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Ovarian cancer is a significant cause of cancer-related mortality in women.

Over the past 3 decades, there has been a high incidence of recurrent

chemoresistant disease, despite the relative effectiveness of current

treatment strategies. This is partly attributed to cancer stem cells (CSC), a

subpopulation that has acquired stem cell properties that allow these cells to

evade standard chemotherapy and cause disease recurrence. Therefore, there

is an urgent need for basic knowledge about CSC to develop innovative

therapeutic approaches for ovarian cancer. These CSC subpopulations have

been identified in ovarian cancer cell lines, tumors or ascites, and findings

suggest that ovarian CSCs may be as heterogeneous as the disease itself. CSCs

regulate the phenotype and function of immune cells involved in antitumor

immunity, so a better understanding of the signaling pathways that interact

between CSCs, immune cells and tumor cells will pave the way for the clinical

application of CS in cancer immunotherapy. This review will focus on the

markers currently used to identify and isolate these cells summarize current

knowledge on the molecular and cellular mechanisms responsible for CSC-

dependent regulation of antitumor immune responses. We will discuss the

signaling pathways involved in CSC survival, replication, and differentiation as

well as potential therapeutic targeting strategies.
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Introduction

Ovarian cancer (OC) is the third most common gynecologic malignancy worldwide

and the leading cause of gynecologic oncology-related deaths worldwide (Kocarnik et al.,

2022). Globally, more than 300,000 new cases of ovarian cancer are diagnosed each year

and 18,000 patients die from their disease (Ferlay et al., 2019). Due to the lack of typical
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clinical signs, 67% of patients are already in stages III and IV at

the time of first diagnosis (Yang et al., 2020). Currently, initial

tumor reduction surgery combined with platinum-based

chemotherapy is the standard of care for advanced OC.

However, 80% of patients with advanced OC eventually

relapse and become resistant to platinum-based therapy;

therefore, there is an urgent need for innovation and

development of effective therapies (Kuroki and Guntupalli,

2020).

Ovarian cancer is an immunogenic tumor and multiple

antigens have been identified in recent years. Some of the

strongest evidence linking anti-tumor immunity to cancer has

been demonstrated in ovarian cancer (Morand et al., 2021).

Understanding how the immune response is activated in

ovarian cancer is a prerequisite for the development of

immunotherapies. Key to the interaction between tumor and

immune cells is the production, expression and release of tumor-

associated antigen (TAA) (Alfei et al., 2021). TAA is

subsequently phagocytosed and processed by dendritic cells

(DCs) and, after delivery to initial CD4 T+, CD8 T+ cells via

major histocompatibility complex (MHC) molecules, can elicit a

host-specific T-cell immune response in the organism (Alfei

et al., 2021). It was found that CD8 T+ cells can recognize

HER2/neu positive tumor cells in ovarian cancer ascites

(Ioannides et al., 1993). In addition, there are other TAAs in

ovarian cancer, such as CA125 (Chauhan et al., 2006), folate

receptor (FR)-α (Peoples et al., 1998), CA153 (Chauhan et al.,

2006), and human epithelial protein HE-4 (Drapkin et al., 2005).

In the tumor microenvironment, macrophages occupy 30–50%

of the infiltrating immune cells (Curiel et al., 2003). The tumor

microenvironment strongly polarizes macrophage

differentiation while generating tumor-associated macrophages

(TAM), and B7-H4+ macrophages can suppress specific T cell

immune responses (Kryczek et al., 2006). Natural killer (NK)

cell-derived perforin forms pores in the membranes of tumor

cells, allowing granzyme B to enter the cytoplasm and induce

apoptosis by cleaving key intracellular substrates that control the

survival of cancer cells (Kaschek et al., 2021). CA125 binds to the

killer immunoglobulin-like receptors (KIR) siglec-9, thereby

protecting itself from NK-mediated cell lysis (Belisle et al.,

2010). NK cells express programmed death ligand (PDL),

which activates the mitochondrial apoptotic pathway in tumor

cells by binding to programmed death receptor (PD) (Hamilton

and Plangger, 2021). Ovarian cancer cells express programmed

death ligand 1 (PDL-1) that binds to programmed death (PD-1)

of CD8+ T cells and subsequently impairs the effector function of

lymphocytes (Matsuzaki et al., 2010). Immune checkpoint

inhibitor like PD-1 blockade was only approved for those

patients with mistmach repair deficiency (MMRd) or high

microsatellite instability (MSI-H) tumors and most OC does

not respond to immune checkpoint inhibitors (André et al.,

2020). In addition to effector T cells, macrophages, and NK

cells, immunosuppressive CD4+FoxP3+ Treg cells (Tregs), and

myeloid-derived suppressor cells (MDSC) also promote tumor

growth and progression (Curiel et al., 2004). The association of

Treg cells with a high risk ratio of death and reduced survival

time has been well documented in ovarian cancer (Curiel et al.,

2004). Treg cells mediate immunosuppression mainly through

intercellular contacts with DC cells or effector cells or by

secreting immunosuppressive cytokines, including IL-10, IL-35

and TGF-β. Treg contribute to DC tolerance, which further

reduces the activation and proliferation of effector T cells

(Oleinika et al., 2013). MDSC are immature bone marrow

cells with immunosuppressive properties and have been found

in both ovarian cancer patients and ovarian cancer mouse models

(Bak et al., 2008). MDSC induce arginase 1 (ARG-1) and

inducible nitric oxide synthase (iNOS) activity leads to

downregulation of the CD3-zeta chain, which inhibits effector

T cell activation (Ezernitchi et al., 2006). Increased NO levels

block IL-2 receptor signaling and alter Ag recognition by

nitrating the TCR (Nagaraj et al., 2007). Different immune

cells affect the oncogenesis of tumor immunity in opposite

directions, therefore modulation of their phenotype and

function represents a potential strategy to enhance ovarian

cancer treatment.

Ovarian cancer stem cells (OCSC) are self-renewable

pluripotent stem cells that have an important role in cancer

development, progression, metastasis and recurrence, as well as

in resistance to radiation and chemotherapy (Konrad et al.,

2017). Current evidence suggests that tumor stem cells may

develop a mechanism to evade immune attack, and it remains

unknown whether OCSC have the same immune escape

mechanism, and these cells are a major driver of tumor

formation, progression, metastasis and apoptotic resistance to

chemotherapy and radiotherapy (Keyvani et al., 2019). Ovarian

cancer is usually associated with peritoneal ascites, in which

spheroids are present in tumor cells that survive and proliferate

even in a non-adherent state (Mihanfar et al., 2019). A recent

study showed that chemotherapy usually leaves behind an

OCSC-like cellular entity and that these cells are more

aggressive and induce disease recurrence (Rizzo et al., 2011).

Similarly, recurrent ovarian cancer is rich in OCSCs, suggesting

that OCSCs may contribute to cancer recurrence (Steg et al.,

2012). Residual OCSCs surviving chemotherapy may provide a

favorable microenvironment to promote the growth of residual

cells. Resistance to loss-of-nest apoptosis is a key feature of these

stem cells, and in normal tissues after injury, tissue-specific stem

cells expand to initiate repair prior to their differentiation. Once

the tissue is repaired, the stem cells return to a quiescent state

(Al-Alem et al., 2019). However, in tumor tissues, tissue injury

(caused by surgery or chemotherapy) causes OCSCs to interact

with the local tumor microenvironment and release various

inflammatory cytokines, chemokines, and matrix

metalloproteinases that induce invasion and spread to distant

organs in the body, and can alter the phenotype and function of

immune cells (Ahmed et al., 2018). Therefore, in this review, we
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describe the role of OCSCs in ovarian cancer immunity and

discuss its molecular and cellular mechanisms in the problems of

recurrence and chemoresistance.

Identification of ovarian cancer stem
cells

Ovarian cancer stem cells represent a specific group of cells

that are cellularly and molecularly heterogeneous, capable of self-

renewal and reflecting pluripotency. Bapat et al. reported for the

first time the isolation and characterization of ovarian cancer

stem cells, where a tumorigenic clone was isolated from a mixed

cell population in the ascites of ovarian cancer patients,

exhibiting anchorage-independent growth and forming

spheroids. These cells express the cytokine CD117 and are

also capable of continuously generating new tumors if

transplanted into the peritoneal cavity of mice (Bapat et al.,

2005). Zhang et al. isolated and characterized ovarian cancer-

initiating cells from primary tumors of five patients that were

fully capable of reconstituting their original tumor hierarchy in

vivo. The main markers identified were CD117 and CD44. These

spheroid-forming cells are resistant to resistant to conventional

chemotherapy and can form xenograft tumors with the same

phenotype (Zhang et al., 2008). In another study, Chang et al.

identified and isolated cells with CSC characteristics based on the

SKOV3 human ovarian cancer cell line and found that CD24-/low

SKOV3 cells exhibited stem cell-like characteristics such as high

clonogenic capacity, enriched SP cell ratio, and tumorigenesis

(Chang et al., 2020). A major limitation of this study is that it was

limited to the study of cancer cell lines, which carry many

variants due to culture conditions.

The above study demonstrated the presence of multiple cell

populations in ovarian tumors, and researchers have identified

various markers and combinations of markers suggestive of

ovarian cancer stem cells. For example, CD24, CD44+/CD24-,

CD117/c-kit, CD44+/CD117+, etc. have been proposed (Table 1).

However, the reported markers are highly variable, which may be

related to the different stages of the CSC hierarchy or potential

differences in tumor origin.

TABLE 1 Cancer stem cell markers used to isolate ovarian cancer stem cells.

Surface
marker

Description Experimental design The distinctive feature
of these cells

References

CD24 Transmembrane glycoprotein Caov3 Metastasis and chemoresistance through the
induction of epithelial to mesenchymal
transition via Akt-ERK signaling mechanism

Nakamura et al.
(2017)

CD44+/CD24− CD44: Hyaluronate receptor SKOV3 and OV90, Cancer cell isolated
from ascites of ovarian cancer patients

Predictor of chemoresistance, relapse, and
poor prognosis

Meng et al. (2012)

CD117/c-kit Receptor/Oncoprotein having
tyrosine kinase activity

Paraffn-embedded specimens of human
serous ovarian carcinoma

Indicator of chemoresistance Raspollini et al.
(2004)

CD133 Transmembrane glycoprotein Cancer cell lines and cells isolated from
ascitic fuid of ovarian cancer patients

Indicator of tumorigenicity and its expression
is modulated by epigenetics

Baba et al. (2009)

ALDH1A1 Intracellular enzyme, one of
17 isoforms of ALDH

Several cancer cell lines and primary
xenograft developed from omental tissue of
metastatic ovarian cancer patients

Predictor of tumor initiation, identifcation of
chemoresistant cells

Landen et al.
(2010)

CD44+/CD117+ CD117: Stem cell factor receptor Xenograft experiment Indicator of greater tumorigenicity Zhang et al.
(2008)

SP cells Having dye exclusion property H2B-GFP transgenic mice models Identifcation and characterization of ovarian
cancer stem cells

Hu et al. (2010)

CD44+/MyD88+ MYD88: Innate immune signal
transduction

Ascites sample from advanced ovarian
cancer patients

Maintenance of cell survival and
chemoresistance via TLR4-MyD88 and NF
kappa B pathway

Kusumbe and
Bapat, (2009)

adaptor

CD34+ Transmembrane
phosphoglycoprotein

Xenograft tumor Role in angiogenesis Alvero et al.
(2009)

CD105, CD44 CD105: Type I membrane
glycoprotein; CD106:vascular cell
adhesion molecule-1

OVCAR3 progression of disease, relapse, and
chemoresistance

Zhang et al.
(2019)

CD106

CD34+ Transmembrane
phosphoglycoprotein

Xenograft tumor Role in angiogenesis Alvero et al.
(2009)

CD44−EpCAM
EpCAM: Type I transmembrane
glycoprotein

OVCAR8, SKOV3, OCC1 Cell growth and apoptosis Zheng et al.
(2017)

ES2, and HEK293
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OCSC-dependent immune escape

Burnet introduced the concept of tumor immunosurveillance

in 1970, whereby the immune system recognizes cancer cells and/

or precancerous cells and eliminates them before they can cause

harm. The immune system can effectively protect the host from

microbial pathogens (Burnet, 1970). Despite tumor immune

surveillance, tumors do develop in the presence of a

functioning immune system, so this concept was subsequently

superseded by the tumor immune editing hypothesis. The tumor

immune editing hypothesis is a more complete explanation of the

role of the immune system in tumor development in which three

phases, elimination, homeostasis, and escape shape tumor

immunity (Dunn et al., 2002).

Understanding how OCSCs evade the immune system is

relevant for OCSCs to evade standard chemotherapy and lead to

disease recurrence. The CD24 expressed on the surface of OCSCs

binds sialic-acid-binding Ig-like lectin 10 (Siglec-10) and thus

protects itself from macrophage action (Barkal et al., 2019). In

addition, ovarian cancer stem cells have constitutive NF-κB
activity and sustained activation of NF-κB signaling allows

tumor cells to avoid apoptosis while inducing a chronic

inflammatory response in the tumor microenvironment (Jo

et al., 2020). Yin et al. found that ovarian cancer stem cells

(type I/CD44+) create a pro-inflammatory and anti-apoptotic

environment by activating the NF-κB signaling pathway through

low expression of Twist1 environment and thus transformed to

ovarian cancer cells. Among the mechanisms by which

Twist1 promotes these changes is through the expression of

mi199a/214 located in the Dnm3 gene (Yin et al., 2010).

Immune cells also play an important role in OCSCs-

dependent immune escape. During ovarian cancer

progression, different types of T cells are recruited to the

tumor lesion for tumor immune response, including CD4+

cells, CD8+ T cells (Bamias et al., 2008). It has been

demonstrated that OCT4+MYC+ NANOG+ cells constitute

OCSCs and that most patients with ovarian tumors have

naturally occurring memory T cells specific for OCT4 in

the peripheral blood (Looijenga et al., 2003). However, Di

et al. detected low expression of CD4+ and CD8+ T cells

specific for OCT4 in the blood and ascites of ovarian

cancer patients, which may reflect another mechanism by

which ovarian tumors evade immune surveillance (Di et al.,

2013). In addition, loss of MHC molecules is frequently

observed in cancer cells, making tumor cells resistant to T

cell-mediated cytotoxicity (Lu et al., 2011). However, γδ
T cells exhibit effective MHC-independent lytic activity

against different tumor cells, suggesting an important role

for γδ T cells in defense. Lai et al. found that γδ T cells have

cytotoxic effects on OCSCs and can effectively kill OCSCs by

producing IL-17. γδ T cells also induce HLA-DR, B7-1 and

B7-2 expression, which may promote antigen expression in

tumor cells and contribute to tumor cell recognition by the

immune system (Lu et al., 2011). Deng et al. investigated the

effect of OCSCs on macrophage differentiation, and they

demonstrated that OCSCs promote anti-inflammatory/pro-

tumor M2 macrophage polarization through NF-κB and

PPARγ pathways (Deng et al., 2015). Finally, MDSCs are

myeloid cells expressing GR1 and CD11b that can induce

T cell apoptosis by depleting T lymphocytes of nutrients

required for survival, such as arginine and cysteine (Kumar

et al., 2016). Cui et al. found that MDSCs inhibit T cell

activation and enhance CSC gene expression, identifying

the MDSCs-microRNA101-CtBP2-immune-related cellular

network of stem cell core genes (Cui et al., 2013).

Themessenger role ofOCSC in tumor
metastasis

During ovarian cancer progression, the tumor

microenvironment, including stromal cells, endothelial cells,

infiltrating immune cells and extracellular matrix, OCSCs and

the tumor microenvironment interact, resulting in the presence

of many immunosuppressive or soluble cytokines in the tumor

microenvironment (Luo et al., 2016). The microenvironment not

only maintains OCSC at the stem cell state, but also directly

influences the differentiation of normal cells to OCSC and

informs epithelial mesenchymal transition (EMT), which leads

to high potential for invasion and metastasis formation in cancer

cells (Li and Neaves, 2006). In the series of tumor invasion and

metastasis, the most complicated procedure arises when the

metastatic tumor cells reach the parenchymal tissue, then

proliferate and form clones in the new environment, and

finally shape the tumor mass (Mani et al., 2008). Due to the

tumor initiation ability of OCSC, active OCSC tend to form

multiple micrometastases in vivo. A more thorough study of the

mechanisms involved in the metastatic process of OCSC is

essential to lead to new therapeutic strategies aimed at the

eradication of OCSC.

The chemokine/receptor complex: C-X-C motif chemokine

receptor 4/(CXCR4) from the extracellular matrix is highly

expressed in ovarian cancer cells and is associated with ovarian

cancer metastasis (Balkwill, 2004). The chemokine/receptor

complex: C-X-C motif chemokine receptor four/

CXCR4 blockers stimulate antitumor immunity by

decreasing T regulatory cell infiltration and increasing T

helper cell and cytotoxic T cell infiltration into the tumor

microenvironment of mice bearing tumors and ascites fluid

(Gil et al., 2014). In addition, CXCL12 has been shown to

recruit suppressive MDSCs and pDCs at tumor sites

(Obermajer et al., 2011) and induce intra-tumor regulatory

T cell (Tregs) localization (Curiel et al., 2004), thereby

impeding the immune machinery of ovarian cancer

destruction. Extracellular vesicles released by ovarian cancer

stem cells signal through lipids, proteins, DNA, mRNA and
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micro RNA with other components of the tumor

microenvironment, such as stromal cells and extracellular

matrix. For immune cells, exosomes of malignant ascites

origin may induce apoptosis of DCs (peripheral blood

lymphocytes) and PBMCs (dendritic cells) precursors (Peng

et al., 2011) and may contain immunosuppressive factors such

as TGF-β1 and IL-10, suggesting that exosomes may be

involved in supporting immune evasion in OvCa (Szajnik

et al., 2010). Exosomes may also act as carriers to transfer

miR222-3p into macrophages, inducing M2-like polarization of

macrophages to produce TAM (Ying et al., 2016). Furthermore,

exosomes containing miR-21, miR-103, miR-205 and miR-200

have been associated with poor outcomes in patients with

ovarian cancer. Due to its great diagnostic and therapeutic

potential, this extracellular vesicle is considered one of the most

recently investigated targets for the treatment of tumors (Cheng

et al., 2017). Nanog, as a stemness marker, is isolated from

primary ovrian tumors. Xu et al. found the upregulation of

Nanog was directly related to increasing Sox-2 and attenuated

E-cadherin, caveolin-1, FOXO1, FOXO3a, FOXJ1, and

FOXB1 mRNA expression in SKOV-3, ovarian cancer cells

(Xu et al., 2012). These factors could have a role in metastasis in

ovarian cancer. Together, these data suggest a role for OCSC in

the transformation of the immune system from attacking tumor

cells to promoting tumor progression (Figure 1).

Targeted therapy for OCSC

One of the main challenges in the successful treatment of OC

is the development of recurrence and drug-resistant disease. Even

with a satisfactory response to conventional chemotherapy,

nearly 70% of ovarian cancer patients relapse within 5 years

and are characterized by recurrence and chemoresistance

(Morand et al., 2021). Although in-depth studies of OC

samples have provided insight into the alterations leading to

disease pathology, it has not captured the important molecular

drivers of chemoresistance and recurrent disease (Saygin et al.,

2019). Targeted OCSC therapy, which is less toxic than

conventional chemotherapy, is aimed at specific molecular

pathways and their complex interactions to achieve

therapeutic goals (Mihanfar et al., 2019). However, several

therapeutic approaches for OCSCs themselves are not well

established, and clinical trials results have not yet drawn

constructive conclusions. Potential targets for OCSC therapy

are depicted in Figure 2.

FIGURE 1
Potential markers of ovarian cancer stem cells (OCSCs) and the role of OCSCs in tumor progression.
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Targeting OCSC surface markers

Considerable efforts are underway to identify therapeutic

approaches that specifically target surface markers of OCSC.

IFN-α exerts significant anti-proliferative and pro-apoptotic

effects on primary cultures containing large numbers of SP

cells. In vitro, IFN-α treatment resulted in a significant

reduction in SP size in tumor cell lines of different origins.

Furthermore, tumors established in immunocompromised

mice responded more favorably to human IFN-α treatment

(Moserle et al., 2008). Metformin, a type 2 diabetes drug, has

been shown to selectively kill chemotherapy-resistant CSC in

breast cancer cell lines (Foster et al., 2013). Similarly, metformin

can limit the growth and proliferation of ovarian cancer stem

cells in vitro and in vivo, reduce the percentage of ALDH+ CSCs,

and inhibit the spheroid-forming ability of ALDH+ cells isolated

from established cell lines and short-term patient tumor cell

cultures (Shank et al., 2012). Metformin limited the growth of

ALDH+ CSC xenografts (Shank et al., 2012). In addition, a phase

II clinical trial showed that metformin also targeted ALDH+

CD133+ CSC resulting in a significant more than 2-fold

reduction in CSC numbers and enhanced organismal

sensitivity to cisplatin (Brown et al., 2020).

CD44+CD24+EPCAM+E-cadherin- cells are resistant to the

chemotherapeutic drug adriamycin, and stimulation with

adriamycin significantly increases the number of colonies in

the cells. However, these cells are sensitive to mullerian

inhibiting substance (MIS), which reduces colony formation

and proliferation rate of human ovarian cancer stem cells by

inducing G1 cell cycle arrest and increasing cell cycle inhibitors

(Meirelles et al., 2012). Novo isoflavone derivative NV-128 was

found by Alvero et al. to target CD44+/MyD88+ ovarian cancer

stem cells by inhibiting ATP, Cox-I and Cox-IV levels resulting

in a decrease in mitochondrial function and a corresponding

increase in reactive oxygen species, ultimately leading to loss of

mitochondrial membrane potential and cell death. This ability to

specifically target the mitochondria of chemoresistant ovarian

cancer stem cell populations opens up new avenues for the

treatment of ovarian cancer patients (Alvero et al., 2011). To

target ALDH+ cells, Whitworth et al. found that novel retinoids

in combination with carboplatin chemotherapy could inhibit

their activity. Co-treatment of ovarian cancer cell line A2780 with

the novel retinoic acid 9cUAB130 and carboplatin reversed the

increase in ALDH+ cells observed after treatment with

carboplatin alone. This finding further supports the concept

that CSC survive and may proliferate in response to standard

chemotherapy. In addition, injection of A2780 cells treated with a

combination of retinoid and carboplatin into the lateral abdomen

of thymus-free nude mice prevented their ability to become

tumorigenic in immunocompromised mice (Whitworth et al.,

2012). There are other studies that have similarly analyzed the

ability of specific compounds to modulate OCSC

FIGURE 2
Therapy targeted at ovarian cancer stem cells. OCSC surface markers including SP Cells, ALDH+ CD133+, CD44+CD24+EPCAM+E-cadherin-,
CD44+/MyD88+, CD44+; underlying signaling pathway including Wnt/β, Notch, Hedgehog, TGF-β; immune checkpoint inhibitor including
CTLA4,PDL1,PDL-1 inhibitors; epigenetic therapy including EMT epithelial to mesenchymal transition.
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chemoresistance. Resistant CD44+ cells derived from patient

ascites or tumor samples in culture were highly sensitive to

Clostridium perfringens enterotoxin (CPE). Importantly, in

mice transplanted with chemoresistant CD44+ ovarian cancer

stem cell xenografts, multiple intraperitoneal treatments with

sublethal doses of CPE significantly inhibited ovarian cancer

progression (Casagrande et al., 2011).

Targeting metabolic processes associated
with OCSC

In general, the phenotypic characterization of stem cells

depends on the application of flow cytometry in combination

with the measurement of functional stem cells. However, the

utilization of surface markers alone does not seem to be a

therapeutic tool due to many limitations such as technical

challenges, tumor heterogeneity and lack of high specificity

(Nagare et al., 2017). In this case, the validation of metabolic

markers can integrate information from true CSC markers,

allowing for more precise targeting of cancer stem cell

therapy. Several researches have described that OXPHOS and

mitochondria may play a vital role in CSC metabolism, as well as

secondary pathways such as pentose phosphate pathway (PPP),

fatty acid oxidation (Peiris-Pagès et al., 2016).

It has been shown that mutations in mitochondrial DNA

(mtDNA) are associated with the development of ovarian cancer

and that maintaining intact mitochondrial function is essential

(Kim et al., 2015). Elevated OXPHOS activity in hyper-

proliferative cells has been proven to be a leading driver of

mitochondrial genomic aberrations in tumorigenesis. A

research showed that CD44+ CD117+ OCSCs separated from

the ascites of OC patients demonstrated accelerated glucose

uptake and possessed an OXPHOS-dominated metabolic

profile with higher ROS production and higher membrane

electrical potential. Furthermore, these OCSCs were more

sensitive to OXPHOS inhibitors versus CD44+ CD117+ non-

OCSCs (Pastò et al., 2014). Ovarian CSC-like spheroid cells were

observed to be dependent on anaerobic glycolysis and PPP.

Furthermore, the quantity of glucose exploited in the PPP is

substantially higher than that CSC-like spheroid cells oxidize via

the TCA cycle (Liu et al., 2014). In addition, the oxidative branch

of the pentose cycle is an efficient means of generating

cytoplasmic NADPH, and high NADPH production is

necessary to increase fatty acid synthesis (a NADPH-

dependent process) (Liao et al., 2014). Consistent with this,

previous study which used in vitro cell culture showed that

OCSC isolated from suspended ascites changed its metabolism

from glycolysis to increased fatty acid metabolism (Sato et al.,

2018). In this context, pharmacological manipulation of

glycolysis to prevent OCSC proliferation has proven to be an

effective strategy. Metformin hydrochloride is an antidiabetic

drug for treating type 2 diabetes that enhances the effect of

chemotherapy by targeting CSC. It has been studied that

metformin has synergistic effects with conventional

chemotherapeutic drugs to minimize tumor regression rates

(Brown et al., 2020). Consequently, an in-depth understanding

of the metabolic processes that characterize OCSC appears to be

one of the key elements to assess their potential for targeted

therapy.

Targeting underlying signaling
mechanisms for OCSC

There is increasing evidence that various signaling

pathways such as Wnt/β, Hedgehog, Notch, and TGF-β play

an important role in the initiation of proliferation and

metastasis of OCSCs. Therefore, various clinical studies on

signaling pathway blockers are underway to validate their

clinical significance in eliminating OCSCs and preventing

recurrence. Notch signaling is essential for normal stem cell

function and dysregulation of this pathway has been

demonstrated in many cancers, with the identification of

three genes encoding regulators of the Notch signaling

pathway in ascites samples from ovarian cancer patients

(South et al., 2012). Treatment of the SP fraction derived

from ovarian cancer cell lines with the Notch pathway

inhibitor γ-secretase resulted in a dose-dependent decrease

in cell survival. Importantly, the defined SP gene expression

profile was enriched in recurrent ovarian tumors. These data

suggest that the Notch signaling pathway in ovarian cancer

regulates OCSC survival and self-renewal as well as tumor

maintenance (Vathipadiekal et al., 2012). Furthermore,

alterations in Notch signaling pathway components were one

of the few common mutations in a recent sequencing analysis of

489 high-grade plasmacytic human ovarian tumors (Integrated

genomic analyses of ovarian, 2011). A phase I dose-escalation

trial of Ipafricept (NCT01608867) found that Ipafricept (OMP-

54F28), a recombinant fusion protein targeting the Wnt/β
signaling pathway, was better tolerated in combination with

conventional chemotherapy in patients with advanced ovarian

cancer (Jimeno et al., 2017). Notch and Wnt-β signaling

pathways are thought to interact to promote tumor growth

through the survival of CSCs. In a phase I human study

(NCT00871559) in patients with advanced ovarian cancer,

Enoticumab (REGN421), a Delta-like ligand 4 (Dll4)

monoclonal antibody that disrupts Notch-mediated signaling

was shown to be a safe agent (Chiorean et al., 2015).

Aberrant activation of the Hedgehog signaling pathway has

been implicated in the pathogenesis of multiple tumors. The

Hedgehog pathway inhibitor cyclopamine and the clinically

applicable derivative IPI-926 inhibit plasmacytic tumor

growth. Tumor recurrence after cessation of paclitaxel and

carboplatin treatment was blocked when Hedgehog inhibitors

were given as consolidation therapy, suggesting that CSC-specific
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Hedgehog signaling may be critical for the development of

recurrent disease (McCann et al., 2011).

Transforming growth factor (TGF)-β mediates epithelial

mesenchymal transition (EMT) in ovarian cancer by

regulating tissue transglutaminase (TG2) involved in cell

proliferation, differentiation and apoptosis, and is associated

with the development of CSCs. CD44+/CD117+ cells isolated

from human ovarian tumors express high levels of TG2, and

in vitro treatment of IGROV1 cells with TGF-β enhanced

spheroid formation in culture and increased the number of

CD44+/CD117+ cells. Targeted knockdown of TG2 in human

primary ovarian tumor cells blocked their ability to form

spheroids. These data suggest that targeting the TGF-β
pathway may be effective in disrupting ovarian cancer

progression (Cao et al., 2012).

Steg et al. examined the expression of the CSC markers

ALDH1A1, CD44 and CD133 in 45 matched pairs of

primary/recurrent high-grade ovarian adenocarcinomas and

demonstrated that the expression of all three CSC markers

was increased after completion of primary chemotherapy.

Similarly the expression of Hedgehog, Notch, TGF-β and Wnt

cell signaling pathway members was also enhanced after initial

chemotherapy. In tumors collected from recurrent platinum-

resistant patients, only CD133 was significantly increased.

Knockdown of TGF-β and Hedgehog pathway components

revealed a decrease in ovarian cancer cell viability. This study

demonstrates that the enrichment of ovarian CSC and stem cell

pathway members after initial chemotherapy suggests that

ovarian cancer chemoresistance and recurrent disease are

driven in part by CSC (Steg et al., 2012).

Immune checkpoint inhibitors for OCSC

Immune checkpoint inhibitors (CPIs) are those involving

the PD1/PD-L1 and CTLA-4/CD80/CD86 pathways. Various

phase I/II clinical trials have been conducted on immune

checkpoint inhibitors, such as anti-PDL1 Avelumab

(NCT01772004) and Atezolizumab (NCT01375842), anti-

PD-1 Pembrolizumab (NCT02674061) for recurrent cases of

advanced ovarian cancer. However, the initial results obtained

were far from satisfactory. To improve the results, various phase

III clinical trials (NCT03598270, NCT02891824,

NCT02659384) are underway (Borella et al., 2020). PARP1 is

mainly associated with DNA damage repair, inducing DNA

damage followed by the addition of poly (ADP-ribose) chains to

the target molecule, PARPis with BRCA1 or BRCA2 gene

mutations are particularly effective in cancer cells (Li et al.,

2019). The association between PARPis and immune CPIs is a

potentially successful approach for EOC treatment and several

clinical trials testing this association are currently underway,

such as KEYLYNK-001, FIRST, and ATHENA, but no

preliminary data are yet available (McCann et al., 2011).

Another possibility to improve the effectiveness of immune

CPIs is to use them in combination with angiogenesis

inhibitors, which can “normalize” the tumor vascular

architecture and thus change the infiltration of T cells into

the tumor by inhibiting VEGF and increasing the effectiveness

of chemotherapy (Shrimali et al., 2010). An ongoing phase III

study is enrolling newly diagnosed high-risk OC patients to

evaluate pembrolizumab and bevacizumab (GOG3015)

(Borella et al., 2020). In addition, phase II/III clinical trials

of various tyrosine kinase inhibitors, such as Pazopanib,

Nintedanib (BIBF 1120), Cediranib, and Sunitinib have

shown promising results against the combination of VEGF

receptor, PDGF receptor, C-tyrosine kinase, and FMS-like

tyrosine kinase-3 (Paoletti et al., 2020). However, OC

remains one of the few malignancies in which CPIs have not

been incorporated into the approved standard of

immunotherapy. This could be explained by the low tumour

mutational burden. It is crucial to figure out whether OCSCs

can be targeted in order to improve the efficacy of CPIs in OC.

Epigenetic therapy for annihilation of
OCSCs

Studies have shown that epigenetics may provide new

strategies for the development of targeted cancer stem cell-like

cells due to the important role of epigenetic regulators in the

control of normal stem cell differentiation (Plumb et al., 2000).

Epigenetic dysregulation promotes increased survival and

plasticity in ovarian CSCs, leading to the development of their

metastatic features. The DNA methyltransferase inhibitor SGI-

110 effectively aided the differentiation of ALDH+ OCSCs,

thereby restoring platinum resensitivity in ovarian cancer cell

lines (Wang et al., 2014). Targeting histone deacetylase (HDAC)

isoforms allows chromatin remodeling through histone

acetylation, and HDAC inhibitors also block key signaling

pathways associated with CSC maintenance. In addition,

different HDAC isoforms can regulate the protein stability

and/or activity of EMT inducible transcription factors,

including HIF-1α, Stat3, Notch1, β-catenin, NF-κB, and c-Jun

(Lin et al., 2018). Bromodomain and extraterminal domain

(BET) is an epigenetic reader that regulates the expression of

several genes involved in oncogenesis. BET inhibitors (BETis)

can suppress tumorigenesis by inhibiting ALDH activity (Sarnik

et al., 2021). LncRNA HotairM1 can recruit EZH2 and SUZ12 to

the promoter of its target gene HOXA1, leading to histone

H3K27 trimethylation and epigenetic silencing of HOXA1,

promoting CSC self-renewal and tumor proliferation (Li et al.,

2020). LncRNA WDFY3-AS2 promotes cisplatin-resistant and

CD44+CD166+cells in ovarian cancer by regulating the hsa-

miR-139-5p/SDC4 axis (Wu et al., 2021). These studies provide

evidence of a cross-talk between epigenetic regulation through

LncRNAs and ovarian cancer progression, suggesting a role for
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LncRNAs as a potential therapeutic target to prevent ovarian

cancer recurrence by eliminating CSCs along with conventional

therapies.

What are the challenges for OCSC-
targeted therapy

Although OCSC-targeted therapy offer a new treatment

strategy for ovarian cancer patients with promising

applications, it remains true that there are many problems

that need to be solved and no such therapy has entered into

the clinical standard of care. Below we summarize a few of the

challenges that need to be overcome. (i) Lack of reliable

predictive markers to assess efficacy. One of the primary

difficulties in obtaining highly specific surface markers for

OSCS arises from the heterogeneity between tumors. (ii)

Research on ovarian CSC-focused studies has not captured the

equally important molecular drivers of chemoresistance and

recurrent disease. Due to the lack of samples from resistant

and recurrent disease, most studies assessing their prevalence or

function have been dependent on tissues that did not receive

chemotherapy. (iii) The effect of immune checkpoint therapy is

slow. It takes several months to show efficacy and can cause

autoimmune diseases such as dermatitis, enteritis and hepatitis.

(iv) Targeted inhibitors are not widely used in the treatment of

ovarian cancer. Most of the inhibitors that have proven efficacy

are still in the experimental stage. (v) The choice of targeted

inhibitors in combination with chemotherapeutic agents is still

inconclusive. The optimal timing and dose of targeted inhibitors

are also controversial.

Conclusion

There is sufficient evidence to support the presence of CSCs

in ovarian tumors that can initiate tumors, participate in tumor

immune escape, are resistant to chemotherapy, and produce

more differentiated non-tumorigenic cells. Unfortunately,

immunotherapy is not currently been approved for ovarian

cancer treatment. Further development of effective therapies

against CSCs requires a more detailed understanding of the

various cell biological processes, the patient’s tumor grade, the

interaction between cancer cells and CSCs, and the cancer-

microenvironment components. Overall, recent developments

in the identification of candidate therapies targeting OCSCs

reflect significant advances in this area and may lead to the

development of new clinical treatment strategies regarding

ovarian cancer therapy.
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