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Abstract: For the last few decades, while significant improvements have been achieved in cancer
therapy, this family of diseases is still considered one of the deadliest threats to human health. Thus,
there is an urgent need to find novel strategies in order to tackle this vital medical issue. One of
the most pivotal causes of cancer initiation is the presence of reactive oxygen species (ROS) inside
the body. Interestingly, on the other hand, high doses of ROS possess the capability to damage
malignant cells. Moreover, several important intracellular mechanisms occur during the production
of ROS. For these reasons, inducing ROS inside the biological system by utilizing external physical or
chemical methods is a promising approach to inhibit the growth of cancer cells. Beside conventional
technologies, cold atmospheric plasmas are now receiving much attention as an emerging therapeutic
tool for cancer treatment due to their unique biophysical behavior, including the ability to generate
considerable amounts of ROS. This review summarizes the important mechanisms of ROS generated
by chemical, physical, and plasma approaches. We also emphasize the biological effects and cancer
inhibition capabilities of ROS.
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1. Introduction

Reactive oxygen species (ROS) are free radicals that are known to function as very important
intracellular messengers [1] and can also modulate a wide range of mechanisms within the biological
system, including various disease pathogenesis [2]. They are very well known for playing both
beneficial and harmful roles in the human body [3,4]. Given this “double-edged sword” characteristic
of ROS [5], especially with regard to the molecular mechanisms of cancer [6,7], it is very important
to analyze and control the level of ROS required to instigate positive effects. From recent studies,
it is established that ROS have the ability to play a crucial role in destroying cancer cells by means of
enhanced oxidative stress through a variety of mechanisms [8–11]. As cancer pathology is related to
a large number of receptors and molecular characteristics [12,13], changes in ROS levels can modify
several pathways related to cancer. In addition, ROS can function as a treatment strategy for cancer if
their level can be controlled within a beneficial range. Thus far, ROS have been targeted by a number
of anticancer drugs, which act through various mechanisms to fight this disease [14]. Radiation is
one of the most commonly applied cancer treatments that has the ability to produce ROS [15,16].
Nonetheless, we are not able to win the battle against cancer due to the present challenges of cancer
therapy, such as drug resistance and the increasing side effects of conventional therapies. Moreover,
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the death rate caused by cancer is increasing [17]. Hence, in order to overcome this challenge, it is
essential to introduce a noble therapy that can control the amounts of reactive species in the body.
Eventually, changing the ROS amount can have anticancer effects both directly and indirectly with
minimal side effects. In the quest for a new warrior in the present state of cancer treatments, it is found
that treatments targeting ROS by any new tool can promise a new and more successful era of cancer
therapy [14]. However, the most beneficial and preferable strategy would require the considerations
of maintaining the optimum production and control of ROS to produce the effect not only on killing
cancer cells, but also on inhibiting cell proliferation and the metastasis of cancer.

Plasma, the fourth state of matter, is generated by ionizing gas with high electrical energy. Plasma
is categorized into thermal plasma and non-thermal plasma (or cold plasma) based on the nature of
the electrons, ions, and neutral species. Particularly, non-thermal or cold plasma does not take place in
the same local thermodynamic equilibrium state as thermal plasma, which results in the inequitable
temperature between plasma species. The plasma electron temperature might reach up to tens of
thousands Kelvin, far exceeding the temperature of the neutral gas, which remains around room
temperature. Moreover, non-thermal plasmas devices such as plasma jet or dielectric barrier discharge
(DBD)plasma normally operate in room condition, and are thus very suitable for life science research
studies and applications [18,19]. The last two decades have witnessed a vast upswing of non-thermal
plasma technology, from theoretical and experimental research, to real-life applications in various
fields. A novel interdisciplinary field called “plasma medicine” has been created, concerning the
generation of plasma at atmospheric pressure with room temperatures for treating living cells, DNA,
and life science targets [20]. Non-thermal plasma produces various reactive species that can be used to
enhance the oxidative stress of cancer cells and eventually kill cancer cells [21–23]. Diverse ROS can be
generated in plasma, and some may increase the oxidative stress of cells [24]. As a result, it can modify
any pathway that is directly or indirectly controlled by or related to ROS. It is currently established
that the killing effect of plasma stems from the enhanced oxidative stress in cancer cells caused by
plasma [22,25]. Recent works have shown that cancer cells produce more ROS [26,27], and therefore
are prone to be affected by a rise in oxidative stress compared to normal cells, making them more
suitable for being targeted by ROS [14] in conjunction with plasma technology. The killing effect of
plasma is more prominent in cancer cells compared to normal cells, which makes the outcome of such
a plasma treatment for cancer more fruitful.

Despite being a new method, plasma has already been used in different fields of medicine and
surgery [28–30]. It has been also applied successfully in the fields of dentistry [31], sterilization [32],
and skin treatment [33]. Evidence from recent works suggests that most of the activity of plasma
comes from the production of reactive species. As a result, it is considered as a new tool in the field of
oncology, and researchers have started to explore the effects of plasma on carcinoma cases. Plasma
has been applied in cancers of various organs such as breast [34], ovarian [35], prostate [36], lung [37],
brain [38], and skin [39], with results showing the excellent effects on these types of cancer. Although it
has not been applied clinically to cancer patients, in vitro and in vivo experiments testify that plasma
technology has great potential to be used as a therapeutic treatment for cancer in the future [40].
It remains not well known how plasma generates ROS and/or if there are any other clear mechanisms
related to the killing of cancer cells. Moreover, there are various types of plasma devices, and plasma
can be produced using a large variety of gases or combinations of gases. All of these aspects are very
influential on the physical characteristics of plasma. Hence, it is not certain that all in vivo and in vitro
experiments done thus far can be applied under identical conditions or can be compared directly.

The present review attempts to combine the intracellular production of ROS and the generation
of ROS by different physical and chemical means. Furthermore, we aim to discern the underlying
mechanisms of ROS with reference to cancer inhibition and the potential of plasma to be developed as
a future cancer treatment technology.
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2. Types of Reactive Oxygen Species

The ground state of diatomic oxygen is called triplet oxygen (3O2), containing two unpaired
electrons with parallel spins in the outer valence shell. Due to selection rules, the oxidation reaction
of triplet oxygen can occur with organic molecules that donate an electron pair with parallel spins.
Thus, the reactivity of triplet oxygen is relatively low since electron pairs of organic molecules typically
have anti-parallel spins. Nevertheless, 3O2 can be converted into several highly reactive molecules,
specifically ROS, via either electron-transfer or energy-transfer processes. The term ROS is used to
describe several radical and non-radical molecules that derive from diatomic oxygen. The four most
important ROS in a biological system are the superoxide anion, singlet oxygen, hydrogen peroxide,
and hydroxyl radicals.

2.1. Singlet Oxygen

Singlet oxygen (1O2) is the lowest electronically excited state of diatomic oxygen. 1O2 is a highly
reactive molecule that can inflict severe damage on cells. It is also involved in the signaling of apoptosis
and acclimation processes. 1O2 is the only ROS generated by energy transfer, whereas the other types
are products of electron-transfer reactions. In general, 1O2 is indirectly formed via a photosensitization
process during which a photosensitizer is excited by irradiation, followed by energy transfer to excite
the ground-state triplet oxygen into the singlet oxygen state [41]. Singlet oxygen is highly unstable and
constantly decays back to the ground state, emitting radiation in the near-IR region. These reactive
properties make singlet oxygen an important factor in photodynamic therapies. In addition, 1O2 plays
a role in a variety of chemical reactions to produce other oxidants and other highly reactive and
cytotoxic molecules, which can directly inactivate antigens and kill pathogens [42].

2.2. Superoxide Anion •O2
−

Superoxide anions (•O2
−) are a product of the one-electron reduction of diatomic oxygen and

are the most common type of ROS [43]. Under physiological conditions, •O2
− can be generated by

the NADPH oxidase enzyme or by the mitochondrial electron transport chain [44]. The reactivity of
the •O2

− molecule is widely considered to be relatively low. •O2
− can be dismutated into two less

reactive species, oxygen and hydroperoxide, in the presence of an enzyme called superoxide dismutase
(SOD). On the other hand, •O2

− participates in the Haber–Weiss reaction, generating hydroxyl radicals,
which are the most reactive and most dangerous type of ROS [45]. This reaction is a cause of oxidative
stress in cells. Thus, •O2

− is still capable of indirectly inflicting biological damage.

2.3. Hydroxyl Radicals

Hydroxyl radicals (•OH) are an extremely reactive oxidizing species and are the most dangerous
ROS, with a strong tendency to react with other molecules due to the presence of an unpaired
electron [46]. In general, •OH forms as a result of the dismutation of •O2

− in the presence of an
excess of superoxide anions with metal ions as a catalyst (Haber–Weiss reaction). Owing to its strong
instability, •OH is capable of interacting with all types of biological molecules [47]. Several forms of
severe damage to cellular components, such as lipid peroxidation, damage to proteins, and membrane
destruction can be caused by •OH. Nevertheless, cells have no enzymatic mechanism to eradicate •OH;
thus, an excessive concentration of •OH can result in cell death.

2.4. Hydrogen Peroxide

Hydrogen peroxide (H2O2) is a type of ROS with a relatively long lifetime. H2O2 molecules can
take part in reactions with other molecules at sites distant from where they are produced as they are
permeable to biomembranes, which is most likely via the aquaporins of cell membranes. Although
not a radical, H2O2 is capable of reacting with transition-metal ions to form •OH [41]. H2O2 has high
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potential to cross membranes, and thus can be used as a second messenger for signaling cascades
using ROS [48,49].

3. Generation of ROS

Reactive oxygen species are generally produced as by-products of different types of aerobic
metabolism [50]. It is well known that ground-state triplet molecular oxygen is a bio-radical containing
two valence electrons with parallel spins occupying separate orbitals [51]. Generally, triplet oxygen
interacts with an agent to provide a pair of electrons with parallel spins, which may enter two different
electron orbitals and eventually oxidize a non-radical atom or molecule [52]. Nevertheless, these pairs
of electrons in most cases have opposite spins. Therefore, this may create restrictions in reaction cases
with triplet molecular oxygen with most organic molecules [53,54]. As a result of an energy transfer
or by means of electron transfer reactions, ground-state oxygen may be changed to a much more
reactive type of ROS, leading to the production of the singlet oxygen or superoxide, hydrogen peroxide,
and hydroxyl radicals [55]. ROS can be produced in a living system by a variety of processes, such as
biological metabolism, enzymatic processes, and as by-products of biological reactions. Moreover,
various types of chemical reactions can be responsible for the production of ROS. The prominent
pathways of ROS production are illustrated in Figure 1.
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Figure 1. Schematic of primary reactive oxygen species (ROS) production mechanism.

3.1. Intracellular Production of ROS

A vast number of different biological processes generate ROS, and the sources and production of
ROS have been studied by numerous researchers. Figure 2 demonstrates the primary intercellular and
extracellular ROS generation mechanism. ROS can be produced by the induction of various cytochrome
P450 isoenzymes during the detoxification of chemical carcinogens. Again, lipid peroxidation and other
intracellular processes involved in NFkB, transcription factors kappa B and AP-1—partly by means of
protein kinase C activation [56,57] and PPARγ leading to chronic inflammation [58]—can cause the
intracellular generation of ROS. During the primary response to oxidative stress, transcription factor
NF-E2-related factor 2 (Nrf2) regulates a large number of antioxidants and cellular protective genes [59].
Moreover, numerous factors can be related to the production of ROS. Most ROS produced intracellularly
originate in the mitochondrial respiratory chain and subsequently create by-products that are toxic in
nature. Mitochondria, being the most important character in this play, represents the main intrinsic
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source of ROS generation using mitochondrial ETS (electron transport system) [60]. ROS generated via
the ETS of mitochondria are known to be involved in the pathways of cellular signaling, which are
related to survival and cell death [61]. During these processes, the secretion of mitochondrial ROS to the
cytosol is strictly modulated by a large group of proteins [62]. This ROS release is implicated in redox
homeostasis control and in a large variety of cellular signaling pathways. Oxidative ATP production is
one of the main functions of mitochondria [63], during which water is produced by the reduction of
oxygen (O2). Consequently, the mitochondrial respiratory chain is one of the most important and major
sources of intracellular ROS generation [64]. At the time of respiration, electrons released from the
mitochondrial electron transport chain incompletely reduce O2 to form superoxide [65]. By the action of
manganese superoxide dismutase (Mn-SOD), superoxide is transformed into H2O2 in the mitochondrial
matrix or by Cu and Zn-SOD in the intermembrane space (IMS) of mitochondria [66–68]. The 1–2%
of O2 consumed during respiration is estimated to be completely reduced to O2 in order to generate
superoxide in isolated mitochondria treated with respiratory chain inhibitors [65]. However, 0.12–0.15%
of O2 can generate H2O2 when palmitoyl-coenzyme A or glutamate/malate serve as the substrate [69].
Recently, it was reported that mitochondrial superoxide is generally formed at seven major sites of
mitochondria, and that all sites eventually release it into the matrix [70]. The two major sites of the
generation of superoxide are complexes I and III, which are parts of the mitochondrial respiratory chain.
It was also reported that the increased accumulation of calcium (Ca2+) in the cytoplasm is responsible
for activating the mitochondrial electron transport chain and for the production of ROS. Another major
endogenous source of ROS is the mammalian cytochrome P450 (CYP)-dependent microsomal electron
transport system [71].

The endoplasmic reticulum (ER) plays a key role in ROS production that is related to ER stress.
Previous works suggest that any change in redox homeostasis in the ER can be responsible for ER
stress, which as a result can enhance the production of ROS in mitochondria and in the ER [72]. In the
ER lumen, secretory proteins and the correct folding of most membranes demand the formation
of disulfide bonds between cysteine residues, which is a reversible process, in order to stabilize
tertiary as well as quaternary structures [73]. Several ER oxidoreductases, protein disulfide isomerases
(PDI), ERp72, and ERp57 are involved in oxidative protein folding in eukaryotic cells. Additionally,
this protein folding process is thermodynamically as well as kinetically controlled by the redox state of
the microenvironment, and maintained by redox buffers of the lumen of ER, including thiol–disulfide
pairs and reduced or oxidized pyridine nucleotides [74]. Glutathione (GSH) is one of the most
significant and abundant thiols in eukaryotic cells, and it can be converted into glutathione disulfide
by oxidation (GSSG) [10]. This explains why redox homeostasis in the cell is maintained by the
balance between GSH and GSSG [75]. In the cytosol, a ratio of GSH/GSSG ranging from 30:1 to 100:1
creates a reducing environment, while in the lumen of the ER, the GSH/GSSG ratio is as high as
1:1–3:1, representing an oxidized environment [76]. This oxidized environment in the ER lumen is
essential for oxidative protein folding. Additional sources include cardiac and vascular cells [77];
brain cells [78]; phagocytic cells such as leukocytes, macrophages, monocytes, neutrophils, and
eosinophils; and various oxidases such as nicotinamide adenine dinucleotide phosphate hydrogen
(NADPH) oxidases, aldehyde oxidase, glucose oxidase, and xanthine oxidase. Neutrophils, eosinophils,
and macrophages are supplementary endogenous sources and are very significant contributors to
the production of ROS. Activated macrophages can cause a “respiratory burst”, showing a rapid but
transient enhancement in oxygen uptake that is responsible for higher production levels of superoxide
anions, hydrogen peroxide radicals, and a variety of other ROS [79].

Peroxisomes are another important cellular source of production of ROS. Oxygen is consumed by
these cellular organelles, which in turn generate hydrogen peroxide and superoxide. ROS generation
also includes a battery of peroxisomal oxidases together with acyl-CoA oxidase and xanthine oxidase,
creating hydrogen peroxide and superoxide. The amount of oxidases and H2O2 produced differ among
cells and tissues [80].
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Figure 2. Some major intracellular (mitochondria, peroxisome, endoplasmic reticulum (ER) stress,
nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase, metabolizing enzymes)
and extracellular (Radiations, Xenobiotics) sources of reactive oxygen species (ROS) generation [81].

3.2. Roles of Different Enzyme and Protein Expression Levels during the Intracellular Production of ROS

Cytochrome oxidase is a large membrane-associated multiprotein assembly containing transition
metal ions (iron and copper) at its active sites and allowing the transfer of single electrons to facilitate
redox reactions [82]. The terminal cytochrome oxidase complex catalyzes several single-electron
reduction steps, by which four electrons are added sequentially to each O2 molecule at normal oxygen
levels. Cytochrome oxidase keeps the partially reduced oxygen intermediates formed during the
reduction process safely bound until they can be fully reduced to water, without releasing superoxide
radicals or other reactive oxygen radicals from the mitochondrial membrane [83].

Cytochrome P450 enzymes function as part of the NADPH/O2-dependent microsomal electron
transport system, and are one of the major cellular sources of ROS [71,83–86]. The ability of CYP
enzymes to incorporate an oxygen atom from O2 into numerous organic substrates (monooxygenase
activity), to utilize H2O2 and cumene hydroperoxides well as other hydroperoxides as oxygen atom
donors to oxygenate substrates (peroxygenase activity), and to use H2O2 and other peroxides during
the one-electron oxidation of substrates (peroxidase activity) demonstrates the catalytic versatility of
CYP enzymes [85]. During catalysis by microsomal CYP enzymes, two electrons are acquired from
NADPH and migrate from the flavin adenine dinucleotide domain of the flavoproteins reductase to
the CYP heme group. A water molecule normally occupies the sixth coordination site of heme iron,
but is replaced by molecular oxygen when the catalytic reaction begins [85]. The CYP monooxygenase
cycle commences with the iron of the heme group in the oxidized ferric state (FeIII) (A) and continues
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until ROS such as O2, H2O2, and •OH are eventually liberated as opposed to a monooxygenerated
substrate in a process known as uncoupling [85,87].

3.3. Generation of ROS by Chemicals

The generation of oxidative stress and damage has been found to occur following exposure
to xenobiotics with various chemical structures and modes of action. Chlorinated compounds [88],
barbiturates [89], phorbol esters [90], and certain peroxisome proliferating compounds [80] are among
the classes of compounds involved in induced oxidative stress and damage via both in vitro and in vivo
methods [91]. 2-Butoxyethanol is a chemical that can generate ROS by an indirect mechanism [92].
The production of ROS can be induced by the chemical 8-hydroxyguanosine in the liver, which is
produced by the activation of Kupffer cells secondary to 2-butoxyethanol-induced hemolysis as well
as subsequent hepatic iron deposition [93]. A number of other compounds, such as dieldrin [94],
2,3,7,8-Tetrachlorodibenzo-p-dioxin [95], lindane [96], and phenobarbital [97] have been proved to
function as a source of reactive species in the human body [98].

The superoxide-driven Fenton reaction plays a major role in converting poorly reactive radicals
into highly reactive ones [99,100]. The Fenton reaction is defined as the reaction of ferrous iron (Fe2+)
and hydrogen peroxide (H2O2). In this reaction, ferric iron (Fe3+) and •OH are produced. Then,
A •OH reacts with H2O2, and superoxide (O2

−) is produced [101]. Then, the superoxide reacts again
with H2O2, forming an •OH and a hydroxyl anion (−OH); this part of the reaction is known as the
‘Haber–Weiss Reaction’ [102]. Superoxide (O2

−) is reduced to Fe3+ rather than H2O2. Several metals
such as Fe, Cu, Zn, and Al have oxygen-transferring properties, giving them the catalytic power to
generate highly reactive •OH by the Fenton reaction [101]. •OH is mainly involved in three types of
reactions: hydrogen abstraction, the addition reaction, and the oxidation reaction [103].

Fe 2+ + H2O2 = Fe3+ + •OH + −OH [Fenton reaction]
•OH + H2O2 = •O2

− + H+ + H2O
O2
− + H2O2 = •OH + −OH + O2 [Haber–Weiss reaction]

3.4. Generation of ROS by Radiation

A very well-known and widely evaluated source of ROS is radiation energy [104]. The radiation
of various types and ranges causes the generation of different type of oxygen species. UV-B light in the
range of 1–100 mJ/cm2 causes a distinct rise in the generation of ROS in human and mouse keratinocytes
cells [105]. The production of ROS depends on the dose of the UV-B light. Depleting the keratinocytes
of glutathione using an inhibitor of glutathione synthesis increases the level of intracellular ROS [106].
Moreover, glutathione-depleted cells were considerably more responsive to the oxidant-generating
nature of UV-B light [106].

The ionizing radiation (IR) is electromagnetic radiation, which has the ability to remove electrons
from atoms. The most commonly used types of radiation for the treatment of cancer are X-rays, gamma
rays, and charged particles [107]. IR is initially responsible for the ionization and excitation of water,
eventually causing the formation radiolysis products from water, such as hydrated electrons, ionized
water, hydroperoxyl radicals (HO2

•), •OH, hydrogen radicals (H•), and H2O2 in a very short span of
time (10−8 s) when irradiated in a biological system [104]. This eventually creates a side effect of low
linear energy transfer (LET) IRs such as γ-rays and X-rays [108]. It is also evident that when irradiated
onto cells, IR not only causes the generation of ROS from water radiolysis; it also has been found
that IR is responsible for enhancing the intracellular level of ROS, including O2

− several hours after
exposure [15,109,110]. It was found and established by Yamamori et al. that the IR-induced G2/M
arrest led to a sustained increase in cells with enhanced mitochondrial quantities and higher levels of
cellular oxidative stress, thereby causing an increase in the oxidative stress in all the cells after their
exposure to radiation [111].

A laser is a source of light or radiation energy. The low-level laser (LLL) is a specific type of laser that
has the ability to affect biologic systems without causing an increase in the temperature [112]. According



Cancers 2019, 11, 1030 8 of 31

to Karu, exposure to laser irradiation results in an increase in mitochondrial electrochemical activity
and a concomitant enhancement in ATP synthesis [113]. It has also been reported that cytochrome c
oxidase is the main photoreceptor of laser light [114,115]. Additionally, the low-level laser has a cascade
effect on cell signaling, which plays a role in cellular proliferation and cytoprotection [116]. In some
studies, it was also reported that laser therapy influences oxidative stress parameters, for instance
changing the level of antioxidant enzyme activity and generating ROS [117–119]. The absorption of
laser light boosts the transfer of electrons in the respiratory chain, causing a sudden increase in the
initial level of ROS production, specifically enhancing the generation of superoxide anions. However,
the role of laser irradiation on the cellular mechanism and its effect on oxidative parameters are still
not clearly known [120].

3.5. ROS Production by Plasma

Atmospheric pressure plasmas are very well known for creating very high concentrations of
various types of reactive species. It was reported that DBD plasma and jet plasma can generate large
amounts of ROS [22,121,122]. Indirect plasmas are generated between two electrodes of certain devices
and are transported to the application area via a gas flow. ROS are usually generated at the boundary
of the jet with the adjacent air by a number of different mechanisms [121]. According to several authors,
ROS produced by plasma can cause morphological changes, the depolarization of membranes, lipid
peroxidation, and damage to DNA in cells [123,124]. The anti-neoplastic activity of CAP is primarily
based on the delivery of reactive oxygen and nitrogen species (RONS) [24]. For plasma medicine,
the determination of the amount of reactive species produced in plasma-treated liquids is of enormous
value. Currently, numerous lines of research are focused on applying plasma as a cancer treatment
using the ROS production property [125–128]. Treatment with plasma causes the depolarization of the
mitochondrial membrane potential and results in the formation of ROS in human cells [129]. It has
been reported that the therapeutic effects of air plasma result from the production of RONS such as
H2O2, Ox, OH−, •O2

−, and NOx due to the depolarization of the mitochondrial membrane potential
and mitochondrial ROS accumulation [126].

3.6. ROS Production by Anticancer Drugs during Cancer Therapy

A number of studies demonstrate that anticancer drugs can cause oxidative stress in cancer
patients treated with chemotherapy [130]. However, there is a very significant association between
enhanced oxidative stress and the effects of natural anticancer agents such as sesquiterpene lactone
parthenolide [131]. A noble phenolic compound derived from hispidin has been reported to act
against colon cancer by generating ROS and causing apoptosis by both intrinsic and extrinsic
pathways [132]. In cancer cells, ROS signaling is a key factor playing important roles in a number of
stages, such as survival, transcription, protein translation, and tumor formation and development.
The ROS hydrogen peroxide results in the apoptosis of cancer cells [133], and a number of anticancer
drugs can produce this agent to show an anticancer effect [134,135]. Data from a recent study by
Yokoyama et al. suggest that nimustine, actinomycin D, doxorubicin, mitomycin C, mitoxantrone,
carmofur, gemcitabine, mercaptopurine, camptothecin, paclitaxel, vinblastine, and vinorelbine can
cause significant oxidative stress [136]. Vinorelbine, an anticancer agent, depletes intracellular GSH
and increases intracellular ROS production [137]. Enhanced levels of oxidants in the blood circulation
have been found in patients with cancer after an administration of epirubicin [138]. Several anticancer
drugs initiate DNA damage and result in subsequent apoptosis induction. Epirubicin [139] and
doxorubicin [140] can generate ROS, causing damage to the DNA and eventually resulting in antitumor
activity [141]. TAS-103 also shows anticancer action by oxidative DNA damage [142]. Eriocalyxin B [143],
artemisinin [144], genipin [145], gemcitabine [146], spiclomazine [147], belinostat [148], artesunate [149],
isoalantolactone [150], and dihydro artemisinin [151] have been found to cause an enhancement of
ROS by various mechanisms, eventually inhibiting cancer proliferation via ROS-mediated mechanisms.
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The most well-known anticancer drugs for producing ROS and their mechanisms are summarized in
Table 1.

Table 1. List of anticancer agents applied to different cancer treatment and their mechanism of action
by increasing ROS production.

Published Year Anticancer Agent Types of Cancer Mechanism

1999 Doxorubicin Lung cancer [152] BRAF inhibition by ROS [152,153]

2018 Actinomycin D or
Decitabine Skin cancer [154] Production of reactive species [155]

2018 Vinorelbine Lung cancer [156] ROS induced mechanism [137]

2014 Vinblastine Lung cancer and breast
cancer [157] Apoptosis induced by ROS [136]

2009 Camptothecin Cervical and uterus
cancer [158] Cell death induced by ROS

2006
2014 Paclitaxel Lung cancer [159]

Breast cancer [160]
ROS-dependent activation of apoptotic

cell death [161]
2012 Taxol Blood cancer [162] Apoptosis by generation of ROS [162]
2017 Epirubicin Breast cancer [163] Programmed death of cell by ROS [163]
2012 Resveratrol Colon cancer [164] ROS production [164]

2015 Colchicine Colon cancer [165] Increase ROS production in a dose
dependent manner [165]

ROS: reactive oxygen species; BRAF: serine/threonine-specific protein kinase.

4. ROS Roles in Cellular Mechanisms for the Inhibition of Cancers

Currently, cancer is one of the most lethal diseases worldwide, and it is now a great challenge to
establish highly potent treatments for cancer by discovering new targets. The conventional approaches
for treating cancer are not very effective in many cases due to multidrug resistance and the side
effects of chemotherapy. As a result, many studies have been designed to find potential targets for
cancer therapies. Numerous factors are highly significant and closely related to cancer initiation and
development strategies.

Reactive oxygen species can also be a very important factor in cancer cases given the function
of ROS as secondary messengers and considering the very close relationship with a number of
cellular mechanisms, including those related to the survival of cells. Free radicals, mainly ROS,
have been reported as very common mediators of apoptosis. Again, it has already been reported
that certain chemotherapeutic agents and radiation therapies cause oxidative stress by enhancing
ROS in patients when used as a cancer therapy. When the amounts of ROS rise to the toxic threshold
level, the antioxidant system of the cell is eventually altered, possibly leading to cell death. In this
scenario, the death of cancer cells can be increased by using exogenous ROS-generating agents, because
they cause enhanced ROS stress. Oxidative stress can induce many biological responses, which may
include a transient arrest of growth and adaptation, the initiation of signal transduction pathways,
gene transcription, and damaged DNA repair [166,167]. These events determine whether a cell will
undergo necrosis, senescence, apoptosis, or will survive and proliferate [167]. The extent of these
responses can depend on the cellular genetic background, the different classes of specific ROS involved,
and significantly on the intensity and duration of the oxidative stress created [168,169].

Increased ROS in cells using a therapeutic approach can have anticancer effects by a number
of different mechanisms. The four most important mechanisms—adaptation, apoptosis, autophagy,
and enhanced drug sensitivity—are represented in Figure 3. This chapter focuses on the principle and
impact of these above-mentioned mechanisms.
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4.1. Adaptation

Reactive oxygen species homeostasis is necessary for cell survival, because high levels of ROS
have toxic effects on cells, which initiates a signal transduction mechanism involving cell proliferation
inhibition or cell death [170]. It is important to note that the amounts of ROS in cancer cells are
higher than those in normal cells [171]. When low levels of ROS stress are induced in cells, the cells
become able to regulate various types of adaptation mechanisms and make adjustments given the
increased level of oxidative stress [61]. In order to equilibrate the increased ROS effect, ROS can
cause redox buffering systems [172] and various antioxidant enzymes [61,173] to be generated by cells.
The glutathione system (GSSG/2GSH) [174] and the thioredoxin system [175] are the most abundant
redox couples involved in maintaining the cellular redox balance to detoxify the effect of certain
types of ROS. The mobilization of redox-buffering systems can be considered as the first instance of
cellular adaptation to ROS stress [176]. The upregulation of antioxidant enzyme expression levels
of, for instance, SOD, catalase, and peroxidase represents a very significant adaptation mechanism,
providing more sustainable protection against increased ROS stress. However, such adaptation
processes are inadequate for killing cancer cells. Nonetheless, under sustained ROS stress conditions,
adaptation mechanisms and the weakening of the ROS-buffering capacity are both highly likely.
Anticancer chemotherapeutic agents can produce exogenous ROS, eventually leading to ROS stress
such that it activates cell death [177].

Adaptation developed by ROS can play a very important role in cancer treatments by several
different types of pathways, but a single and specific mechanism that can be more promising and can
act more selectively compared to others has yet to be found. Generally, this process works with other
apoptotic mechanisms to kill cancer cells, and the combination can eventually enhance the rate of
apoptosis. Future works should focus on finding appropriate amounts or concentrations of ROS to
initiate the adaptation process in order to design new therapeutic approaches.

4.2. Apoptosis

Chemotherapy, radiotherapy, and other therapeutics involved in cancer treatments in most cases
can produce ROS, and these approaches mostly target mechanisms that kill cells. Several mechanisms
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to explain apoptosis initiated by ROS have been considered. Indeed, the excessive production of ROS
in cells is known to induce apoptosis [177–179]. The excessive generation of ROS may cause damage to
cellular components, including the DNA, proteins, and lipid membranes [180]. Protein damage can be
caused by direct oxidative alteration of the side chains of amino acids and by ROS-mediated peptide
cleavage [181]. The oxidation of proteins can demolish the redox equilibrium, which is essential
for ensuring the appropriate roles of numerous metal-containing enzymes, including cytochrome
c, cytochrome c oxidase, glutathione peroxidase, and catalases. The inhibition of catalases and
peroxidases by oxidation sequentially decreases the ability of cells to eliminate H2O2 and further
escalates oxidative stress.

The nitrosylation of protein is another mechanism by which ROS cause cellular injury and
apoptosis. Peroxynitrite, the product of a reaction between superoxide and nitric oxide, is a major ROS
that causes the nitrosylation of proteins. It also influences the roles of signaling molecules such as
NF-kB, AP-1, and p53 [182].

Several apoptosis-related signaling pathways, such as the MAPK (mitogen-activated protein
kinase) pathway and the ERK (extracellular signal-regulated kinase) pathway, are reportedly involved
in ROS-induced apoptotic cell death [183]. Apoptosis caused by death receptors and mitochondria
depends on ROS levels in the cells, resulting in oxidative stress [184]. The Fas ligand (FasL) activates
fast ROS generation, which is mostly derived from NADPH oxidase, an earlier event of Fas stimulation
and the starting point of apoptosis. p38, another member of the MAPK family, is also involved in
apoptotic signaling as a result of the increased generation of ROS. p38 and JNK (c-Jun N-terminal
kinase) are both activated by Ask-1 (apoptosis signal-regulating kinase-1), whose action is controlled by
its interaction with thioredoxin, another redox-regulated protein [185,186]. In addition, Ask-1-induced
signaling cascades and certain other signaling proteins such as FOXO3a, p66Shc, and p53 are involved
in apoptosis initiation in response to ROS [187,188].

Reactive oxygen species play important roles in initiating apoptosis processes by affecting various
signaling cascades and by directly oxidizing cellular proteins, lipids, or nucleic acids and causing
general damage and dysfunction. ROS can also affect various crucial necrotic pathways that can also
lead to a certain amount of necrotic cell death [189], which is a faster and less energy-dependent event
compared to apoptosis. Again, death receptors, for instance, TNF (tumor necrosis factor) receptor-I,
enhance ROS generation via the mitochondria, leading to the activation of caspases and causing cell
death [190]. However, TRAF4 (TNF receptor-associated factor 4), which is a factor of the TNFα signaling
pathway, binds to the NADPH oxidase complex in order to trigger JNK signaling [191], which suggests
that death receptors use several pathways to induce ROS within cells. Notably, TNF-induced oxidative
stress also activates anti-apoptotic signaling by increasing the expression levels of MnSOD and catalase
by NF-Kb [192].

Lipid membranes are vulnerable to ROS attack. Once lipid peroxidation is initiated, it produces
organic radicals, which consecutively initiate the proliferation of peroxidation reactions and cause
substantial damage [193]. Lipid peroxidation can reduce the fluidity of biological membranes and
enhance the permeability of these membranes [194]. Since much of the •O2

− is generated in the
mitochondria, damage to the mitochondrial membrane is likely to be the cause of the release of
cytochrome c, stimulating the cascade of apoptosis. Mitochondrial membrane potential reduction,
the destruction of the mitochondrial respiratory chain, and ATP depletion are general consequences of
enhanced oxidative stress [195,196]. Cytochrome c leakage from the permeability transition (PT) pore
complex, apoptosome production, and the triggering of caspases are the most important measures of
mitochondrial-induced apoptosis.

A recent study showed that peripheral T cells cultured in the absence of survival factors may
gather ROS, upregulate the expression levels of the Bcl-2-interacting mediator of death (BIM) and
inducible nitric oxide synthase (iNOS), and undergo apoptosis, which is inhibited by antioxidants [197].
However, the enormous cellular oxidation caused by elevated levels of ROS may bring about the death
of narcotic cells rather than apoptosis [196]. It is possible for ROS to prompt either of these death
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responses, and apoptosis and necrosis may occur together in the same tissue [198]. The power of ROS
to impose severe cellular damage together with cell death provide a chance to destroy cancer cells by
excessive ROS stress imparted to malignant cells by means of pharmacological agents.

It is also very important that a significant pathway shared in general by chemotherapy and
radiotherapy is ROS-induced apoptosis [199]. Most of the recently developed anticancer drugs, such as
Levistolide A [200], TAS-103 [142], and doxorubicin [142] have been reported to provoke apoptotic
cell death in tumor cells by the generation of ROS [201]. Studies have shown that ROS can cause
apoptosis by enhancing the activity of caspases and eventually the overexpression of death receptor 5
(DR5). The protein kinase C (PKC) zeta-reliant phosphorylation of p47-phox confers NADPH oxidase
activation. The FasL-activated ROS response is crucial for the interaction between epidermal growth
factor receptor (EGFR) and Fas as a sign of its phosphorylation. Moreover, tyrosine leads to the
initiation of apoptosis by recruiting the Fas-linked death domain and caspase-8 [202,203]. In addition,
FasL-promoted ROS production aids with ubiquitination followed by the inhibition of the function
of the caspase-8/FADD-like IL-1beta-converting enzyme (FLICE) inhibitory protein (FLIP) to assist
with the activation of Fas [204]. ROS affect the structural integrity of the PT pore by signaling cascades
and through the oxidative modification of the PT pore structure. The JNK signaling pathway is
initiated by ROS, activating apoptosis signal-regulating kinase 1 (ASK1) by releasing mitogen-activated
protein kinase kinase 1 (MEKK1) from its attachment with glutathione S-transferase (GST) [205] or by
blocking the action of Protein tyrosine phosphatase (PTP) to allow for the functioning of Srctoinitiate
downstream signaling [206].

In summary, increased ROS can encourage apoptosis in cancer cells by a variety of mechanisms,
and this aspect can be therapeutically implicated via a ROS-boosting anticancer therapy. Many
well-established anticancer agents are already known to show action in this way. Hence, more research
should be designed to find which types of cancer are more susceptible to ROS-boosting treatment
strategies, as different cancers may show different characteristics and act differently when treated with
ROS-generating agents. Again, maintaining the balance of ROS in cells is also a very important factor
when developing this type of therapeutic strategy, as ROS can also play a positive role in metastasis.
Currently, researchers are considering both ROS-enhancing and ROS-depleting treatment strategies
on the basis of the type of cancer. Therefore, future works should focus on discovering the roles of
ROS-boosting cell-killing strategies for specific cancers that show better results than other methods
and finding strategies that maintain the balance of ROS during the treatment. This is important
because ROS can also show toxic effects if there is a major misbalance in the approach, and in the
long run can worsen the situation. Thus far, ROS-based cancer treatments have shown remarkable
progress, which makes the situation more challenging to those seeking solutions with regard to the
main obstacles of this strategy.

4.3. Autophagy

Autophagy can simply be defined as the process of the degradation of proteins and organelles,
which may recycle in order to form new cells. It plays a key role in cellular reactions as a response
to increased ROS levels. It is a multi-step operation that controls cellular homeostasis by degrading
and recycling long-lived proteins and intracellular aggregates together with damaged organelles.
This process requires nearly 40 proteins and can demonstrate the formation of a double-membrane
structured phagophore that engulfs part of the cytoplasm and organelles in order to create an
autophagosome. The initiation of autophagy is synchronized by two kinases, unc-51-like kinase 1
(ULK1) and vacuolar protein sorting-34 (VPS34). The adenosine monophosphate (AMP)-dependent
protein kinase is a key factor in controlling ULK1 and mTORC1, which is based on the energy condition
of the cell [207].

Recently, it was revealed that ROS can result in autophagy by various distinct methods involving
Atg4, catalase, and the mitochondrial electron transport chain (mETC). This may cause both cell
survival and cell death, but the action could selective toward cancer cells [8]. Accordingly, it is obvious
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from a number of research outcomes that in the case of survival-prone autophagy, ROS can function
as an efficient signaling molecule [208]. It was reported by Poillet-Perez et al. that certain levels of
ROS production regulate the induction of autophagy in cancer cells [209]. By causing the oxidation
of enzyme ATG4 to ATG8 protein by H2O2, ROS can play a very significant role as a prerequisite
for the induction of autophagy. This oxidation converts active ATG4 to an inactive form, resulting
in the enhanced production of LC3-associated autophagosomes [209]. Indirectly, the adenosine
monophosphate-activated protein kinase (AMPK) pathway is another significant factor related to the
maintenance of autophagy by ROS [210]. AMPK activation can increase autophagy by restraining
the mammalian target of rapamycin complex 1 (mTORC1). Oxidative stress can alter the AMPK
pathway and initiate it by phosphorylating the AMPK kinase (AMPKK) and subsequently can increase
the production of H2O2, which induces apoptosis indirectly [209]. ROS can also play a key role in
autophagy by affecting the activity of various transcription factors such as NFκB, which is responsible
for the expression of autophagy-associated genes in tumors [211]. Selenite causes cytotoxicity mediated
by autophagy in human glioma tumors, and the excessive generation of the SOD enzyme conspicuously
hinders autophagy stemming from selenite. siRNA helps in case of the knockout of autophagy-related
gene 6 (ATG6) or ATG7, and reduces selenite-promoted autophagy. The application of ROS-derived
autophagy in treating cancers has recently started [212,213]. In light of these results, it can be said that
the enhanced generation of ROS and related treatment strategies can induce autophagy in cancer cells.
At present, the challenge is to find the most effective and clear mechanisms of action played by ROS in
autophagy, and doing so necessitates more work to establish safe and sound therapeutic applications.

4.4. Increased Action and Sensitivity of Anticancer Agents by ROS

From a number of research works, it has been found that anticancer agents produce ROS,
which may eventually enhance the oxidative stress to a level that pushes it beyond the maximum
tolerance level, ultimately causing death to cells [214]. Apart from being involved in direct damage to
cellular molecules, ROS appears to play a unique role in controlling the apoptosis process, which is
initiated by a range of anticancer therapeutic agents and other stimuli. A very common mechanism of
various ROS-producing anticancer agents is a sudden increase of the ROS level within the cells, or a
transient ROS burst [179,215,216]. This increased ROS generation in cancer cells makes the cells highly
dependent on antioxidant enzymes to withstand ROS stress. The sustained oxidative stress due to the
presence of constant oncogenic signals and active metabolism likely requires the full utilization of the
cellular antioxidant capacity. In such cases, cancer cells with increased endogenous ROS stress levels
should be more sensitive to anticancer agents that either cause further ROS generation or impair the
cellular ability to eliminate ROS. Indeed, it has been observed that human leukemia cells with high
ROS contents are more sensitive than normal lymphocytes (low cellular ROS) to 2-methoxyestradiol
(2-ME), which is a novel anticancer agent that causes ROS accumulation by inhibiting SOD [217]. In an
earlier section, it was discussed how ROS level increases are also associated with the initiation of
the redox-sensitive JNK/SAPK (c-Jun N-terminal kinase /stress-activated protein kinases) signaling
mechanism, which is generally engaged during the transcriptional activation of genes and during
post-translational alterations of proteins required for apoptosis. In 2006, Kim et al. reported that the
Bcl-2 Homology 3 (BH3)-only protein Noxa responds directly to hypoxia-inducible factor-1 (HIF-1) and
seems to play an important role in hypoxia-induced cell death with the participation of ROS [218]. From
the previous discussion, we found that ROS generation during the process of apoptosis is considered
to be correlated with the malfunction of the mitochondrial respiratory chain, the disengagement
of cytochrome c, and modification of the mitochondrial transmembrane potential and membrane
permeability [219,220]. Although mtDNA and the respiratory function are not always essential for the
process of apoptosis, their absence or the impairments of their functions can influence the rate of ROS
generation and the kinetics of the apoptotic process and therefore modulate drug-induced apoptosis,
possibly leading to the enhanced action of anticancer drugs [221].
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Based on research conducted thus far, it has also been found that ROS can be involved
in collateral sensitivity by means of either P-glycoprotein (P-gp)-based ATPase stimulation or
non-P-gp-dependent ROS hypersensitivity [222,223]. P-gp is a plasma membrane protein that is
encoded by the multidrug-resistant gene(s). An increasing number of studies show that ROS can
regulate the expression of P-gp and can function as a negative regulator to downregulate P-gp
expression [224,225]. A P-gp-based ATPase stimulation pathway has been supported by earlier
studies and other recent evidence [223,226]. A non-P-gp-dependent pathway is also being gradually
demonstrated in other studies. It is certain that ROS species have great potential and can eventually act
as an agent to improve the condition of cancer treatments by improving drug sensitivity and solving
the problem of drug resistance in a controlled way. As noted earlier, some important anticancer drugs
show action by modulating the amount of ROS in cancer cells, and their action depends on the ROS.
Moreover, the exact amount and concentration of ROS can enhance their action, which would be a
blessing for those undergoing cancer treatments. The most valuable aspect to explore in the future
can be the establishment of the amounts of ROS that are needed for enhancing drug sensitivity and
playing a positive role in drug resistance. Discovering threshold limits to avoid the detrimental effects
that can be caused by ROS during cancer treatment is another noble goal.

By following the ROS-inducing effect, some other important and potential methods can play
significant roles in cancer treatment strategy. It has been reported that some monoclonal antibodies and
tyrosine kinase inhibitors (TKIs) provide anticancer activity on patients via ROS-mediated mechanisms
of action, which can also be related to their efficacy [227]. Again, there is another very promising
therapy called sonodynamic therapy (SDT), which can enhance the level of ROS in cancer cells and
affect the cancer microenvironment, which in turn can stop the development of cancer [228]. ROS is
also a very good modulator of tumor-associated macrophages, which in turn evoke strong antitumor
immune action resulting in the suppression of tumors [229]. The other promising ROS-based therapies
are listed in Table 2.

Table 2. List of other treatment methods used in cancer treatment via reactive oxygen
species-based mechanisms.

Treatment Methods Mechanism Reference

Sonodynamic therapy (SDT) Alter cancer microenvironment by
enhancing ROS level [228]

Tyrosin kinase inhibitor (TKI) ROS inducing effect [227]
Monoclonal antibody ROS mediated apotosis [227]

Anti-tumor immune action By targeting tumor-associated
macrophage by ROS [229]

Nanomedicine combination with
anticancer drugs ROS-inducing effect [230]

5. Role of Plasma in the Inhibition of Cancer and its Mechanism

ROS originating in plasma (directly from plasma or subsequently produced in media) initially
come into contact with the cytoplasmic membrane. Shortly after a plasma treatment at a sufficiently
high dosage, numerous cancer cells undergo a morphological change from a broadened shape to a
contractive shape [231,232].

Plasma contains a collection of ROS, and these ROS can encourage oxidative stress and activate
different signaling pathways in cells. The primary mechanism of a non-thermal plasma anticancer
treatment is related to ROS production. In a recent paper, Watson reported that ROS can serve as a
‘positive energy for life’ due to their function in apoptosis, i.e., as an inner program that extremely
stresses cells to induce death [233]. On the other hand, ROS are also well recognized for their capability
to irretrievably harm major proteins and nucleic acid molecules (DNA and RNA). It was also pointed out
that the great majority of all the agents that are utilized to destroy cancer cells easily (ionizing radiation,
most chemotherapeutic specialists, and some focused therapies) work by either straightforwardly or
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not directly producing ROS that obstruct key steps in the cellular cycle. It has been identified that a
major boost of the intracellular ROS levels can cause DNA damage and apoptosis within the focused
cells [14,233]. Preliminary observations also indicated that cancer cells consumed ROS much faster
than other normal cells which supported the selective model based on aquaporins [234]. Plasma tends
to resist the development of cancer cells, but not the development of homologous normal cells by
activating more apoptosis in cancer cells than in ordinary cells [235,236]. Considering these selective
anticancer methods is one of the key challenges in this area. Such a specific impact may be mainly due
to the broad discovery that a recognizable rise of ROS specifically occurs in cancer cells rather than
normal cells during a similar plasma treatment [121,237,238]. After the plasma treatment, the calculated
ROS intensity in cancer cells is superior to that in normal cells. Nonetheless, in some instances, plasma
kills more cancer cells than similar normal cells [36,239]

It is known that mitochondria are the key organelles that create ROS and the most common
target of ROS-prompted damage, as discovered in different pathological states. In mitochondria,
different types of ROS (mostly superoxide) are produced in three electron-transport chain complexes
(Succinate-Q reductase, nicotinamide adenine dinucleotide phosphate-Q (NADP-Q) oxidoreductase,
and Q-cytochrome oxidoreductase). As a counteract procedure, superoxide may be removed by
targeting manganese (Mn)-reliant superoxide dismutase (MnSOD) in the matrix of mitochondria [21].
Although it is very challenging to target MnSOD only in cancer cells, some research works found
evidence that there is high variability in MnSOD gene expression in cancer cells compared to normal
cells; also, targeting MnSOD can be therapeutically beneficial for cancer. It has also been found
that the promoter region of human MnSOD consists of peroxisome proliferator response element
(PPRE)-binding motifs. Activation of the peroxisome proliferator-activated receptor-γ (PPARγ) in
invasive basal-like breast cancer cell can eventually result in a significant lowering of MnSOD mRNA
and protein levels, and it can be done by PPARγ ligands. The repression of MnSOD levels in cancer
cells can control the intracellular ROS level in cancer cells [240].

Moreover, the phosphorylation of p53 is essential for triggering mitochondrion-based apoptosis
pathways [241]. p53 activates the expression of pro-apoptotic components, including Bax, Puma,
and Noxa [242]. These pro-apoptotic elements cause the discharge of cytochrome c and additional
intermembrane mitochondrial proteins within the cytosol [243], where cytochrome c is linked to
apoptotic protease actuating element1, later forming the apoptosome [244]. The apoptosome similarly
actuates caspase-9 by means of cleavage [245,246]. The actuated caspase-9 advance enacts caspase-3/7
and eventually instigates the arrangement of apoptotic activities [245]. Among them, the cleavage of
poly (ADP-ribose) polymerase (PARP) is a vital early molecular marker of apoptosis [245]. Apoptosis
is the principal form of cancer cell death subsequent to a plasma treatment [246]. In plasma-treated
cancer cells, the discharge of cytochrome c into the cytosol [232] and the appearance of caspase-3/7/9,
Noxa [247], Bax, the PARP cleavage, mitochondrial transmembrane potential failure, as well as
DNA destruction have been generally observed. In short, plasma-treated cancer cells not only
follow distinctive DNA damage pathways [248], but they also maintain well-understood apoptosis
pathways [249]. Figure 4 shows the possible molecular mechanisms of the apoptosis of soft jet plasma
in cancer.
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Figure 4. Molecular mechanism of soft-jet plasma-induced cancer cell apoptosis via the mitochondrial
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However, most apoptosis pathways observed in plasma-treated cancer cells are dependent on the
mitochondrial mechanism activated through DNA injury and/or mitochondrial damage. DNA damage
has generally been observed as a premature stage event during plasma treatment [234]. Double stranded
break is the main damage type [22,251]. A vital marker of DSB is the particular phosphorylation
of serine 139 on the H2AX histone (γ-H2AX), which is normally determined immediately after the
plasma treatment [251]. Although apoptosis is the main and the most prominent pathway derived by
plasma-based treatment, in some cancer cell lines, plasma treatment is reported to follow autophagy;
both processes (autophagy and apoptosis) may have occurred simultaneously [252–254]. The enhanced
oxidative stress has the ability to initiate autophagy. The redox signaling caused by the presence of
ROS in cells can play a pivotal role in switching on autophagy. Again, we already discussed that
DNA damage can be caused by plasma application, which can in turn cause DNA damage-induced
autophagy, which can contribute as both a cell death and tumor-suppressor method [255]. In some
cancer cell lines, it has been evident that plasma can cause the necrosis of cancer cells by high levels of
DNA damage [256], but this is not as significant as the apoptosis mechanism.

In an endeavor to reveal in more detail the cascade of molecular activities that accompany a
plasma treatment, human breast cancer cells were examined, and dose-based apoptosis appeared as
a result of the plasma treatment [24]. Plasma effects including ROS production and the actuation of
H2AX may also arise via an isolated treatment of culture media without cells and with a consequent
switch to a condition with cells. The amount of DNA damage identified by the phosphorylated
histone variant H2AX, which is recruited to DNA damage foci, was neither notably affected by the
elimination of charged particles nor mediated by the UV content. Utilizing dilution experiments,
researchers hypothesized that the cellular effects are interceded by way of the peroxidation of amino
acids within the cell culture medium. Later, the authors verified that DNA damage is initiated
by means of intracellular reactive species. The phosphorylation of H2AX appears to be especially
interceded by the ataxia–telangiectasia associated protein (ATR) and not by the ataxia–telangiectasia
mutated (ATM) form, which is mostly involved in the reaction between IR and H2O2. Moreover,
ROS hinders the effects of plasma on in human liver cancer cells, where a noteworthy boost of lipid
peroxidation was recognized. In addition, it has been discovered that intracellular ROS may also result
in mitochondrial disorder [35].
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Concentrating on cancer cells via ROS-mediated mechanisms has become an appealing method
for the successful treatment of cancer while exploiting the abnormal redox characteristics of cancer
cells [14]. While the levels of ROS in cancer cells are close to the limit at which cell death occurs and
the sources of ROS formation in most cancer cells are dissimilar from those in normal cells [257], ROS
have been investigated as anticancer remedial drugs. The opportunity for ROS upregulation through
inhibitors of antioxidant enzymes or by means of ROS inducers has arisen, thus promoting oxidative
stress and especially facilitating cancer cell death as anticancer healing agents [258]. It is important
that plasma effects are clearer in several tumor types as compared to conventional chemotherapy [232].
Therefore, the collection of ROS directly initiated by plasma or through different mechanisms may
present a novel basis on which a tumor remedy using plasma can be devised. We summarized some
important studies on the effect of plasma toward cancer treatment in Table 3.

Table 3. List of plasma instruments and methods used in different types of cancer with their mechanisms.

Published Year Plasma
Equipment Types of Cancer Mechanism Reference

2017 Plasma jet Pancreatic cancer Hydrogen peroxide [259]
2017 DBD plasma device Cervical cancer Hydrogen peroxide [260]

2014 Plasma jet Head and neck
cancer

DNA damage by
ROS [261]

2016 Plasma generated
in DI water Gastric cancer ROS-induced

apoptosis [262]

2017 Air plasma by high
voltage electrode

Triple negative
breast cancer

Hydrogen
peroxide-induced

apoptosis
[256]

2016
Microplasma jet
produced liquid

plasma

Triple negative
breast cancer

ROS and
RNS-induced

apoptosis
[263]

2017 DBD plasma device Lung cancer Apoptosis induced
by ROS and RNS [264]

2015 Water vapor with
plasma jet Breast cancer

Hydrogen
peroxide-induced

apoptosis
[265]

2017 DBD plasma Colon cancer
Apoptosis and

DNA damage by
ROS

[266]

2013 Jet plasma Brain cancer Plasma caused cell
death [267]

2016 DBD plasma Brain cancer ROS-induced
apoptosis [268]

2012 DBD plasma Brain and
colorectal cancer

Apoptosis and
DNA damage by

ROS
[22]

2014 DBD plasma Thyroid cancer,
Oral cancer

ROS-induced DNA
damage and

apotosis
[238]

2013 Plasma-treated
media Blood cancer ROS-induced

apoptosis [269]

2014 DBD plasma Blood cancer
ROS-initiated

apoptosis-related
gene expression

[270]

DBD: dielectric barrier discharge; DI: deionized; ROS: reactive oxygen species; RNS: reactive nitrogen species.

6. Future Perspective

At present, the most lethal and dangerous family of disease is cancer. The common day-to-day
treatment of cancer is becoming more challenging due to the emergence of the harmful side
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effects [271] of cancer treatment strategies and the increasing resistance of therapeutics [272]. Hence,
finding new methods for cancer treatment is an emerging topic that has attracted a vast number of
scientists. In this review paper, we discussed how reactive species play a key role in cancer pathology
and showed how these species have been targeted in cancer treatments. A wide range of anticancer
medications can produce ROS, and they can be used to treat cancer by a number of different mechanisms.
Most of the anticancer drugs act on cancer cells by producing ROS, and research should be performed
to reduce the usual side effects of these cancer drugs. As the complications related to side effects are
increasing, a prodrug specific to the cancer cells can be designed that can be initiated by an enhanced
level of ROS present in cancer cells, and it can minimize the risk of unwanted side effects [273]. Similarly,
the production of ROS can be targeted to develop a combinatorial treatment method of nanoparticles
with anticancer drugs, which can provide a nanoparticle-based redox-directed combinational anticancer
therapy to treat cancer [274]. Besides the conventional treatment methods, the alternative medicines
are gaining popularity because of their lower possibility of causing treatment-related complications.
However, some of the dietary active compounds have the ability to produce ROS, induce oxidative
stress, and consequently cause cancer cell death. The application of alternative medicines to enhance
ROS in cancer cells can be a very promising therapeutic strategy, but in order for this to take place,
the foremost need is to enhance the bioavailability of the dietary compounds. Poor bioavailability is
the main drawback of using dietary compounds. By improving all the pharmacokinetics parameters
of these dietary compounds, it would be possible to develop them into a dosage form that can
boost the ROS level effectively to treat cancer [275]. Photodynamic therapy is also a useful approach
that can produce ROS. According to recent research works, improvements in nanotechnology and
nanomedicine made it possible to develop ROS-generating systems by both photodynamic and
non-photodynamic procedures, which create a possibility for photodynamic therapy to be applied as
an anti-tumor agent [276].

Plasma is also a great source of ROS, and it can modulate a number of pathways in biological
systems. Significant numbers of studies have already been performed to determine the efficacy and
possible mechanisms of plasma in treating cancer and discover the roles of plasma in different types of
cancer. It is now recognized that plasma can destroy cancer cells with selective killing effects toward
cancer cells [35,38]. Accordingly, plasma technology can represent a ray of hope in the present situation
of cancer treatments.

In different research works, different types of plasma devices have been used to treat cancer cells
derived from different tumor types. Thus, it may be that plasma with different characteristics will react
by different pathways in different types of cancer. The different pathways that are involved in this
process are not fully understood. Due to the identical reactions of tumor cell types, it appears as if
the same mechanisms are engaged in different tumor types. Therefore, in order to understand the
anticancer mechanism of plasma, it is necessary to determine the molecular mechanisms of plasma
acting on cancer cells.

In the present scenario, future works should be designed to find the most effective carriers to
administer plasma as a therapy for patients. Several types of plasma instruments have been used for
experiments on cell lines and on animals. It is now necessary to design the most effective types for
treating patients, and new research works should focus on this. Again, in some studies, researchers
found that plasma-treated media, solutions, and water show beneficial and cancer cell-killing effects.
For these cases, we should find a suitable carrier or method by which to maintain the efficacy of the
plasma-treated solutions.

As a treatment method or as a therapeutic strategy, we cannot ignore the possibilities of harmful
side effects or the risk of toxicity. For this reason, it is now necessary to focus on the toxicological
possibilities of plasma treatments on biological systems. Although plasma is known to be a non-toxic
and non-harmful method, it can have certain long-term harmful or toxicological effects on humans,
and these possibilities must be explored in more depth. If plasma can cause toxic outcomes in animal
models after long-term treatment, then effective and safe dosage levels during plasma treatments should
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be established. This is why future research works should focus on discovering the pharmacokinetic
parameters of plasma treatment technologies for their safe administration.
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