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Artificial intelligence to improve back pain outcomes

and lessons learnt from clinical classification approaches:
three systematic reviews

Scott D. Tagliaferri®'®, Maia Angelova (@7, Xiaohui Zhao?, Patrick J. Owen @', Clint T. Miller!, Tim Wilkin? and Daniel L. Belavy'®™

Artificial intelligence and machine learning (Al/ML) could enhance the ability to detect patterns of clinical characteristics in low-
back pain (LBP) and guide treatment. We conducted three systematic reviews to address the following aims: (a) review the status of
Al/ML research in LBP, (b) compare its status to that of two established LBP classification systems (STarT Back, McKenzie). AlI/ML in
LBP is in its infancy: 45 of 48 studies assessed sample sizes <1000 people, 19 of 48 studies used <5 parameters in models, 13 of
48 studies applied multiple models and attained high accuracy, 25 of 48 studies assessed the binary classification of LBP versus no-
LBP only. Beyond the 48 studies using Al/ML for LBP classification, no studies examined use of Al/ML in prognosis prediction of
specific sub-groups, and Al/ML techniques are yet to be implemented in guiding LBP treatment. In contrast, the STarT Back tool has
been assessed for internal consistency, test—retest reliability, validity, pain and disability prognosis, and influence on pain and

disability treatment outcomes. McKenzie has been assessed for inter- and intra-tester reliability, prognosis, and impact on pain and
disability outcomes relative to other treatments. For AI/ML methods to contribute to the refinement of LBP (sub-)classification and
guide treatment allocation, large data sets containing known and exploratory clinical features should be examined. There is also a
need to establish reliability, validity, and prognostic capacity of Al/ML techniques in LBP as well as its ability to inform treatment

allocation for improved patient outcomes and/or reduced healthcare costs.
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INTRODUCTION

Low-back pain (LBP) is the leading cause of disability worldwide'
and is associated with annual economic costs up to AU $9.2
billion® and US $102 billion® in Australia and the United States of
America, respectively. In addition to economic burden, multiple
individual factors (e.g. loss of social identity4, distress® and
physical deconditioning®) contribute to pain intensity and
disability in this population group’. Approximately 90% of people
with LBP are classified as having ‘non-specific’ LBP, where no clear
tissue cause of pain can be found®. However, we anticipate that
people with non-specific LBP are not a homogeneous group, yet
the challenge remains to identify potential sub-groups that could
benefit from specific treatments to assist in reducing the burden
of the condition®.

Artificial intelligence and machine learning (AlI/ML) techniques
have been used to improve the understanding, diagnosis and
management of acute and chronic diseases'®. Technological
advancements, such as machine-learning algorithms, have led to
an increased capacity to recognise patterns in data sets, and used
successfully to classify individuals with liver disease and heart
failure’®'" and have found some application more widely in pain
research’?. However, the utilisation of such techniques in LBP, to
date, is limited. The primary aim of this work was to conduct a
systematic review examining how machine-learning tools have
been used in LBP.

A classification approach or assessment tool that is implemen-
ted in clinical practice should have utility: be it for the patient (e.g.
improved outcomes) and/or for the healthcare system (e.g.
reduced costs). Any classification tool should ideally be (a) reliable,

(b) valid, (c) detect people who are likely to have a different
outcome or prognosis and (d) its implementation in clinical
practice should improve patient outcomes, reduce healthcare
costs and reduce the burden of disease'*'®. To illustrate the
current status, and potential future direction, of Al/ML approaches
to LBP, we contrasted this to two commonly implemented clinical
classification approaches (McKenzie'® and STarT Back'®). The
McKenzie method has been extensively studied in randomised
clinical trials (RCTs) and subsequent meta-analyses of LBP
treatment'’, while the STarT Back tool is currently recommended
in national guidelines'®. McKenzie is a classification method of
diagnosing movement preferences (e.g. spinal extension versus
flexion) based on symptom response (e.g. centralisation versus
peripheralization of symptoms)'®, while the STarT Back classifies
people in to low-, medium- and high-risk of developing persistent
disabling symptoms based on physical and psychosocial factors'>.
A comparison of AI/ML utilisation to these existing clinical
classification approaches can guide future work in sub-
classification of LBP using AI/ML, specifically allowing for the
development of a more robust tool that has the potential to
impact the burden of disease of LBP. Therefore, (a) the primary
aim was to systematically review the literature on AlI/ML in LBP
research, (b) while a secondary aim was to systematically review
and contrast two common LBP classification approaches that are
in active use in clinical practice (McKenzie and STarT Back) to how
Al/ML tools have been used to date. To do this, we considered the
reliability, validity, and prognostic capacity of these classification
systems, as well as their impact on patient outcomes (e.g. pain
intensity and disability) and healthcare costs, as determined
in RCTs.
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Fig. 1
low-back pain research.

RESULTS
Machine learning

Despite broad search terms, only 185 articles were identified after
duplicate removal, with 64 assessed at the full-text stage (Fig. 1).
The reasons for exclusion of Al/ML studies at the full-text stage are
presented in Supplementary Table 1. A total of 48 studies were
included in data extraction and qualitative synthesis (Fig. 1)'°7.

The overview of study characteristics and authors conclusions is
presented in Table 1. Studies were split into case—control, cohort
or other classifications. Overall, the sample sizes ranged from 10 to
34,589 people. The populations consisted of 16 studies that
|00ked at Chronic LBP19,20,24,28,29,31,36,37,39,42,54—57,62,64, two acute
LBP?”3%, one recurrent®?, one lumbar spinal stenosis?®!, two
surgical*®®’, nine other (mixed samples)3>38:404148:51536566 3,4
17 were unclear (LBP type not defined)?32>2632-3443-
4347:495052,58-6063 Tan studies did not report training and testing
Of the data Set526'29'33'46'51'52'55'56'59'60.

Classification of LBP was assessed in 25 studies, all of which
attempted binary classification to detect the presence of LBP or
n0t19'20'23_25'28'29'31_33'37'40_42'44'47'49'50'53_55'57'62_64. one Study ClaS'
sified golfers with and without LBP based on electromyography
and golf kinematic data using a support vector machine (multi-
layer perceptron with one layer, where input data are placed into
vector spaces)'? with 100% accuracy®’. Another study looked at
classifying LBP based on the number of contacts with healthcare
professionals with an accuracy of 91%*. Four studies®>324%4!
classified LBP and controls based on electromyography, spinal
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Artificial intelligence PRISMA diagram. Flow of the systematic review of artificial intelligence/machine learning approaches in

positions and trunk range of motion. Sample sizes of these studies
range from 98 to 1510. The accuracy of these studies for
classifying LBP ranged from 83 to 92%. One study classified LBP
in 160 industrial workers on personal, psychosocial and occupa-
tional factors using an artificial neural network (ANN; programs
that operate with multiple processing elements or neurons to
determine the strength of connections between nodes) with 92%
accuracy®. The next largest study was one in 34,589 people and
showed an ANN on lifestyle and psychosocial characteristics
classified LBP with an area under the curve of 0.75. Eleven studies
looked at the classification of individuals with chronic
LBp'920:24.28,29,37,42,54,57.62.64 Tha sample size of studies in chronic
LBP  classification ranged from 24 to 171 indivi-
duals'920-2428:29.37,42,5457.6264 Nine of these studies used input
parameters that focused on electromyography and trunk motion
data?02428.293742545762  The accuracy of the machine-learning
models for CLBP classification ranged from 70 to
1 00%19,20,24,28,29,37,42,54,57,62,64.

No studies have used Al/ML techniques to assess LBP prognosis
of pre-defined sub-groups on pain and disability outcomes.
However, nine studies assessed the prognosis of LBP based on
input parameters?':2227:303146515239 ‘gt djes examined prognosis
prediction using AlI/ML techniques of: satisfaction after lumbar
stenosis surgery?!, recurrent lumbar disc herniation??, recovery
from acute LBP?’*° recovery from CLBP®', poor outcomes
following lumbar surgery®®>", successful outcomes from cognitive
behavioural therapy®®> and recovery based on pain chart
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5 ‘EE%E §*§ S8 *2% = ‘géﬁ %E 8 sensitivity and specificity of 88% and 86%, respectively®.
il 25 VGRE= bl . .1
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S | 382233 528828 328088 to, using existing data sets, diagnose nerve root compression,
‘simple’ LBP, spinal pathology and abnormal illness behaviour in
§ | | ‘ . LBP. These models achieved an accuracy of 82% and 90%,
g respectively®®486>%¢ Two studies aimed Jlo predict vertebral
M | | E 5 pathologies with an accuracy of 90—92.%5 o La§tly, one study
‘é’. u?ed a goecision support system for LBP diagnosis with an accuracy
Q Q of 73%"".
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& | | | 2 ;cooll(s dfort I:fBP ttreattmeth atlllocatlo:}; Howeger, t\t/vc(nj stl‘l;gll(e:d 'at
2 ooked at treatment allocation pathways. One study
7 a computer-assisted prediction of LBP treatment, but did not report
é 3 any accuracy values nor clearly the nurpber of treatment
g |8 2 $ g pathways”®. The other gtudy used 1288 ﬁctlonal4§:ases to train
e, . — § the data set and a training sample of 45 huma\”ns ._The hlghtesc;
c gg .58 % £ §§§w§‘§ 2 3facsur7212%>11§>r predicting appropriate treatment allocation reporte
T 353598 =% w® S oSS s5@ — o .
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gé%% 25 8 gé %’SE §§§,§§ S EE ] assessed the prediction of pain intensity in LBP based on pain
$2s528 %%+ 28yt o% §g%§§ 2l ¢ intensity and skin resistance® and spinal motion data®®. The use
2 g §'§,§§§ REE g%é% § g< §§ Eg—g 2 of sleep actigraphy to d%germlne daytime pain was as_sessed in
2 2% gg é'g g8%2 ﬁ’é 22 g% SE §§§“§ 5 one sFudy using an ANN>®, An.other was used .to predlct. neyral
3 adaptions based on psychosocial constructs using a Multivariate
g % . > Pattern analysis®. Lastly, one study assessed self-report and
55 ug Loz T:j objec:tivse5 activity data to categorise acute and chronic LBP using
%8 25, 95 ° an ANN°,
- An Gvenven of fek ot flom e NOS I shown In Table 2
> | 283 25% s2Ts N Overall, 29 studies®%23~2>28:2932:34,38,40-42444547-5053-55,57,38,61-66 \yara
E |5gs g3= gE2: £ case—control while eight?'?>273031374652 \yere cohort studies.
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v studies and did not undergo the risk of bias assess-
- £ ment'926333336394351,365960  Of the case—control studies, eight
E| e conddeed o i i the oher 2
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£ 2 g ¢s (Supplementary Fig. 27" The reasons for exclusion o
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s |E% ) 29 2 Supplementary Table 2.
z 25 E’ 8 S Egliability ar)1ld validity are summarised in Supplementary Table
£ 3. Nine studies assessed the internal consistency of the tool, with a
g o 5 5 3 Cronbach’'s a rangin% 109from 051 to Q.93 (po_or to
g | g ° " = strong)®87>8288.9899101103.109 only one study achieved an internal
Fo|o > > © consistency above 0.9 (strong), which is recommended for use in
z 5 individuals'". Nine studies also assessed the test—retest reliability
=0 | o o ° S of the STarT Back with the intraclass correlation coefficient and
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Table 2. Risk of bias assessment using the Newcastle-Ottowa Scale.

Study Selection Comparability Exposure

Case—control 1 2 3 4 5 6 7 8 9 Total
Abdullah et al.*® 0 0 0 0 0 0 0 0 0 0/9
Al Imran et al.>° 0 0 0 0 0 0 0 0 0 0/9
Ashouri et al.® 1 0 1 1 0 0 1 0 1 5/9
Bishop et al.® 0 0 1 1 0 0 0 1 1 4/9
Bounds et al.>® 0 0 0 1 0 0 1 1 1 4/9
Caza-Szoka et al.>* 0 0 0 1 0 0 0 1 1 3/9
Caza-Szoka et al.>* 0 0 0 1 0 0 0 1 1 3/9
Chan et al.> 1 1 1 1 0 0 0 1 1 6/9
Darvishi et al.?® 0 0 1 1 0 0 0 1 1 4/9
Du et al.>’ 1 1 0 1 0 0 1 1 1 6/9
Hu et al.?® 1 0 0 1 0 0 0 1 1 4/9
Hung et al.?® 0 0 0 0 0 0 0 0 1 1/9
Jin-Heeku et al.* 0 0 0 0 0 0 0 0 0 0/9
LeDuff et al.> 0 0 0 0 0 0 0 1 1 2/9
Melo Riveros et al.* 0 0 0 0 0 0 1 1 1 3/9
Oliver et al.*’ 0 0 1 1 0 0 0 1 1 4/9
Oliver et al.*? 0 0 1 1 0 0 0 1 1 4/9
Olugbade et al.® 0 0 0 0 0 0 0 0 0 0/9
Parsaeian et al*%. 0 1 0 1 0 0 0 1 1 4/9
Sandag et al.®® 0 0 0 0 0 0 0 0 0 0/9
Silva et al.*” 0 0 0 0 0 0 0 1 1 2/9
Ung et al.® 1 1 1 1 0 0 0 1 1 6/9
Karabulut et al.>® 0 0 0 0 0 0 0 0 0 0/9
Mathew et al.>® 0 0 0 1 0 0 1 1 0 3/9
Mathew et al.®! 0 1 0 1 0 0 1 1 1 5/9
Vaughn et al.®® 0 1 0 1 0 0 1 1 1 5/9
Vaughn et al.®® 0 1 0 1 0 0 1 1 1 5/9
Vaughn et al.*® 0 1 ] 1 0 0 1 1 1 5/9
Sari et al.*® 0 0 0 0 0 0 0 1 1 2/9
Cohort Selection Comparability Outcome Total
Magnusson et al.” 1 1 1 1 0 0 1 0 1 6/9
Azimi et al.”! 1 1 1 1 0 0 1 1 0 6/9
Azimi et al.?? 1 1 1 1 0 0 0 1 0 5/9
Barons et al.>? 1 1 1 1 0 0 0 1 1 6/9
Hallner et al.?’ 1 1 1 1 0 0 1 1 0 6/9
Jarvik et al.>° 1 1 1 1 0 0 1 1 1 7/9
Jiang et al.*' 1 1 0 1 0 0 0 1 1 5/9
Shamim et al.*® 1 1 1 1 0 0 0 1 0 5/9
Other® Selection Comparability Outcome Total

Kadhim et al.>®
Lee et al.'®

Lin et al.%®®

Andrei et al.>’'

Li et al.>®

Dickey et al.>®
Liszka-Hackzell et al.>
Liszka-Hackzell et al.>®
Meier et al.>®

Gal et al.®®

Oude et al.*

Higher scores indicate better quality.
*Neither case—control nor cohort study design.
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for disability”483-868993:94,9697,102,105108 " \yhile two showed sig-

nificant prognostic benefits on mixed pain intensity and disability
analyses®®®'. Of the multivariate models, two studies showed the
STarT Back to predict prognosis for pain intensity adjusted for
baseline pain®°!, while four showed no significant associa-
tion”727893_ Eight studies assessed prognosis for disability in
multivariate models adjusted for baseline levels of disability with,
six studies in favour’'72839093102 anq  two against’®®' a
significant association.

Four clinical trials assessed the STarT Back for classification and
treatment allocation-compared outcomes to standard care
(Supplementary Table 5)157695110 " Of these, two were non-
randomised trials, one which showed significant benefits of
stratified care for pain and disability outcomes®, while the other
only showed significant benefits for disability''®. The two RCTs
showed no significant effects of stratified care on pain inten-
sity’>”®, while one showed a significant effect for disability’®. One
RCT" and one non-randomised trial''® assessed the cost
effectiveness of stratified care when compared with standard
care, with no significant differences observed.

McKenzie method

Overall, 29 studies were included within the McKenzie review
(Supplementary Fig. 2)'"'""'*°. The reasons for exclusion of
McKenzie studies at the full-text stage are presented in
Supplementary Table 6.

Eight studies looked at the inter-tester reliability and classifica-
tion ability of the McKenzie method (Supplementary Table
7)113115121122131-133.136 - yerall, seven studies assessed the
reliability with a Kappa value range of 0.02—1.00''3121.122131~
133136 Only two of these studies had Kappa ranges >0.6; thus, five
studies had poor to moderate agreement'*®. One study also
showed that 31% of individuals were not able to be classified with
the McKenzie method''. Validity of the McKenzie method as a
classification system cannot be tested, as there is no gold standard
comparator'',

Prognosis on pain intensity or disability based on McKenzie
principles, such as directional preference, centralisation versus
peripheralization and pain pattern classification, was assessed in
1 Studies (Supplementary Table 8)114,117,120,124,128,130,134,135,137—139'
The duration of follow-up of these studies ranged from 2 weeks to
1 year. Four studies reported the follow-up as when the patient
was discharged; however, they did not provide a time-
frame''*139138139 Three studies showed that classification was a
significant predictor of pain intensity in univariate models''#3>'3%,
while one did not'"’. No studies aimed to assess the classification
on pain intensity in a multivariate model when adjusted for
baseline values. For disability, five studies showed no significant
benefit of classification on prognosis''”'2813013%137 "\yhile five
showed a significant effect!'*'20124138139  Only two studies
assessed disability prognosis within multivariate models, with
one showing significant'*® and one non-significant results'*’.

The search identified 11 clinical trials that used the McKenzie
assessment and then provided treatment based on the individuals
classification compared to another intervention or treatment
(supplementary Table 9)11'I,'I12,116,118,119,123,1257127,129,130' The com-
parators in the trials consisted of standard physiotherapy''’,
chiropractic treatment''?, back-care booklet''?, back school''®,
motor control exercise''®'%%, endurance exercises''®, first-line
, manual therapy'?’, general advice'?, intensive strength-
ening'?® and spinal manipulation therapy'*°. Five of 11 trials
showed significant benefits for pain intensity, which favoured
McKenzie treatment at the end of intervention''112119123.125 fqp
disability, four of 11 studies showed significant benefits favouring
McKenzie treatment at the end of intervention''"'"6"'%123 Three
studies'' 123125 3ssessed McKenzie compared to standard care,
with all studies showing significant results favouring McKenzie for
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pain intensity and two for disability''""'?3, Three studies''*'%1%”
assessed McKenzie compared to advice or education, with two
showing significant improvements in pain intensity''>''® and one
in disability’"®, favouring McKenzie. Compared to passive treat-
ments, such as manual therapy or mobilisations, three studies
showed no significant differences for pain intensity and dis-
ability"'#"2713% " Three studies compared McKenzie to active
treatments, with no significant results for pain intensity or
disability observed''®'2¢'2° One study compared McKenzie to
Back School, with significant results favouring McKenzie for
disability but not pain intensity''®. One study assessed costs with
no differences observed between McKenzie therapy and standard
chiropractic treatment''%.

DISCUSSION

Al/ML are becoming more widely used in disease management
and has potential to impact LBP treatment'?. This systematic
review assessed the current status of these approaches in the
management LBP. In comparison to other classification
approaches, applying methods of AI/ML for LBP is currently in
its infancy. The results of our review show that machine-learning
tools, such as ANNs and support vector machines, have attempted
binary classification (presence of LBP or not), recovery prediction
and treatment allocation in LBP. The accuracy of models included
in this study ranged from 61 to 100%. However, there are several
important limitations in existing Al/ML research.

Study sample sizes used for Al/ML-based LBP classification or
prognosis were typically small for machine-learning approaches,
with 23 of 48 studies having a sample size <100, 22 of 48 studies
with a sample size between 100 and 1000 and only 3 of 48 studies
with a sample size >1000. Additionally, 19 of 48 studies typically
used a small range of parameters (<5 factors). This may be a
limitation, given most Al/ML studies of non-specific LBP aimed
to classify individuals using only physical factors, such as trunk
range of motion, electromyography and sitting pos-
ture?0232428,29,323740-425457. " omjtting important psychosocial
parameters that are known to be involved in patients with LBP.
Only Darvishi et al.?> and Parsaeian et al.** utilised a range of
physical, psychological and social factors for the classification of
LBP; however, they did not attempt sub-classification that
delineate sub-groups that could benefit from specific treatments.
LBP sub-classification is important as LBP, especially chronic
(>12 weeks) LBP, is characterised by changes to a series of
systems: biological, psychosocial and the central nervous systems
and there are likely sub-groups within this population'?. Notably,
some studies applied many models to small CLBP data sets (n <
100) to yield highly accurate results; however, these were only
focused on the binary classification, determining only the
presence of CLBP?*2*?82942 |n machine learning, normally,
the sample size should be no less than 2 cases (where k is the
number of features), with a preference of 5x2%'*. Therefore,
these studies may be prone to overfitting of data and the best fit
model is likely not applicable to other LBP samples'**. Overall,
25 studies within this review assessed the role of machine learning
on classification of individuals with LBP. To develop a robust sub-
classification tool, various conditions such as reliability, validity,
accuracy, ease of implementation, treatment allocation yielding
clinically meaningful benefits and reductions in healthcare costs
should be met'*. The current evidence for the use of Al/ML
highlights that the utility of these approaches is yet to be realised
in a clinically meaningful way.

For comparison, we also conducted systematic reviews of two
other classification systems for back pain: STarT Back tool
(classifies people in to low-, medium- and high-risk of developing
chronic pain based on physical and psychosocial factors)'® and
the McKenzie method (diagnosing movement preferences; e.g.
spinal extension versus flexion)'s. The reliability (ie. the
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consistency of the classification system over repeated attempts
with the same patient)'*® of the McKenzie method was poor to
moderate'311>121.122131133136 5,4 moderate to excellent for the
STarT Back tool”*7>8287:98:99.101.103.109 Thjs |imits the ability of the
McKenzie method to be a useful classification system for people
with LBP, as this impacts the ability to identify a movement or
structure that benefits from a specific treatment'®'. Construct
validity (i.e. degree of which the measure reflects what it is trying
to attain)'*® of the STarT Back tool ranged from weak to
strong®®717475798287.98103109 gn discriminative validity (i.e. the
ability to discriminate between various groups of individuals or
sub-groups)'*® was poor to excellent'1%6869738288100 T aa
studies achieved poor discriminative validity for a singular
subscale'®1% \hile all other values were above acceptable.
Validity of the McKenzie method as a classification system has not
and cannot be assessed, as there is no gold standard compara-
tor'*'. Based on our findings from these two systematic reviews, if
Al/ML is to make an impact on LBP management, it will likely need
to develop greater reliability and validity compared to current
approaches and advance sub-groups to improve clinical and
societal outcomes through appropriate treatment allocation
(Table 3).

In assessing the ability of a classification system to predict
prognosis (i.e. the trajectory of a condition based on certain sub-
group factors) of people with LBP, it is critical to account for the
patients’ pain and disability when they are first assessed, as these
factors are the strongest and most consistent predictors of pain
and disability in the months after LBP incidence'*~">°, The STarT
Back tool was typically (in six”'7#839093102 of @ight’®" studies
and 2080 of 2634 patients) able to predict future disability, but this
was less consistent for pain intensity (two®®®' of six’'727893
studies and 348 of 1899 patients). For the McKenzie method, no
studies assessed the effectiveness of the classification method on
future pain intensity while accounting for baseline values. For
disability, two studies of McKenzie assessed disability prognosis
this within multivariate models, with results mixed (significant in
one of two studies and 109 of 832 patients)'>”'%8, The utility of the
tool to effect overall improvements in patient outcomes has not
been tested extensively for the STarT Back tool. One non-
randomised trial showed significant benefits for pain intensity
and disability when implementing the STarT Back compared to
usual case (n = 582)*°. Of the two RCTs, neither showed benefits
of stratification on pain intensity (1324 patients); however, one
showed significant improvement for disability compared to usual
care (one of two studies and 568 of 1324 patients)'>’%. The
McKenzie method has been tested in 1
RCTSTI'I,'I12,116,118,119,123,1257127,129,130, bUt in COmpariSOn to Other
active and passive treatment approaches is not more effective.

To build on current machine-learning approaches, research should
investigate the ability to create sub-groups of individuals with LBP that
considers a broader range of biopsychosocial factors, similar to that of
the STarT back tool. The use of a broader range of clinical factors
incorporated within an Al/ML approach using a large training data set
may enable for more reliability, validity, prognostic capacity, and
improved stratification of treatment for patients with LBP. Such an
approach may therefore lead to improved clinical outcomes for clients
and reduced healthcare expenditure; however, this is yet to be
determined. To date, only one study has aimed to employ this
approach in LBP with a narrow set of physical factors®. Oude et al.*®
used 1288 fictional cases to develop a model of self-referral in LBP,
which was then applied to 45 real cases with a modest accuracy of
72%. Furthermore, the study did not assess if the model could lead to
improved clinical outcomes and reduced healthcare costs®,
A limitation of such approaches is that they fail to consider psychosocial
and central nervous system factors that are associated with the
condition, such as kinesiophobia'', pain catastrophizing'>?, pain
beliefs'>?, pain self-efficacy’®®, depression®, anxiety’, occupational
factors'>, sensory changes'® and structural and functional changes
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to the brain'>”"*, Including these factors may allow for specific sub-
groups to be identified that could benefit from targeted treatments to
maximise clinical benefits. Future models that aim to classify treatment
approaches need to consider these broader psychosocial and
behavioural factors to enhance accuracy and clinical utility of
the model.

The strengths of the current study include the use of broad
search terms to identify all the relevant literature pertaining to the
use of artificial intelligence in LBP. Even with these terms, we were
only able to identify 185 articles for title/abstract screening.
Furthermore, we completed two additional systematic reviews to
contrast how machine learning could build on current classifica-
tion approaches in LBP. For limitations, for clinical trials, due to the
low number of studies and heterogeneity between studies, meta-
analysis could not be performed. Furthermore, we considered the
overall interaction of STarT Back classification tool (e.g. combina-
tion of all groups) when assessing the effectiveness for the
intervention on pain, disability and costs. Some groups may have
had significant effects, while others did not'®. However, it is
important to determine if we can develop a tool where all sub-
groups benefit from specific treatments. Overall, we provide a
clear summary of what the benefits of McKenzie and STarT Back
could be.

Machine learning has the potential to improve the manage-
ment of LBP via sub-classification of an otherwise homogenous
diagnosis such as non-specific LBP. Identifying relevant sub-
groups among patients with LBP would permit the determination
of diagnostic categories that inform clinical decision-making and
treatment choice. This systematic review found that current
machine-learning approaches are reported to have high accuracy;
however, they are often applied to small data sets with multiple
models. To determine the utility of such approaches in future
research, studies implementing machine learning in LBP need to
examine larger sample sizes, examine a variety of known risk
factors across multiple domains (e.g. spinal tissue, psychosocial
and central nervous system) in each model and attempt sub-
classification through data clustering within the model. The
classification approaches need to be reliable, robust, evaluated,
detect sub-groups with different prognosis and inform allocation
of patients to treatment such that patient outcomes and/or
healthcare costs are, overall, improved. Ultimately, this kind of
approach to sub-classification has the potential to drive improve-
ments in the global health-related burden of disease.

METHODS
Search strategy

These systematic reviews were prospectively registered with
PROSPERO prior to beginning data extraction (as registration
numbers are still pending, protocols were uploaded to the Open
Science Framework: AlI/ML https://osf.io/a8nzt/; STarT Back and
McKenzie https://osf.io/ztehm/). Six databases were searched till
September 2019 with the following limits: MEDLINE (Nil), CINAHL
(exclude MEDLINE), SPORTDiscus (Nil), EMBASE (exclude MEDLINE),
PsycINFO and CENTRAL (exclude MEDLINE and EMBASE). For the
machine-learning systematic review, IEEE Xplore (Nil) was also
searched. Search strategy (1) included MeSH terms for ‘low-back
pain’ AND ‘artificial intelligence’ (Supplementary Table 10), (2)
searches included MeSH terms for ‘low back pain’ and ‘STarT Back
Screen’ OR ‘STarT Back Tool’ (Supplementary Table 11) and (3)
searches included MeSH terms for ‘low back pain’ and ‘McKenzie'
(Supplementary Table 12). Additional references were searched for
through GoogleScholar. Two independent assessors screened the
studies and extracted the data for machine learning (S.D.T. and D.
L.B.), the STarT Back tool (S.D.T. and D.LB.) and the McKenzie
method (S.D.T. and X.Z.). All disagreements were addressed via an
adjudicator (P.J.O.).
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no studies available or unable to be measured, NA not assessed in this systematic review.

Al/ML artificial intelligence and machine learning,

*Number of Al/ML studies reporting >80% accuracy of classification into ‘low-back pain’ versus ‘healthy’

PInternal consistency was considered acceptable if Cronbach’s a was 20.7'%°.

“Test—retest was considered as acceptable above an intraclass correlation coefficient (ICC) of >0.7'46163,

dKappa scores for intra-rater and inter-tester reliability were considered good >0.61'22,

€Construct validity >0.6 was considered acceptable'#'%%,

fDiscriminative validity 0.7 was considered as acceptable discrimination'>.

9Prognosis prediction was considered ‘adequate’ when the classification approach resulted in statistically significant prediction of outcome after adjusting for baseline pain or disability in multivariate

models'#7~1%°,

MTreatment effect was considered ‘adequate’ when the classification approach resulted in a statistically significant improved patients outcomes for pain or disability or healthcare costs in randomised or non-

randomised clinical trials.
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Inclusion and exclusion criteria

For inclusion, studies must have examined LBP and the utilisation
of AI/ML techniques, the STarT Back or McKenzie method in
humans. LBP was defined as pain localised below the costal
margin and above the inferior gluteal folds'>°. No restrictions were
included based on race, sex or age. Studies were required to be a
full peer-reviewed journal or full conference publication (i.e. grey
literature excluded). For Al/ML approaches in LBP, there was no
restriction on study design, to ensure all research on this approach
to date was identified. For STarT Back or McKenzie there was the
inclusion criterion that the study must have examined: (a)
reliability, (b) validity, (c) prognosis and/or (d) treatment effects
(such as in a clinical trial). There was no restriction on study design
as long as those topics were addressed. Exclusion criteria were:
not peer reviewed or full conference abstract, not English
language, not low-back pain, not Al/ML or STarT Back or McKenzie
classification (e.g. if not clear individuals were assessed and
treated via their profile) and not original research. AlI/ML studies
that did not evaluate the role of AI/ML in patient classification,
prognosis or treatment (e.g. automated radiographic image
analysis, automated pain diagram analysis) were excluded.

Data extraction

Data extracted included relevant publication information (i.e.
author, title, year, journal), study design (e.g. cross sectional), study
overview (free text), number of participants, type of LBP (e.g.
acute, subacute, chronic, unclear) and summary of authors’
conclusions (free text). For AI/ML articles further extraction
acquired the AI/ML techniques implemented, parameters used
as inputs, whether data were split into training and testing data
sets and the main results (e.g. the highest sensitivity, specificity,
accuracy and area under the curve that are available). For both the
STarT Back and McKenzie reviews, additional data were extracted
for reliability, validity, prognosis and treatment effects from sub-
classification (e.g. significant improvements to pain intensity,
disability and healthcare costs). When it was not possible to
extract the required data, this information was requested from the
authors a minimum of three times over a 4-week period. Any
discrepancies were discussed by the two independent assessors
with disagreements addressed via an adjudicator (P.J.O.).

Definitions used in the systematic review

For studies of AI/ML in LBP, we considered the following
categories of classification, sub-classification, prognosis, diagnosis
and treatment allocation. Classification was considered as the
ability to discriminate individuals with LBP from healthy popula-
tions, while sub-classification was defined as the ability to sub-
group individuals with LBP based on different clinical character-
istics (e.g. anatomical, psychological and nervous system altera-
tions)'*°. Prognosis was considered the ability of clinical variables
or an assessed sub-group to predict recovery or non-recovery (i.e.
clinical course) of pain intensity or disability from LBP'®°.
Diagnosis was defined as the ability to determine the cause of
LBP, which could be based on anatomical, psychological and
nervous system factors'®'. Treatment allocation was determined
to be the prediction of a type of treatment that could benefit a
certain individual with LBP'®% Studies that did not clearly fit in
these definitions were classed as ‘other’ studies.

Cut-offs for reliability and validity

Internal consistency (i.e. the degree of which components of a
measure are related) was considered acceptable if Cronbach’s a
values ranged from 0.7 to 0.9, while values >0.9 were considered
strong'*. Test—retest (i.e. the consistency of the classification
system over repeated attempts with the same patient) was
considered as acceptable above an intraclass correlation
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coefficient (ICC) of =0.7, whereas values >=0.9 are considered
acceptable for individuals; therefore, we considered these values
as strong %%, When Kappa scores for intra-rater (i.e. agreement
of repeated measurements on the same patient) or inter-tester (i.e.
the agreement of measurements between different clinicians)
reliability were available, values were considered as poor
agreement (0—-0.2), slight agreement (0.21-0.40),
moderate agreement (0.41—0.6), good agreement (0.61—0.8)
and excellent agreement (0.81—1)"?2. As recommended for
disability research, construct validity correlations (i.e. degree of
which the measure reflects what it is trying to attain)'*® above 0.6
were considered as strong, 0.3—0.6 as moderate, and below 0.3 as
weak'*¢%* Discriminative validity (i.e. the ability to discriminate
between various groups of individuals or sub-groups)'*® followed
principles set by Hill et al."® for the STarT Back with an area under
the curve of 0.7—<0.8 indicating acceptable discrimination, 0.8
—<0.9 indicating excellent discrimination and =0.9 indicating
outstanding discrimination.

Risk of bias

Risk of bias was assessed by the Newcastle—Ottawa Scale (NOS:
http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp),
which is recommended for quality assessment of case—control
and cohort studies by the Cochrane Collaboration group'®®. The
NOS is split into selection, comparability and ascertainment of
exposure/outcome categories, with a maximum score of nine
points awarded. Based on this, studies were determined to be
good, fair or poor quality as previously determined'®®. The
methodological quality was determined by two independent
reviewers (S.D.T. and D.LB.). Results were compared with
disagreements discussed to reach a verdict, with adjudication by
P.J.0. if necessary.
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All data are available upon request.
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