value < 0.05. The stress value lower than 0.2 provides a good representation in reduced

dimensions. C: Box plots show the alpha diversity (richness and evenness) of each DMM cluster. Wilcoxon test was used to compare the alpha diversity difference of each COVID-19-

related community types with the reference community type H-MIX cluster. *, P < 0.05; **, P < 0.01; ***, P < 0.001. TN, throat and nasal samples.
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Fusobacterium) suggests that H-MIX is a normal microbiome struc-

ture in healthy children. The H-GUT type was mainly featured by

Moraxella with an abundance of 58.2 ± 18.4%. BecauseMoraxella is

a common human respiratory tract pathogen, and it is often present

in the individuals with chronic obstructive pulmonary disease

(Murphy et al., 2005; Murphy and Parameswaran, 2009), we did not

use the H-GUT as a healthy microbiome reference. Community type

COVID-GUT-III had the lowest diversity and was dominated by

Bacteroides and Parasutterella (Fig. 2B). Of note, Parasutterella is

associated with irritable bowel syndrome and other intestinal chronic

inflammation (Chen et al., 2018). Community type COVID-TN-III was

dominated by highly abundant Pseudomonas andHerbaspirillum and
805
had higher levels of genera of Corynebacterium, Comamonadaceae,

Burkholderia, Achromobacter, Brevundimonas, Ralstonia, Phyllo-

bacterium, and Burkholderiales than other community types (Fig. 2B).

Among these genera, Pseudomonas is a notorious human pathogen

that has been associated with various diseases (e.g., pneumonia). In

our samples, there was an overrepresentation of the dominant spe-

cies Pseudomonas veronii (100% sequence identity) (Cheuk et al.,

2000). Achromobacter and Burkholderia are associated with cystic

fibrosis (Jones et al., 2004; Spilker et al., 2013), whereas most other

genera are environmental bacteria. The predominance of some

opportunistic pathogenic bacteria with the colonization of various

environmental bacteria in COVID-GUT-III and/or COVID-TN-III



Fig. 2. Identification and relative abundance distribution of indicator genera of eight DMM clusters. Indicators of 8 microbial community types (DMM clusters) were identified from top 40

genus contributing to 70% of cumulative difference for DMM clustering in Fig. 1A. Twenty-one indicator genera are shared by two or more community types. In panel (A), shared

indicator genera by two or more DMM cluster are shown by yellow vertical lines. Eight DMM clusters (community types) are shown with circles of different colors above their corre-

sponding indicator genera. Significance levels of indicators are as follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001. In panel (B), the area of different colors shows the relative abundance

of each indicator genus in corresponding DMM clusters.
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suggests a dysbiosis of the microbiome. Apart from COVID-TN-III,

genus Pseudomonas also dominated community type COVID-TN-II

together with Streptococcus, and COVID-GUT-II together with Bac-

teroides. Interestingly, we observed that some of the indicator bac-

teria in H-MIX were shared by the community type COVID-GUT-I

(e.g., Prevotella, Porphyromonas, Finegoldia, Anaerococcus, etc.)

and COVID-TN-I (e.g., Prevotella, Neisseria, Fusobacterium, unclas-

sified Pasteurellaceae, Leptotrichia etc.; Fig. 2A). These suggest that

COVID-GUT-I and COVID-TN-I were closer to the healthy micro-

biome type H-MIX than other COVID-19-related community types.

Combining the results of the indicator bacteria and the alpha diversity

characteristics, the microbial community types from I to III revealed a

stepwise dysbiosis of microbiome regardless of the upper respiratory

tract or the gut (Figs. 1C and 2).

The dynamic change of the microbiomes in three body sites of

children during COVID-19

Recently, we observed synchronous restoration of the micro-

biomes of both the upper respiratory tract and the gut toward more

diverse community structure in COVID-19 adults within a short time

(6e17 days) after symptom onset (Xu et al., 2021). Distinct from

adults, the microbiome community compositions were extremely

variable in children during the course of COVID-19 disease, and the

changes of the community types were not the same between the

upper respiratory tract and the gut (Fig. 3). The upper respiratory

(especially nasopharyngeal) microbiome of seven of eight children

(except CV05) appeared to evolve from early healthy (H-MIX) or high-
806
diversity community structure (COVID-TN-I) to late low-diversity

dysbiosis structure (COVID-TN-III), indicating a steady deterioration

in composition and function of the upper respiratory microbiome

despite mild symptoms and clinical recovery (Fig. 3). In particular, the

dysbiosis in the upper respiratory tract was observed to last at least

19e24 days after discharge (i.e., 42e58 days after symptom onset) in

3 children (CV01, CV02, and CV09).

Compared with the upper respiratory tract microbiome, the gut

microbiome alteration was more diverse among these COVID-19

children. Improvement or restoration in the gut microbiome was

observed in three children (CV01, CV02, and CV05), but a deterio-

ration occurred in another three children (CV03, CV04, and CV09)

(Fig. 3). For example, the bacterial community type of CV09 improved

from COVID-GUT-II to COVID-GUT-I on Day 7 after symptom

onset but returned back to COVID-GUT-III on Day 37. For CV03,

whose microbiome became worse from a gut community type

COVID-GUT-II on Day 19 to a respiratory community type COVID-

TN-III on Day 27, and reverted to COVID-GUT-II on Day 43. The

appearance of the community type COVID-TN-III in the gut micro-

biome implies microbial translocations between the upper respira-

tory tract and the gut. The restoration or deterioration of the gut

microbiome showed no association with clinical recovery (discharge

from the hospital) or the presence or absence of SARS-CoV-2 RNA in

the gut (Fig. 3). The detailed dynamic changes of bacterial compo-

sitions are shown in Fig. S5.

To further assess their dynamic change in relative abundance

over time, the top indicator bacteria with >0.5 indicator values were

selected from each community type as the representative bacteria.



Fig. 3. Dynamic change of DMM clusters in three body sites of COVID-19 children. The community type levels were divergent between respiratory tract and gut (e.g., on Days 11, 15,

and 23 in CV04, and Days 16 and 42 in CV09). The respiratory microbiome appeared to be progressively worsening in 7 children (CV01eCV04 and CV07eCV09) for 25e42 days after

symptom onset. The worsening of the gut microbiome appeared in 4 children (CV03, CV04, CV07, and CV09) and sustained for 25e52 days. Age (months) of each COVID-19 child is

shown in parenthesis below the patient code. Eight DMM clusters (community types) are shown with circles of different colors. Small, medium, and large circles represent the body sites

of throat, nasopharynx, and feces, respectively. The discharge date of each COVID-19 child is highlighted by vertical yellow thick line. The status of SARS-CoV-2 RNA in each sample is

shown in corresponding circle with “þ” for positive and “�” for negative. The arrows indicate an increase of the alpha diversity of bacterial community type.
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The abundance of representative bacteria appeared to be

extremely dynamics in both the upper respiratory tract and the gut

of these children during the course of COVID-19 disease, and some

core enterotype identifiers were often detected in the upper respi-

ratory tract (e.g., Bacteroides in CV02, CV03, and CV08; Prevotella

in CV01, CV04, CV08, and CV09; Fig. 4). In particular, we found that

pathogenic bacteria Pseudomonas persistently existed and domi-

nated the microbiome in both the upper respiratory tract and the gut

of the children during the whole course of COVID-19 (Figs. 4 and

S5). The most prevalent Pseudomonas species was identified as

P. veronii, which had a relative abundance of more than 20% in

most COVID-19 children. Furthermore, pathogenic bacteria Strep-

tococcus (mainly S.mitis) was also found in both organs of some

COVID-19 children with relatively high abundance, which might

contribute to the deterioration of the microbiome (Mitchell, 2011).

These results supported a progressive deterioration of microbiome

in both the respiratory tract and the gut of children during the course

of COVID-19.

Bacteria-bacteria co-occurrence network

We identified two main co-occurrence networks (Fig. S6). One

is predominated by the members of phyla Proteobacteria. Most

bacteria in this network are pathogenic or opportunistic patho-

genic bacteria that mainly appeared in the low-diversity commu-

nity types (e.g., COVID-GUT-III, COVID-GUT-II, and COVID-TN-III)

and had positive correlations with each other (FDR-adjusted

P < 0.001, Pearson correlation r > 0.5; Fig. S6 right panel). Ach-

romobacter was the hub species that linked to nine other species

in this network. Another network is mainly predominated by the

members of phyla Firmicutes, Bacteroidetes, and unclassified
807
Clostridiales, with Clostridiales being the hub to other species

(Fig. S6 left panel). Most bacteria in this network are the indicator

bacteria of COVID-GUT-I, H-MIX, and COVID-TN-I, and the spe-

cies from the same organs often showed positive correlations.

Negative correlations were mainly observed between bacteria

from the upper respiratory tract and the gut, as well as between

some core gut functional bacteria and opportunistic pathogenic

bacteria in the upper respiratory tract.

To reveal the progress of the microbiome in these patients, we

further performed the co-occurrence network analysis using data

from three disease stages: acute phase (the first three days since

symptom onset), middle phase (from the fourth day to the day of

discharge), and convalescent (after discharge) phase. We found that

the bacteria-bacteria co-occurrence network enlarged and became

more complex from early phase to convalescent phase, accompa-

nied by the involvement of more commensals (Fig. 5). In each phase,

two core co-occurrence networks were identified. The bacteria in the

same core network were often linked by positive correlation, whereas

the bacteria in different networks were linked by negative correlation,

especially in the convalescent phase (Fig. 5). Of particular impor-

tance is that a core co-occurrence network was found to be mainly

formed by Pseudomonas, Herbaspirillum, and Comamonadaceae_U

in early phase, and it maintained to late convalescent phase (Fig. 5).

Pseudomonas is a pathogenic bacteria; Herbaspirillum and Coma-

monadaceae_U are environmental bacteria. In the convalescent

phase, all these bacteria had a negative correlation with some

common commensals (including hub bacteria Prevotella and un-

classified Clostridia, as well as non-hub bacteria Faecalibacterium

and Roseburia). The persistent existence of these pathogenic and

environmental bacteria implies a slow improvement of the micro-

biome in these COVID-19 children.



Fig. 4. Dynamic changes of key taxa in three body sites of COVID-19 children. Indicator genera of DMM clusters with both > 0.5 indicator values and P values < 0.001 were selected as

key taxa and shown in 8 COVID-19 children with at least 2 time points of sampling. Change of the relative abundance of each indicator genus is shown with the area of different colors.

This figure is linked to Fig.S5.
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Functional profiling of microbial clusters associated with

COVID-19 children

PIRCUST2 was used for the prediction of the microbial cluster

functions. Based on KEGGORTHOLOGY(KO) abundances predicted

by PIRCUST2, we identified indicator KOs of each microbial cluster

and then conducted KEGG pathway enrichment analysis per mi-

crobial cluster. A total of 66 KEGG pathways belonging to 19 KEGG

functional categories were significantly enriched in 8 microbial

community types (Fig. S7). The top three functional categories were

amino acid metabolism, carbohydrate metabolism, and energy

metabolism. Different from those of the H-MIX type cluster, we found

that some enriched pathways in other seven community types might

be associated with the virulence or infection/growth of opportunistic

pathogenic bacteria. For example, the bacterial secretion system

that contributes to the pathogenicity of pathogenic bacteria by

secreting virulence factors from the cytosol of the bacteria into host
808
cells or the host environment (Green and Mecsas, 2016) were

significantly enriched in COVID-TN-II, COVID-TN-III, COVID-GUT-II,

and COVID-GUT-III. Flagellum has been implicated in bacterial

adhesion to and invasion into host cells (Haiko and Westerlund-

Wikstrom, 2013). Consistently, we found that flagellar assembly

pathways were significantly enriched in COVID-GUT-II, COVID-TN-II,

and COVID-TN-III. Two-component system regulating the virulence

of bacterial pathogens (Beier and Gross, 2006) were found to be

significantly enriched in COVID-GUT-II, COVID-TN-II, COVID-TN-III,

and H-GUT. The pathway “Biofilm formation-Pseudomonas aerugi-

nosa” was significantly enriched in both COVID-TN-II and COVID-

TN-III. Furfural can be used as carbon sources of Pseudomonas

(Lee et al., 2016). Furfural degradation pathway was enriched in

COVID-TN-III. This is consistent with the finding of Pseudomonas as

being indicator bacteria of both COVID-TN-II and COVID-TN-III. It

was noted that lipoarabinomannan (LAM) biosynthesis pathway was

significantly enriched in both COVID-TN-III and H-GUT. LAM is the



Fig. 5. Co-occurrence network of the microbiome in the progression of COVID-19 children. We selected those microbial genera appearing in at least 30% of samples with at least

0.3% average abundance as core microbiomes to perform Pearson correlation analysis among microbial taxa. The microbial relative abundance was normalized by the centered log-

ratio transformation, and correlated microbial pairs with both Pearson correlation r values higher than |0.5| and FDR-adjusted P values lower than 0.001 are shown. The acute, middle,

and convalescent phases are defined as the first three days since symptom onset, the fourth day to the day of discharge, and the days after discharge, respectively. Each indicator

genus is labeled by a circle that is filled with different colors showing the corresponding DMM clusters (community types), and its name is colored according to its phyla. The hub genus

is highlighted by a half-open circle. The networks mainly formed by Pseudomonas, Herbaspirillum, and Comamonadaceae_U are highlighted by the cyan shadows. The line thickness is

proportional to the strength of the correlation.
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major glycolipid found in all mycobacteria, a virulence factor of

Mycobacterium tuberculosis, and it is thought to play a role in the

pathogenesis of tuberculosis (Fukuda et al., 2013). LAM might be

essential for the growth of predominant bacteria in those two com-

munity types and/or the coordinated expression of virulence factors.

Discussion

SARS-CoV-2 infection causes damage to multiple organs in

adults either through direct infection or indirect disruption of host

homeostasis, including perturbation of the gut and the upper res-

piratory microbiota (Gu et al., 2020; Zuo et al., 2020). Here, we

report a longitudinal investigation of the microbiome with sampling

from multiple anatomical sites of children with COVID-19 and pre-

sent evidence that children have a distinct dynamic process of the

microbiota during the course of COVID-19 compared with adults

(Xu et al., 2021). The study of children is a significant feature

because early-life microbiome plays important roles in the devel-

opment of host immunity, metabolism, and neural systems,

affecting profoundly health status in later life (Derrien et al., 2019).

The infant microbiome attains a relatively stable adult-like structure

at the age 3 years after a highly dynamic initial developmental

(Months 3e14) phase, a transitional (Months 15e30) phase, and

finally a stable phase (Months 31e46) (Stewart et al., 2018). The

development of infant microbiome is more easily influenced by

various internal (genetic) and external factors (e.g., birth mode,

feeding type, siblings, antibiotics, and infection) (Man et al., 2017;

Derrien et al., 2019). Maternal gut bacterial strains provide the

largest contribution to early-life microbiome composition (Ferretti

et al., 2018). Disruption of early-life microbiome development

caused by antibiotics and malnutrition was demonstrated to be

associated with an increased risk of health problems later in

childhood and even adulthood, such as developmental retardation,
Fig. 6. Distinct gut and respiratory microbiome mechanisms associated with the progre

adults was interpreted from our recent observation based on the longitudinal throat and anal sw

IV indicate a progressive dysbiosis of the microbiome. In mild adults with COVID-19, a synchron

found in both respiratory and gut microbiomes within a short time. In children, however, the

possibly implying that the “airway-gut axis” is still not established during the childhood. More

long period despite a fast clinical recovery. RV, respiratory virus.
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allergic diseases, obesity, diabetes, and immune dysfunction

(Livanos et al., 2016; Grier et al., 2018; Guan et al., 2020; Onder et

al., 2020; Wu and McGoogan, 2020). We found that SRAR-CoV-2

infection altered the upper respiratory tract and the gut micro-

biota of children and disturbed their normal development.

SARS-CoV-2 infection impaired the upper respiratory tract and

the gut microbiome in both adults and children, but themicrobiome in

both organs faced diverging fates between children and adults

(Fig. 6). In some adults with mild COVID-19 symptoms, the upper

respiratory tract and the gut microbiomes showed a synchronous

restoration from early dysbiosis toward later more diverse bacterial

community structure within a short period (6e17 days), accompanied

with their clinical recovery (Xu et al., 2021). In children, the micro-

biomes at both organs were extremely variable during COVID-19 and

remained a long-term dyshomeostasis. Furthermore, the dynamic

change of the microbiome was divergent between the upper respi-

ratory tract and the gut. The microbiome, especially in the upper

respiratory tract, appeared to maintain persistent dysbiosis for a long

period (25e52 days) in spite of clinical recovery of these patients at

13e38 days after symptom onset (Figs. 3, 4 and 6). In this cohort, six

children who were aged older than three years were expected to

have relatively stable adult-like microbiome. However, their impaired

microbiomes by COVID-19 showed an extremely variable feature.

These suggest that the microbiome is still particularly vulnerable and

less resilient and is easily impaired by various respiratory viral

infection during childhood even after attaining a stable phase (Man

et al., 2017; Stewart et al., 2018; Derrien et al., 2019). In particular,

the persistent dysbiosis of the microbiomes caused by COVID-19

might impart potential short-term and long-term health problems

during childhood.

Previous studies have reported that alteration of the respiratory

tract microbiome with lower bacterial diversity increased the suscep-

tibility of children to acute respiratory tract infections (ARTIs) (Teo et al.,
ss of COVID-19 in adults and children. The dynamic mechanism of the microbiome in

abs from 35 adults with COVID-19 (Xu et al., 2021). Similar community types from I to III/

ous shift of community type from early dysbiosis towards late incomplete restoration was

changes of the community types were divergent between the respiratory tract and gut,

over, children's respiratory microbiome appeared to be progressively deteriorating for a
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2015; Piters et al., 2016; Langevin et al., 2017; Dubourg et al., 2019;

Man et al., 2019). The impaired microbiome in children with COVID-19

was characterized by Pseudomonas-dominated community types. In

particular, a core bacteria-bacteria co-occurrence network driven by

Pseudomonas, Herbaspirillum and Comamonadaceae_U was main-

tained from the early phase to the convalescent phase (25e58 days).

The persistent existence of these opportunistic pathogens and envi-

ronmental bacteria resulted in the enrichment of some specific

metabolic pathways that might favor the colonization and growth of

opportunistic pathogenic and environmental bacteria but inhibit the

growth of some beneficial commensals. Probiotic (e.g., Bifidobacte-

rium) and butyrate-producing bacteria (e.g., Faecalibacterium) that

have anti-inflammatory ability were found to be extensively depleted

from the gut and the upper respiratory tract microbiomes of some

children, especially at the late stage of COVID-19 (Riviere et al., 2016;

Lopez-Siles et al., 2017) (Fig. 6). Low abundance or lack of butyrate-

producing bacteria might not tolerate low-level inflammation induced

by SARS-CoV-2, rendering children more vulnerable to ARTIs and

diarrheal diseases (Man et al., 2017; Dubourg et al., 2019; Li et al.,

2019). In particular, the enrichment of genera Moraxella and Strepto-

coccus in these COVID-19 children might predispose them to an

increased risk of recurrent ARTIs (Teo et al., 2015).

One limitation of our study is that only nine COVID-19 children

were recruited in this study. This is because of the fact that the

epidemic was quickly controlled in Shanghai and surrounding areas,

and very few children were infected and available for study. Although

the relatively small patient number requires further validation in a

larger cohort, our results clearly showed extremely dynamical and

impaired microbiomes in both the upper respiratory tract and the gut

in children with COVID-19. Although we followed the dynamic

changes of the microbiomes in these children up to 58 days after

symptom onset, the long-term effect of COVID-19 on the develop-

ment of microbiome in childhood needs to be further investigated. In

addition, the use of only 16S rRNA gene sequence data may limit our

ability to more exactly identify bacteria and infer their function.

To the best of our knowledge, the complex dynamics of the upper

respiratory and the gut microbiota in children with COVID-19 has yet

been reported. SARS-CoV-2 infection altered the microbiomes of

both organs in children and disturbed their development. The

observation of a prolonged dyshomeostasis of the microbiomes in

both organs of these children implies possible short-term and long-

term complications after they have recovered from COVID-19 and

predispose afflicted children to an increased health risk in later life.

Although the long-term outcomes of COVID-19 on children need to

be further studied with more extended follow-up and larger cohort,

our data suggest that early implementation of various intervention

strategies to modulate the microbiome development may provide

clinical benefit to children in the post-COVID-19 era.
Materials and methods

Study population

Nine children were diagnosed as COVID-19 patients by Children's
Hospital of Fudan University according to the National Guidelines for

Diagnosis and Treatment of COVID-19. A total of 103 samples,

including 31 nasal swabs, 28 throat swabs, and 44 feces, were

collected from these patients (Fig. S1). Twenty-five samples from 14

age-matched healthy children were used as controls (Table S1). The

upper respiratory samples were collected using flexible, sterile, dry

swabs, which can reach the posterior nasopharynx and oropharynx

easily (approximately 2 inches). About 2 mL spontaneous (unstimu-

lated) fecal specimen (300 mg/tube) were collected into a sterile

cryogenic vial (Corning, NY, USA), divided into aliquots and stored
811
at�80�C until use. The sampling was performed by the professionals

at the hospital.

The study was approved by Children's Hospital of Fudan Uni-

versity (2020e27). Informed consents were obtained from involved

patients or their guardians.

Confirmation of COVID-19 children

The clinical and epidemiological characteristics and SARS-CoV-2

RNA shedding patterns of these patients have previously been re-

ported (Cai et al., 2020; Liu et al., 2020). All nine COVID-19 children

had mild symptoms. The virus RNA was extracted from all samples

using a Mag-Bind RNA Extraction Kit (MACCURA, Sichuan, China)

according to the manufacturer's instruction. TheORFlab andN genes

of SARS-CoV-2 were detected using a Novel Coronavirus (2019-

nCoV) RNA detection kit (PCR-Fluorescence Probing; DAAN gene,

Guangzhou, China) according to the manufacturer's instruction.

16S rRNA gene sequencing

All samples, including nasal swabs, throat swabs, and stool

samples, were subjected to the DNA extraction using a QIAamp DNA

Microbiome Kit (QIAGEN, Düsseldorf, Germany). A novel triple-index

amplicon sequencing strategy was used for 16S rRNA gene

sequencing (D'Amore et al., 2016). In brief, a set of universal bacterial

primers was used to amplify the V4 hypervariable region (515e806 nt)

of the 16S rRNA gene. Two rounds of PCR amplification were per-

formed (De Muinck et al., 2017). A reaction mixture containing 8 mL
nuclease-free water, 0.5 mL KOD-Plus-Neo (TOYOBO, Osaka Boseki,

Japan), 2.5 mL each of 1 mM PCR1 forward and reverse primers, and

5 mL DNA template was prepared for the first round of the PCR

(PCR1) amplification. PCR1 products were purified using Monarch

DNAGel Extraction Kit (New England Biolabs, Ipswich, MA, USA) and

quantified by a Qubit 4.0 Fluorometer (Invitrogen, Carlsbad, CA,

USA). Purified PCR1 products were pooled with equal amounts and

then subjected to the secondary round of PCR (PCR2) amplification.

The PCR2 mix contains 21 mL nuclease-free water, 1 mL KOD-Plus-

Neo (TOYOBO, Osaka Boseki, Japan), 5 mL each of 1 mM PCR2

forward and reverse primers, and 5 mL pooled PCR1 products. The

PCR2 products were purified using the same Gel Extraction Kit and

qualified using the Qubit 4.0 Fluorometer. The specific products were

further qualified using Agilent 2100 Bioanalyzer (Agilent, Santa Clara,

CA, USA). The PCR2 products with equal moles of specific products

were pooled and then mixed with AMPure XP beads (Beckman

Coulter, Pasadena, CA, USA) in a ratio of 0.8:1. After purification, the

amplicons were paired-end sequenced (2 � 250) using the Illumina-

P250 sequencer. To control contamination from laboratory, negative

controls with nuclease-free water (NC-1) were simultaneously per-

formed with clinical samples during the two rounds of PCR amplifi-

cation. Furthermore, nuclease-free water (NC-2) was also subjected

to DNA extraction and subsequent two rounds of PCR amplification.

No amplification was detected in these NCs, and therefore, no 16S

data were obtained for NCs. These suggest that there was less

possibility of contamination from laboratory and related reagents

(including DNA extraction kit).

Bioinformatic analysis of 16S rRNA gene sequence data

Using USEARCH11 software (Edgar, 2013) and FASTX-Toolkit

(Hannon, 2010), sequenced reads were merged, demultiplexed,

and filtered. After trimming barcode, adapter and primer sequences

using FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/),

14,702,896 sequences were retained with an average of 100,019

sequences per sample. Based on the QIIME 2 platform (https://

qiime2.org) (Caporaso et al., 2010), the Deblur (Amir et al., 2017)

http://hannonlab.cshl.edu/fastx_toolkit/
https://qiime2.org
https://qiime2.org
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was used to cluster sequence data into ASVs. ASVs are better than

the traditional operational taxonomic unit picking usually according

to 97% sequence similarity threshold, which may miss subtle and

real biological sequence variation (Gilbert et al., 2018). In particular,

we used the Deblur to perform quality filtering, dereplication, chi-

meras removal with default settings except for merged sequences

truncated to 250 bp. An ASVs count table was generated (2187

ASVs). The taxonomic classification of ASVs representative se-

quences was assigned by using the RDP Naive Bayesian Classifier

algorithm (Wang et al., 2007) based on the Ribosomal Database

Project 16S rRNA training set (v16) database (Cole et al., 2014).

Finally, the ASVs table was subsampled at an even depth of 3600

sequences per sample to eliminate the bias led by different

sequencing depths among samples. The ASVs coverage of 87%was

sufficient to capture microbial diversity.

Identification and characteristics of microbial community

types

Based on the bacterial genus abundance, we used the DMMs

(Holmes et al., 2012) algorithm implemented in mothur (v1.44.1)

(Schloss et al., 2009) to identify microbial community types. The

DMM algorithm can efficiently cluster samples based on microbial

composition, and its sensitivity, reliability, and accuracy were widely

confirmed in many microbiome studies (Ding and Schloss, 2014;

Fujimura et al., 2016; Stewart et al., 2018). Based on the lowest

Laplace approximation index, the appropriate microbial community

type numbers (DMM clusters) were determined. Conjugated with the

Analysis of Similarities (ANOSIM), the reliability of DMM clustering

was further validated and then visualized by the nonmetric multidi-

mensional scaling (NMDS) based on the Bray-Curtis distance under

bacterial genus level. The ANOSIM statistic “R” compares the mean

of ranked dissimilarities between groups to the mean of ranked

dissimilarities within groups. An “R” value close to “1.0” suggests

dissimilarity between groups, whereas an “R” value close to “0”

suggests an even distribution of high and low ranks within and be-

tween groups (Clarke, 1993). ANOSIM P values lower than 0.05

suggest higher similarity within sites. Richness (observed ASVs) and

Pielou's or Species evenness for each community type were calcu-

lated for estimating the difference of alpha diversity. The analyses

described above were performed using “R” package “vegan” v2.5-6.

Using “R” package “Pheatmap,” the dynamic change of microbial

community types and compositions were visualized. Alpha diversity

difference between groups was measured using the Wilcoxon Rank

Sum Test in “R” package.

Identification of indicator taxa contributing to microbial

community typing

To get the reliable indicator genus for community typing, we

performed the Indicator Species Analysis using the indicspecies

package (ver.1.7.8) (De Caceres et al., 2010) in “R” platform with top

40 genus contributing to DMM clustering that accounted for 71%

cumulative difference. Dynamic changes of indicator genera corre-

sponding to each community type were showed for all COVID-19

children using the pheatmap package in “R” language.

Co-occurrence network analysis of the microbiomes at the

upper respiratory tract and the gut of the COVID-19 children

Based on microbial genus abundances normalized by the

centered log-ratio transformation of gut, nasal, and throat samples

collected from eight COVID-19 children, we calculated the Pearson

correlation coefficient (Pearson's r) among bacterial genera of

three body sites. Before performing correlation analysis, we
812
selected the microbial genera appearing in at least 30% of sam-

ples with at least 0.3% average abundance as core microbiome

composition to perform microbial occurrence analysis. The Pear-

son's “r” higher than 0.5 or lower than �0.5 with P value that was

below 0.001 after the FDR adjustment was considered significant

correlation. Co-occurrence network of significantly correlated

bacterial genus pairs was visualized using Cytoscape v3.8.0

(Otasek et al., 2019).
Prediction of unique indicator functions from 16S marker

sequences

To investigate the potential function enriched in themicrobiome of

the COVID-19 children, the microbial metabolic KEGG pathways

were reconstructed using PIRUST2 (Douglas et al., 2020) to predict

KOs (KEGG Orthologs) and produce KO relative abundances in each

sample assigned into microbial clusters. Indicator KO analysis for

each cluster was performed by the “indicspecies” package in R.

Based on indicator KOs in each cluster, a hypergeometric test was

used to determine significant enrichment of a specific KEGG

pathway under holm adjusted P value lower than 0.05. All information

of both KO and KEGG pathway were downloaded from KEGG API

(https://www.kegg.jp/kegg/rest/keggapi.html).
Availability of data and materials

The raw data of 16S rRNA gene sequences are available at NCBI

Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/) at Bio-

Project ID PRJNA642019. The data sets to generate the Figures are

provided in Dataset S1. The scripts used for the analyses are pro-

vided in the Text S1.
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