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A B S T R A C T

Background: Time-to-event (TTE) endpoints are evaluated as the primary endpoint in single-arm clinical trials;
however, limited options are available in statistical software for sample size calculation. In single-arm trials with
TTE endpoints, the non-parametric log-rank test is commonly used. Parametric options for single-arm design
assume survival times follow exponential distribution or Weibull distribution.
Methods: The exponential- or Weibull-distributed survival time assumption does not always reflect hazard pattern
of real-life diseases. We therefore propose gamma distribution as an alternative parametric option for designing
single-arm studies with TTE endpoints. We outline a sample size calculation approach using gamma distribution
with a known shape parameter and explain how to extract the gamma shape estimate from previously published
resources. In addition, we conduct simulations to assess the accuracy of the extracted gamma shape parameter
and to explore the impact on sample size calculation when survival time distribution is misspecified.
Results: Our simulations show that if a previously published study (sample sizes ≥ 60 and censoring proportions
≤ 20 %) reported median and inter-quartile range of survival time, we can obtain a reasonably accurate gamma
shape estimate, and use it to design new studies. When true survival time is Weibull-distributed, sample size
calculation could be underestimated or overestimated depending on the hazard shape.
Conclusions: We show how to use gamma distribution in designing a single-arm trial, thereby offering more
options beyond the exponential and Weibull. We provide a simulation-based assessment to ensure an accurate
estimation of the gamma shape and recommend caution to avoid misspecification of the underlying distribution.

1. Introduction

In designing phase II trials, many methods are available for two-arm
randomized designs with a dichotomous (yes/no) tumor response as a
primary endpoint. With the rapid evolution in oncology drug develop-
ment, this dominant paradigm has been challenged in two ways [1].
First, the previously accepted primary endpoint of dichotomous tumor
response fails to predict survival benefits in many diseases such as lung,
colon, breast, and renal cancers [2–4], or tumor response is difficult to
measure in diseases such as glioblastoma and prostate cancer. Second,
investigators cannot conduct the gold standard of randomized two-arm
clinical trial design due to practical constraints, such as slow patient
accrual in drug development for rare diseases. In such scenarios, the
utilization of a single-arm phase II design with a time-to-event (TTE)
endpoint could be considered, employing a natural history or historical
control group. This approach, recognized by the FDA, acknowledges that
a control group incorporating real-world evidence (RWE) can be deemed

a valid comparison in evaluating treatment efficacy [5,6].
To design a single-arm study with a TTE endpoint, options for sample

size calculation are very limited in literature and standard statistical
software. In literature, the most common non-parametric methods for
sample size calculation using the log-rank test and its weighted versions
are proposed by several researchers (Breslow [7], Finkelstein et al. [8],
Kwak and Jung [9], Jung [10] and Sun et al. [11]). A frequently used
parametric sample size calculation method was proposed by Lawless
[12], which assumes an exponentially distributed survival time, and it’s
adopted in the free web-based calculator by SWOG [13]. However, in
commercial software like PASS [14] and nQuery [15], only two other
approaches, a log-rank test proposed by Wu [16] and an exact para-
metric approach proposed by Phadnis [17], are implemented and
available for sample size calculation for single-arm trials with TTE
endpoints. Wu’s [16] version of the log-rank test assumes survival times
follow a Weibull distribution and calculates the sample size formula
using the exact variance of the test statistic. Phadnis’ [17] method also
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assumes Weibull distributed survival time and extends the exact para-
metric approach of Narula and Li [18] with a known point estimate of
the Weibull shape parameter.

Compared to exponential distributed survival time assuming con-
stant hazard, Weibull distribution provides the flexibility to model
increasing or decreasing hazard patterns. However, there are limitations
to using the Weibull distribution because the Weibull distribution allows
hazards to increase to infinity (without an upper bound) or decrease to
zero (without a lower bound) over time, and in real-life diseases, this
hazard pattern may not hold. For example, pancreatic carcinoma,
currently the third leading cause of cancer-related death in the USA,
carries a dismal prognosis with a median survival time of 3–6 months in
those untreated. Standard care has been found to have only a modest
beneficial impact on advanced-stage patients [19]. The mortality rate
among cancer patients is significantly increased with the presence of
Venous thromboembolism (VTE). Some studies have shown evidence
that pancreatic cancer patients who develop thromboembolism have
worse survival [20,21] and PFS [22] compared to those without VTE. In
the pancreatic cancer patient population, the survival functions for those
with and without VTE differ significantly. When designing a single-arm
trial with a TTE endpoint for pancreatic cancer patients without VTE or a
disease where the risk stabilizes after a specific period, using a Weibull
distribution, which allows hazard increases to infinity in a short study
period, might not be appropriate.

Similar to Weibull distribution, gamma distribution provides the
flexibility of modeling increasing, constant, and decreasing hazard sce-
narios. However, unlike Weibull, gamma distribution constrains the
increasing hazard to approach a constant value rather than infinity and
the decreasing hazard to approach a finite value instead of zero. When
modeling data for diseases where the Weibull assumption of infinite
hazard escalation is questionable, the gamma-distributed survival time
may more accurately capture real-life phenomena than the Weibull
distribution, since it caps the increasing or decreasing hazard to a finite
constant.

This paper is focused on the following objectives: (1) Assuming
gamma-distributed survival time, we provide a parametric sample size
calculation formula adjusting for administrative censoring rates and
probability of events occurring given pre-specified type I error; (2) We
explain an approach of extracting a point estimate of gamma shape using
previously published results, and assess the accuracy of the extracted
gamma shape parameter estimate under various scenarios through
simulations; (3) We explore the impact of misspecification of the sur-
vival time distribution on sample size calculation, by comparing calcu-
lated sample sizes using Weibull approach and gamma approach when
underlying survival time is Weibull distributed.

2. Methods

2.1. Sample size formula

The probability density function (PDF) for a two-parameter gamma
distribution is

f(t )=
1

Γ(k)θ

( t
θ

)k− 1
e−

t
θ ; k, θ> 0, t ≥ 0 (1)

where θ is the scale parameter, and k is the shape parameter.
The shape parameter k determines the shape of the gamma hazard

function: when k > 1, the hazard increases over time to a constant; when
k < 1, the hazard decreases over time to a constant; when k = 1 the
hazard is a constant (reduces to exponential distribution). The median of
the gamma distribution can be expressed as

M= θγ− 1
(

k,
Γ(k)

2

)

(2)

Here, γ− 1
(
k, tθ

)
is the inverse of the lower incomplete gamma func-

tion, and it does not have a closed solution. However, if the gamma
shape parameter is known and fixed, it’s straightforward to show that
testing the hypotheses H0 : M = M0 versus Ha : M = M1 is equivalent to
testing H0 : θ = θ0 versus Ha : θ = θ1. Thus, sample size calculation for
studies with TTE endpoint using gamma distribution with a known
shape can be achieved in the following steps using iterative procedures.

(1) Find the number of events needed to test the hypothesesH0 : M =

M0 versusHa : M =M1. Narula and Li [18] have shown that, with
gamma-distributed survival time and a known shape parameter k,
given significance level α and type-II error rate β, calculation of
the number of events E needed for testing the hypothesesH0 : θ =

θ0 versus Ha : θ = θ1 reduces to solving for δ using

δ = χ2
1− β(v)

/
χ2

α(v) (3)

with δ = θ0/θ1 and v = 2Ek. Here χ2
1− β(v) and χ2

α(v) are the (100* β)th

and (100* (1 − a)) th percentile of the Chi-square distribution with v
degrees of freedom.

(2) Compute the required sample size by adjusting for administrative
censoring with pre-specified study accrual and follow time. As-
sume patient accrual follows a uniform distribution with accrual
time a and follow-up time f . The censoring distribution function
G(t) is

G(t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, t ≤ f
a+ f − t

a
, f ≤ t ≤ a+ f

0, otherwise

(4)

The probability of one subject having an event during the study can
be expressed as

d=
∫∞

0

G(t)f1(t)dt (5)

where f1(t) is f(t) with θ = θ1. The required sample size is calculated as
n = E/d.

2.2. Gamma shape parameter estimation from published sources

Parameters of the gamma distribution for fully observed data can be
estimated using maximum likelihood estimation or method of moments
with correction [23]. However, in many published studies, only a few
survival quantiles (such as median and interquartile range) instead of
the whole observed data are available. Maximum likelihood estimators
and method of moment estimators may not result in accurate parameter
estimates due to the small number of data points. To estimate the shape
parameter based on a limited number of survival quantiles from a pre-
viously published resource, we can utilize iterative procedures to find a
gamma distribution that best fits the published data, and the shape
parameter of the best-fit gamma distribution is our shape estimate. For
example, a previous study reported p survival quantiles, so1 , so2 ,…, sop ,
and their survival times, to1 , to2 ,…, top . Suppose the above survival times
correspond to survival quantiles, st1 , st2 ,…, stp in a theoretical distribu-
tion gamma(k∗, θ∗). Let qi = soi − st i (i= 1, 2,…, p) denote the distance
between the published survival quantile soi and theoretical quantile st i
for survival time toi . Iterative searching procedures could be initiated to
search for the best-fit distribution Gamma(k∗, θ∗) with shape parameter
k∗, such that

∑p
i=1q2

i =
∑p

i=1(soi − st i)2 is minimized. By implementing
this algorithm, we can obtain an estimate of the gamma shape parameter
k̂ = k∗ using the survival quantiles from previous studies. For example, if
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a published study reported 75 %, 50 %, and 25 % survival time as 1.7
months, 2.9 months, and 4.8 months. As shown in Fig. 1a, in gamma
distribution with shape = 1, scale = 3, the survival probabilities (1-CDF)
for the three survival times are 0.57, 0.38, and 0.2. The squared distance
defined in section 2.2 is q = (0.75 − 0.57)2

+ (0.5 − 0.38)2
+

(0.25 − 0.2)2. We can perform an iterative procedure to search for the
shape and scale parameters with minimum squared distance q.

2.3. Assessing the accuracy of gamma shape estimate through simulations

The formula of sample size calculation using gamma distribution
requires a known gamma shape parameter, this point estimate of which
is usually obtained from published studies that either provide survival
quantities (median and or inter-quartile range) or Kaplan Meier curves.
As Phadnis [24] discussed regarding an accurate Weibull shape
parameter estimated from historical studies, the accuracy of the gamma
shape parameter estimate is critical as it impacts the sensitivity of sub-
sequent sample size calculation in clinical trials with TTE endpoint.
Underestimation or overestimation could happen if an imprecisely
estimated gamma shape parameter is used in sample size calculation,
and the inaccurate estimate further impacts study design and analysis.
For example, if a gamma point estimate extracted from one historical
study is k̂1 = 1.5, and using another published study, we get k̂2 = 1.25.
To test the hypothesis of H0 : Median = 2 months vs. H1 : Median =

3 months (effect size of 1.5), assuming loss to follow-up is r = 15 %,
accrual and follow up time are both 12 months, with significance level at
0.05 and type II error of 0.2. Applying the sample size formula in section
2.1, the number of events needed (E), the probability of event occurring
during study period (d), and final sample sizes (n) accounting for loss to
follow-up will be 25, 0.995, and 30 respectively, when k̂1 = 1.5. In the
calculation using k̂2 = 1.25, we will need 25 events, with probability of
events occurring at 0.990, and a total of 36 samples adjusting for loss to
follow-up (in both calculations, final sample size n = E

d∗
(

1− r
100

)). If the

true shape is k = 1.5 but we inaccurately use k̂ = 1.25, the calculated
sample size will require six more or 20 % more subjects to be recruited,
and this could be a significant practical issue for small-sized trials or
trials with slow accrual. In the opposite scenario, if the true shape is k =

1.25, but we inaccurately use k̂ = 1.5 for sample size calculation, the
study will be underpowered to detect the prespecified effect size due to

underestimated sample size.
An extensive simulation study is conducted to assess the accuracy of

the estimator proposed in section 2.2. The event times are simulated
from gamma(k, θE) using different values of gamma shape k = 0.5,0.75,
1, 1.25,1.5 (representing decreasing, constant, and increasing hazard
patterns), and scale values of θE = 1,2,3,4,5. To maintain a prespecified
event rate m (or censoring rate c/100 = 1 − m), the censoring time is
simulated from gamma(1, θC) with θC = θE ∗ m1/k

1− m1/k by applying the
method discussed in Wan [25] (See Appendix (a)). Right-censoring
mechanism with censoring rate c = 0%, 10%, 20%, 30%, 40%, and
sample sizes of n = 25,50, 100,200,500 are considered simulation
scenarios. For each combination of shape value k, scale value θE,
censoring rate c, and sample size n, N = 10,000 data sets are generated,
and Kaplan Meier estimates of survival quantiles are obtained. Next, we
extract the point estimate k̂ of gamma shape for each simulation run
(using the approach described in section 2.2) for five scenarios of
‘number of information points (NIP)’ followed.

(i) NIP = 2: Extracting k using the 25th and 50th percentiles of KM
estimates

(ii) NIP = 2: Extracting k using the 25th and 75th percentiles of KM
estimates

(iii) NIP = 3: Extracting k using the 25th, 50th and 75th percentiles of
KM estimates

(iv) NIP = 4: Extracting k using the 20th, 40th, 60th, and 80th percen-
tiles of KM estimates

(v) NIP = 5: Extracting k using the 17th, 34th, 50th, 67th, and 84th

percentiles of KM estimates

In practice, NIP scenarios (i) – (iii) are most likely to be observed, NIP
scenarios (iv) and (v) are for exploratory purposes to assess how the
accuracy of k̂ changes as NIP increases. Each survival quantile is ob-
tained by applying interpolation with the two nearest KM estimates. For
example, when c = 0%, for sample size n = 25, n = 27, and n = 28, the
25th percentile of a KM curve (or 75th percentile of survival) will be the
time of the 7th event, time of the 7th event, and time between the 7th and
8th event, respectively. However, the exact survival percentile for the 7th

event is 72 % when n = 25, the exact survival percentile for the 7th event
is 74.07 % when n = 27, and the exact survival percentile for the 7th
event is 75 % when n = 28 (See Appendix (b)). In all three sample size
cases, the times of the 25th percentile of KM estimates are not precisely
the 75th percentile of survival, which leads to an inaccurate estimation of
the gamma shape parameter. The purpose of interpolation is to reduce
the inaccuracy introduced by non-parametric estimation.

In scenarios where simulated data has small sample sizes and high
censoring rates, we cannot obtain some KM estimates of low survival
quantiles. To address this issue, the simulation is modified to use the
closest step boundary to replace the unavailable KM estimates. For
instance, with a 40 % censoring rate, sample size n = 25, NIP = 5, we
are able to extract the KM estimates of the 17th, 34th, 50th, and 67th

percentiles but not the 84th percentile. In this case, the closest step
boundary to the KM estimate of 84th percentile is used (e.g., using the
KM estimate of 75th percentile instead of the 84th percentile).

Denote k̂(i) as the estimate of k from the ith simulation (i= 1,2,…,N)

and k̂avg = 1
N
∑N

i=1 k̂(i) is the average of all k̂(i) values. The average relative
bias (ARB) is considered the primary criterion for assessing the accuracy
of k̂avg since sample size calculations depend on a reasonably accurate
estimate of the shape parameter. Other metrics include root mean
squared error (RMSE), scaled root mean squared error (SRMSE), and
coefficient of variation (CV). We also compute the average maximum
likelihood estimate of shape, k̂mle, using the completed simulated data
set and evaluate the bias of the estimate relative to the k̂mle (RARB). The

Fig. 1a. example of estimating gamma parameters.
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definitions are followed.

(a) The average relative bias of the estimator k̂ is defined as:

ARB=
1
N
∑N

i=1

k̂(i) − k
k

=
k̂avg − k

k
(6)

(b) Root mean squared error (RMSE) of the estimator k̂ is defined as:

RMSE=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1

(
k̂(i) − k

)2
√

(7)

(c) Scaled root mean squared error (SRMSE) of the estimator k̂ is
defined as:

SRMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
(
k̂(i) − k

)2
√

k
(8)

(d) The coefficient of variation of k̂ is defined as:

CV=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

var(k̂)
k̂

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

N− 1
∑N

i=1
(
k̂(i) − k̂avg

)2

k̂

√

(9)

(e) The bias of k̂ relative to the maximum likelihood estimate k̂MLE is
calculated as:

RARB=
k̂avg − k̂mle

k̂mle
(10)

2.4. Misspecification of the underlying distribution

Our sample size calculation assumes gamma-distributed survival
time with a known shape parameter. Specifically, the proposed test
statistic follows a chi-square distribution leading to - (i) calculating the
number of events (for prespecified values of power, type I error, and
effect size) and (ii) calculating the probability of an event in the allotted
study time. Subsequently, (i) and (ii) are used to calculate the required
sample size. However, it is possible that for a clinical trial of interest,
survival times may not adhere to the gamma distribution. In such sce-
narios, it is important to assess the ’cost of misspecification’ such as
overestimation or underestimation of the total sample size. Since com-
mercial software (like nQuery [15]or PASS [14]) provides options for
designing single-arm trials using the Weibull distribution (with expo-
nential as a special case), we decide to study the ’misspecification effect’
assuming that true survival distribution is Weibull. That is, we ask the
question: "What if the proposed method intended for gamma-distributed
survival times is used when the true survival distribution is Weibull?"
This is done in the following steps: (i) Survival times are simulated from
the Weibull distribution. These survival times represent data from a
previous trial; (ii) These data are analyzed by a statistician using the
Weibull distribution, however, only the summary statistics (say 3 NIP -
often the median and IQR) are published; (iii) Our task is to use these
limited NIP to calculate the sample size required for designing a new
study using the proposed method. With the true Weibull distribution
parameters, we also calculate the "true" sample size using the methods of
Wu [16] and Phadnis [17]. Comparing this "true" sample size to the
sample size obtained in (iii) allows us to study the effect of mis-
specification. The Weibull shape parameter estimate can be obtained by
performing the median rank regression with at least two Weibull sur-
vival times and their corresponding survival probabilities [26] (See
Appendix (c)).

We perform all the calculations and simulations with statistical
software R [27] (version 3.6), using the high-performance computing

(HPC) facilities in the Center for Research Computing at the University
of Kansas.

3. Results

A real-life single-arm clinical trial about cholangiocarcinoma was
discussed by Phadnis [17] and Waleed [28], which was designed using
the Weibull distribution. Chemotherapy-refractory advanced metastatic
biliary cholangiocarcinoma is a rare but aggressive neoplasm with a
median PFS of 2.5 months and IQR of around 2–5 months [29]. The
hypothesis used by Waleed [28] is H0 : M ≤ 2.5 months versus H1 : M >

3.75 months, whereM is the median PFS time. In this manuscript, we are
using the hypotheses in the context of utilizing the gamma distribution.

3.1. Sample size calculation results using the gamma distribution

Suppose researchers want to calculate the required sample size for
testing the hypotheses below with a one-sided type I error of 5 % and
power of 80 %, H0 : Median = 2.5 months versus Ha : Median = 3.75
months. We performed sample size calculation using the method in
section 2.1 with combinations of different settings of gamma shape
values, accrual time, and follow-up time. In addition to sample size
calculation, we want to check whether the empirical type I error is
controlled, as well as whether the empirical power is preserved. Simu-
lations (N = 10,000) were conducted to compute the empirical type I
error and the empirical power with the calculated sample sizes.

Table 1 presents the results of sample size calculation and the results
of assessing the empirical type I error and type I power. The columns in
Table 1 are simulation settings of true gamma shape (k), accrual time in
months (a), follow-up time in months (f), total sample size calculated
using the gamma approach (n), the average number of events observed
under H0, empirical type I error, the average number of events observed
under H1, and the empirical power. From Table 1, we see that the
calculated sample size increases as accrual time a and follow-up time f
increases. In all the simulation scenarios, empirical type I error is well
controlled (very close to the nominal level of 0.05) within the simulation
error margin. Regarding the empirical power, we only observe slightly
below the target power of 80 % when the gamma shape equals 0.5,
particularly with the small accrual and follow-up times. Across all other
simulation scenarios, the empirical power remains consistent and
preserved.

3.2. Assessing the accuracy of the gamma shape parameter

Our simulation results of assessing the accuracy of the gamma shape
parameter are shown in Table 2. The first four columns are censoring
rate (c), the true value of gamma shape parameter in the simulation (k),
varying sample sizes (n), and the average of maximum likelihood esti-
mate of shape parameter over 10,000 simulations (k̂mle). The remainder
columns are the average estimated shape parameter over 10,000 simu-
lations (k̂avg) and ARB of 5 different NIP scenarios mentioned in section
2.3. Other criteria, such as root mean squared error, scaled root mean
squared error, and coefficient variation, are also evaluated for k̂avg, and
the results are presented in Supplementary Table 1 to Supplementary
Table 5. We set a threshold value of 5 % as the “maximum permissible
value of ARB” to ensure reasonable accuracy (in real life, this threshold
may be relaxed to a higher value, such as 10 %). Our observations are
summarized below.

(i) Three trends of ARB of point estimate k̂avg are observed for
increasing, constant, and decreasing hazard patterns. First, the
ARB of k̂avg decreases as the sample size n increases. For example,
for a decreasing hazard k = 0.5 with c = 0 %, for n = 25, 50, 100,
200, and 500, the ARBs of k̂avg with NIP = 2 (25th and 50th
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percentile) are 0.2, 0.096, 0.045, 0.025, and 0.01, respectively.
For constant hazard k= 1 and increasing hazard k= 1.5, the same
trend is observed in fixed c and NIP scenarios. Second, the ARB of
k̂avg decreases asNIP increases. For instance, in decreasing hazard
scenario k = 0.5, c = 0 %, and n = 25, for NIP = 2 (25th and 75th
percentile), 3, and 4, the ARBs of k̂avg are 0.091, 0.065 and 0.044.
For the same settings of n and c, a similar pattern is also shown
when the hazard is constant or increasing. Last, the ARB of k̂avg
increases as c increases. In Table 2, in decreasing hazard k = 0.5
and n = 25, for c = 0 %, 20 % and 40 %, the ARB of k̂avg using 2
NIP (25th and 50th percentile) are 0.2, 0.231, and 0.292,
respectively. Given the same n and NIP, similar patterns are also
shown in other hazard patterns.

(ii) The maximum likelihood estimate of shape parameter k̂mle is
closer to k, compared to k̂avg with NIP = 2 (25th and 50th per-
centiles, or 25th and 75th percentiles), when n is small and c > 0
%. For example, when c = 20 %, k = 0.5, and n = 25, the average
relative bias of k̂mle (MARB) is 0.098, the ARB of k̂avg withNIP= 2

(25th and 50th percentiles, and 25th and 75th percentiles) are
0.231 and 0.119. This is because k̂mle is computed using all the
sample points, and k̂avg only uses two information points. k̂avg
gets closer to even smaller than k̂mle as n gets larger or NIP gets
larger.

(iii) More available information points result in a more accurate point
estimate of k, but the marginal benefit of additional information
points on accuracy reduces when NIP ≥ 3. For example, when n
= 25 and c= 0 %, forNIP= 2 (25th and 75th percentile), 3, 4, and
5, the ARBs of k̂avg are 0.091, 0.065, 0.044, and 0.06, respec-
tively. In a large sample size scenario, the marginal benefit be-
comes very small. For instance, when k = 0.5, c = 0 % and n =

200, for NIP = 2 (25th and 75th percentile), 3, 4, and 5, the ARBs
of k̂avg are 0.012, 0.008, 0.006, and 0.005, respectively. We also
notice that in the case of only two information points reported,
the point estimate using wider-ranged NIP is more accurate than
using narrower-ranged NIP. For example, in Table 2, for k = 0.5,
c = 0 %, and n = 25, NIP = 2 (25th and 50th percentile) returns

Table 1
Sample size calculated using gamma distribution and evaluation of empirical type I error and empirical power for cholangiocarcinoma study withH0 : M ≤ 2.5 months
vs. H1 : M > 3.75 months. 10,000 simulations with nominal type I error 5 %, target power 80 %.

Shape
k

Accrual time a in
months

Follow-up time f in
months

Total sample
size n

Average # events observed
under H0

Empirical type I
error

Average # events observed
under H1

Empirical
power

0.5 3 3 137 86.39 0.0504 73.60 0.7322
3 6 111 83.88 0.0542 73.05 0.7717
3 12 92 81.19 0.0514 73.56 0.7872
6 3 123 85.25 0.0482 73.52 0.7482
6 6 105 83.41 0.0505 73.42 0.7791
6 12 89 80.07 0.0500 73.10 0.7905
12 3 107 83.01 0.0506 73.16 0.7725
12 6 97 82.15 0.0452 73.77 0.772
12 12 86 79.50 0.0518 73.52 0.8009

0.75 3 3 90 60.50 0.0453 49.39 0.7936
3 6 70 57.75 0.0544 49.61 0.8177
3 12 57 53.97 0.0538 49.67 0.8154
6 3 78 58.41 0.0444 49.05 0.8098
6 6 65 56.19 0.0518 49.28 0.8162
6 12 55 52.73 0.0547 49.11 0.814
12 3 67 56.08 0.0505 49.19 0.8126
12 6 60 54.69 0.0482 49.51 0.8045
12 12 54 52.55 0.0531 49.79 0.8136

1 3 3 67 47.23 0.0446 37.54 0.8392
3 6 50 43.62 0.0451 37.39 0.8239
3 12 41 40.00 0.0514 37.60 0.8199
6 3 57 44.96 0.0456 37.32 0.8308
6 6 47 42.69 0.0449 37.68 0.8248
6 12 40 39.30 0.0480 37.38 0.8215
12 3 49 42.85 0.0474 37.77 0.8277
12 6 43 40.65 0.0481 37.35 0.825
12 12 39 38.59 0.0475 37.30 0.8197

1.25 3 3 53 38.69 0.0525 30.02 0.8657
3 6 39 35.25 0.0453 30.30 0.8465
3 12 32 31.63 0.0466 30.22 0.8267
6 3 45 36.78 0.0488 30.21 0.8558
6 6 37 34.61 0.0472 30.81 0.8485
6 12 32 31.75 0.0475 30.67 0.8309
12 3 38 34.11 0.0481 30.17 0.843
12 6 34 32.76 0.0456 30.45 0.8286
12 12 31 30.86 0.0481 30.20 0.8209

1.5 3 3 44 33.10 0.0485 25.25 0.8781
3 6 32 29.66 0.0485 25.67 0.8592
3 12 26 25.86 0.0546 25.02 0.8293
6 3 37 31.07 0.0517 25.44 0.8624
6 6 30 28.59 0.0517 25.73 0.8535
6 12 26 25.91 0.0545 25.30 0.8296
12 3 31 28.30 0.0530 25.21 0.8503
12 6 28 27.30 0.0509 25.64 0.8445
12 12 26 25.95 0.0533 25.59 0.8285
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Table 2
Simulation results for all NIP scenarios under various censoring proportions. (aNIP = 2 is 25th and 50th, bNIP = 2 is 25th and 75th, NIP = 3 is 25th, 50th and 75th
percentile, NIP = 4 is 20th, 40th, 60th, and 80th percentile, NIP = 5 is 17th, 34th, 50th, 67th and 84th percentile).

c k n k̂mle MARB a NIP = 2 b NIP = 2 NIP = 3 NIP = 4 NIP = 5

k̂avg ARB k̂avg ARB k̂avg ARB k̂avg ARB k̂avg ARB

0 % 0.5 25 0.549 0.098 0.600 0.200 0.545 0.091 0.533 0.065 0.522 0.044 0.530 0.060
50 0.523 0.045 0.548 0.096 0.522 0.043 0.515 0.029 0.510 0.021 0.511 0.022
100 0.511 0.021 0.523 0.045 0.510 0.019 0.506 0.012 0.504 0.008 0.504 0.009
200 0.506 0.011 0.512 0.025 0.506 0.012 0.504 0.008 0.503 0.006 0.503 0.005
500 0.503 0.005 0.505 0.010 0.502 0.005 0.502 0.003 0.501 0.002 0.501 0.002

0.75 25 0.827 0.103 0.935 0.247 0.831 0.108 0.809 0.079 0.793 0.057 0.800 0.067
50 0.786 0.048 0.838 0.117 0.788 0.050 0.775 0.034 0.768 0.024 0.769 0.025
100 0.768 0.023 0.789 0.051 0.767 0.023 0.761 0.015 0.759 0.012 0.758 0.011
200 0.759 0.011 0.769 0.026 0.759 0.012 0.756 0.008 0.754 0.006 0.754 0.006
500 0.754 0.005 0.759 0.012 0.755 0.006 0.754 0.005 0.753 0.004 0.753 0.004

1 25 1.109 0.109 1.286 0.286 1.126 0.126 1.094 0.094 1.069 0.069 1.079 0.079
50 1.049 0.049 1.109 0.109 1.048 0.048 1.032 0.032 1.024 0.024 1.026 0.026
100 1.028 0.028 1.060 0.060 1.031 0.031 1.023 0.023 1.018 0.018 1.019 0.019
200 1.014 0.014 1.033 0.033 1.017 0.017 1.013 0.013 1.009 0.009 1.009 0.009
500 1.005 0.005 1.013 0.013 1.006 0.006 1.004 0.004 1.004 0.004 1.003 0.003

1.25 25 1.397 0.118 1.648 0.319 1.418 0.135 1.376 0.101 1.349 0.080 1.363 0.090
50 1.318 0.055 1.423 0.138 1.328 0.062 1.306 0.045 1.293 0.035 1.293 0.034
100 1.283 0.027 1.328 0.063 1.290 0.032 1.280 0.024 1.273 0.018 1.271 0.017
200 1.267 0.014 1.292 0.034 1.271 0.017 1.265 0.012 1.261 0.009 1.261 0.009
500 1.255 0.004 1.264 0.011 1.257 0.005 1.254 0.003 1.253 0.002 1.253 0.003

1.5 25 1.677 0.118 2.034 0.356 1.716 0.144 1.665 0.110 1.622 0.082 1.632 0.088
50 1.583 0.055 1.750 0.166 1.600 0.066 1.571 0.048 1.556 0.037 1.555 0.037
100 1.541 0.028 1.621 0.080 1.550 0.034 1.536 0.024 1.527 0.018 1.526 0.017
200 1.520 0.013 1.550 0.033 1.525 0.017 1.519 0.012 1.513 0.009 1.513 0.009
500 1.509 0.006 1.520 0.013 1.510 0.007 1.507 0.005 1.507 0.005 1.506 0.004

20 % 0.5 25 0.549 0.098 0.615 0.231 0.560 0.119 0.546 0.091 0.536 0.071 0.547 0.094
50 0.523 0.045 0.551 0.101 0.528 0.056 0.521 0.042 0.516 0.033 0.518 0.036
100 0.511 0.021 0.525 0.049 0.512 0.024 0.508 0.016 0.506 0.012 0.507 0.014
200 0.506 0.011 0.513 0.026 0.507 0.014 0.505 0.010 0.504 0.008 0.504 0.008
500 0.503 0.005 0.505 0.010 0.503 0.006 0.502 0.004 0.502 0.003 0.502 0.004

0.75 25 0.827 0.103 0.976 0.301 0.858 0.144 0.833 0.110 0.813 0.083 0.828 0.104
50 0.786 0.048 0.848 0.131 0.799 0.066 0.786 0.048 0.777 0.036 0.781 0.041
100 0.768 0.023 0.795 0.060 0.773 0.031 0.767 0.022 0.764 0.018 0.763 0.018
200 0.759 0.011 0.772 0.029 0.762 0.015 0.758 0.011 0.757 0.009 0.757 0.009
500 0.754 0.005 0.760 0.013 0.755 0.007 0.754 0.006 0.754 0.005 0.754 0.005

1 25 1.109 0.109 1.341 0.341 1.160 0.160 1.121 0.121 1.093 0.093 1.115 0.115
50 1.049 0.049 1.123 0.123 1.066 0.066 1.048 0.048 1.037 0.037 1.042 0.042
100 1.028 0.028 1.064 0.064 1.037 0.037 1.028 0.028 1.024 0.024 1.025 0.025
200 1.014 0.014 1.037 0.037 1.022 0.022 1.017 0.017 1.013 0.013 1.013 0.013
500 1.005 0.005 1.015 0.015 1.008 0.008 1.006 0.006 1.005 0.005 1.004 0.004

1.25 25 1.397 0.118 1.748 0.398 1.472 0.178 1.420 0.136 1.382 0.106 1.406 0.125
50 1.318 0.055 1.444 0.155 1.352 0.081 1.327 0.061 1.309 0.048 1.313 0.051
100 1.283 0.027 1.341 0.073 1.300 0.040 1.287 0.030 1.278 0.023 1.278 0.023
200 1.267 0.014 1.296 0.037 1.277 0.021 1.270 0.016 1.265 0.012 1.266 0.013
500 1.255 0.004 1.267 0.014 1.259 0.007 1.256 0.005 1.254 0.004 1.255 0.004

1.5 25 1.677 0.118 2.126 0.417 1.782 0.188 1.720 0.146 1.664 0.109 1.691 0.127
50 1.583 0.055 1.783 0.188 1.632 0.088 1.600 0.067 1.578 0.052 1.579 0.053
100 1.541 0.028 1.634 0.089 1.565 0.043 1.549 0.032 1.539 0.026 1.538 0.025
200 1.520 0.013 1.559 0.039 1.532 0.021 1.524 0.016 1.519 0.013 1.519 0.012
500 1.509 0.006 1.524 0.016 1.513 0.009 1.510 0.007 1.509 0.006 1.508 0.006

40 % 0.5 25 0.549 0.098 0.646 0.292 0.619 0.238 0.606 0.212 0.601 0.203 0.621 0.242
50 0.523 0.045 0.560 0.120 0.555 0.110 0.549 0.098 0.548 0.096 0.555 0.111
100 0.511 0.021 0.529 0.058 0.524 0.049 0.521 0.042 0.522 0.044 0.527 0.054
200 0.506 0.011 0.515 0.031 0.513 0.025 0.511 0.022 0.511 0.021 0.514 0.027
500 0.503 0.005 0.506 0.012 0.505 0.010 0.504 0.009 0.504 0.009 0.505 0.010

0.75 25 0.827 0.103 1.041 0.388 0.944 0.259 0.916 0.222 0.900 0.200 0.939 0.252
50 0.786 0.048 0.869 0.159 0.835 0.114 0.821 0.094 0.814 0.086 0.823 0.097
100 0.768 0.023 0.804 0.072 0.790 0.053 0.782 0.043 0.781 0.041 0.785 0.046
200 0.759 0.011 0.776 0.034 0.771 0.027 0.767 0.023 0.765 0.021 0.767 0.023
500 0.754 0.005 0.762 0.016 0.758 0.011 0.757 0.009 0.756 0.008 0.757 0.009

1 25 1.109 0.109 1.443 0.443 1.286 0.286 1.242 0.242 1.212 0.212 1.262 0.262
50 1.049 0.049 1.171 0.171 1.116 0.116 1.094 0.094 1.083 0.083 1.096 0.096
100 1.028 0.028 1.085 0.085 1.059 0.059 1.048 0.048 1.043 0.043 1.047 0.047
200 1.014 0.014 1.044 0.044 1.032 0.032 1.026 0.026 1.022 0.022 1.024 0.024
500 1.005 0.005 1.018 0.018 1.012 0.012 1.009 0.009 1.009 0.009 1.009 0.009

1.25 25 1.397 0.118 1.854 0.483 1.604 0.283 1.541 0.233 1.497 0.198 1.561 0.249
50 1.318 0.055 1.516 0.213 1.404 0.123 1.372 0.098 1.358 0.087 1.368 0.094
100 1.283 0.027 1.360 0.088 1.323 0.059 1.308 0.046 1.300 0.040 1.304 0.043
200 1.267 0.014 1.302 0.042 1.286 0.029 1.279 0.023 1.274 0.019 1.277 0.021
500 1.255 0.004 1.273 0.018 1.264 0.011 1.260 0.008 1.258 0.006 1.259 0.007

(continued on next page)
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k̂avg = 0.6 and ARB = 0.2, and NIP= 2 (25th and 75th percentile)
returns k̂avg = 0.545 and ARB = 0.091.

The above results demonstrate how ARB changes for different set-
tings of censoring proportion, sample size, and NIP. The same trends
using the other assessing metrics (RMSE, SRMSE, CV) are also found in
Supplementary Table 1 to Supplementary Table 5. From a practical
point of view, we want to obtain an accurate point estimate of the
gamma shape parameter from a published study and use this shape es-
timate in the subsequent sample size calculation. Thus, we need answers
to the following two questions: (1) if only a few survival quantiles are
reported in a previous study, how large the sample size should be for us
to extract a reliable gamma shape parameter? And (2) if a historical trial
has a fixed sample size, what is the minimum number of information
points that we need to obtain an accurate gamma shape parameter?

To answer the questions, we present Fig. 1b and 2. Fig. 1b plots the
ARB, on the y-axis, versus sample size for NIP = 2 (25th and 75th
percentile), on the x-axis, with k = 1.5 and different combinations of
censoring scenarios and acceptable ARB thresholds. Overall, a
decreasing trend of ARB as sample size n increases is clearly exhibited in
Fig. 1b. It is shown in Fig. 1b that to keep the ARB below the acceptable
threshold of 5 %, the minimal sample sizes required are 65 (c = 0 %), 85
(c= 20 %), and 126 (c= 40 %). If we relax the threshold of ARB to 10 %,
then the minimum sample sizes required are 28 (c= 0 %), 37 (c= 20 %),
and 59 (c = 40 %).

Fig. 2 presents the results of NIP needed, on the x-axis, versus the
minimum sample size required, on the y-axis, for different combinations
of censoring cases and ARB thresholds with k = 0.5 and different θ
values. We have two main findings. First, for the same c and θ, the
minimum sample size needed to achieve a certain ARB decreases as NIP
increases. For example, when θ = 1 and c = 20 %, to achieve a 5 % ARB,

the minimum sample size required for NIP = 2 (25th and 50th percen-
tile), 2 (25th and 75th percentile), 3, 4, and 5, are 102, 60, 47, 37 and
37, respectively. Second, in the same NIP scenario, to achieve the same
ARB threshold, a larger c corresponds to more sample sizes needed.
Fixing k to reach the same ARB threshold, the minimum needed sample
size for the sameNIP scenario is similar when scale parameter θ changes.
In Fig. 2, we can see that, with k = 0.5, c = 20%, ARB threshold of 5 %,
results for θ = 1, 2, 3, and 4 under NIP = 2 (25th and 75th) are 60, 56,
60, and 55. Supplementary Fig. 1 and Supplementary Fig. 2 show similar
results for constant hazard and increasing hazard patterns.

These results in Fig. 1b and 2 and Supplementary Figs. 1 and 2 can
provide valuable information for statisticians when designing a single-
arm study with a TTE endpoint. In a practical application, when the
gamma assumption seems valid, a statistician can plan to calculate the
sample size for such a trial using our proposed method. Our simulation
result suggests that the statistician can use the reported median and IQR
of event time from a previously published study (at least 60 samples and
c ≤ 20%) to extract a reasonably accurate gamma shape parameter es-
timate and plug it into the sample size formula to calculate the required
sample size.

3.3. Assessing the impact of misspecification

In real life, our parametric distributed survival time assumption
might not hold by only looking at a few survival quantiles or a KM plot.
When misspecification of survival distribution occurs, it is important to
know how off-target our sample size calculation is and what conse-
quence that could lead to. To explore that, we simulate Weibull
distributed survival times, extract three survival quantiles (median and
IQR) of KM estimates using the simulated data, and estimate gamma
parameters with the survival quantiles. We present the sample size
calculated using both true Weibull parameters and estimated gamma
parameters to show the impact of misspecification. We calculated the
sample sizes using Weibull and gamma approaches for the following six
hypotheses testing: (1) H0 : Median = 2.5 months vs. H1 : Median = 3
months; (2) H0 : Median = 2.5 months vs. H1 : Median = 3.5 months; (3)
H0 : Median = 2.5 months vs. H1 : Median = 3.75 months; (4) H0 :

Median = 2.5 months vs. H1 : Median = 4 months; (5) H0 : Median = 2.5
months vs. H1 : Median = 4.5 months; (6) H0 : Median = 2.5 months vs.
H1 : Median = 5 months. All the calculations assume 18 months of
accrual time and 18 months of follow-up time, with type I error = 0.05
and power = 90 %.

Table 3 and Fig. 3 present the results of the sample size calculated
with true Weibull parameters compared to the sample size calculated
using the estimates of the gamma parameters (assuming gamma-
distributed survival time). In Table 3, the first column is the true Wei-
bull shape parameter used to simulate data and calculate sample size
using the Weibull approach. The second column presents the approach
used for calculation. The remaining six columns are the results of
calculated sample sizes for testing the six sets of hypotheses above. In
Fig. 3, the alternative hypothesized median times are displayed on the x-
axis, and the y-axis presents the calculated samples.

Table 2 (continued )

c k n k̂mle MARB a NIP = 2 b NIP = 2 NIP = 3 NIP = 4 NIP = 5

k̂avg ARB k̂avg ARB k̂avg ARB k̂avg ARB k̂avg ARB

1.5 25 1.677 0.118 2.395 0.596 1.977 0.318 1.897 0.265 1.835 0.224 1.910 0.273
50 1.583 0.055 1.893 0.262 1.704 0.136 1.663 0.109 1.641 0.094 1.655 0.103
100 1.541 0.028 1.671 0.114 1.593 0.062 1.571 0.048 1.563 0.042 1.567 0.044
200 1.520 0.013 1.580 0.053 1.548 0.032 1.538 0.026 1.533 0.022 1.535 0.023
500 1.509 0.006 1.530 0.020 1.519 0.013 1.515 0.010 1.514 0.009 1.514 0.009

Note: c is the proportion of censored samples, k is the true gamma shape, n is the simulated sample size, k̂mle is the maximum likelihood estimate of gamma shape,
MARB is the average relative bias of the k̂mle, k̂ and ARB are the gamma shape estimate using available information points and its average relative bias.

Fig. 1b. ARB vs Sample size for different censoring rates using 2 NIP (25th and
75th of KM estimates, k = 1.25, θ = 3, NIP = 2).
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Gamma parameters are estimated using NIP = 3 (25th, 50th, and
75th percentile) from simulated data of n= 100, c= 20 %. From Table 3,
we see that when the hazard is decreasing, the sample size calculated
using Weibull is larger than the sample size calculated using gamma.
When the hazard is constant, sample size calculated using Weibull and
gamma are very close but still different. The difference is introduced by
the bias of the gamma parameter estimates using three information
points. In the increasing hazard scenario, the sample size calculated
using Weibull is smaller than the sample size calculated using gamma.

For example, to test H0 : Median = 2.5 vs. H1 : Median = 3.75, in
decreasing hazard case where true Weibull shape is 0.5, the sample size
calculated using Weibull parameters and estimated gamma parameters
are 233 and 147 in Table 3. As shown in Fig. 3 top left panel, the green
dots of the ‘correct’ Weibull sample sizes are above the red dots of the
gamma sample sizes. In the decreasing hazard scenario (Weibull shape
<1), the true hazard decreases faster in the Weibull compared to the
assumed gamma. Then the calculation using gamma will result in an
underestimated sample size. Analogously, in the increasing hazard
scenario, (Weibull shape >1), the true hazard increases faster in the
Weibull compared to the assumed gamma. Then the calculation using
gamma will result in an overestimated sample size.

4. Conclusion and discussion

In this paper, we propose a new parametric approach to calculate the

Fig. 2. Sample size vs NIP for different censoring rates and ARB thresholds (k = 0.5).

Table 3
Sample size calculation comparison using Weibull and gamma with various ef-
fect sizes (assuming accrual is 18 and follow up is 18, type I error = 0.05 and
power = 90 %.

Weibull
shape β

Approach M =

2.5
vs.
M = 3

M =

2.5
vs.
M =

3.5

M =

2.5 vs.
M =

3.75

M =

2.5
vs.
M =

4

M =

2.5 vs.
M =

4.5

M =

2.5
vs.
M =

5

0.5 Weibull 1151 337 233 173 111 80
gamma 728 214 147 110 71 51

0.75 Weibull 465 137 94 71 45 33
gamma 388 114 79 59 38 28

1 Weibull 258 76 53 40 25 18
gamma 250 74 51 39 24 18

1.25 Weibull 164 48 34 25 16 12
gamma 173 51 35 26 17 12

1.5 Weibull 114 34 23 18 12 8
gamma 127 38 26 19 13 9

Note: Median survival and IQR were simulated from Weibull with true shape β.
Sample size calculations were performed using the Weibull and gamma
approach for the six effect sizes above.
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sample size for single-arm studies with a time-to-event endpoint. This
approach assumes that survival time follows a gamma distribution,
calculates the number of events needed using exact parametric test
statistics with a known gamma shape parameter, adjusts for adminis-
trative censoring assuming uniform patient accrual to calculate the total
number of subjects (sample size) that need to be recruited in the study.

The motivation for proposing this sample size calculation approach is
that very limited parametric options are available in standard statistical
software, and the assumptions regarding hazard behavior of existing
parametric options do not always reflect the real-life phenomenon for
some diseases, e.g., pancreatic cancer without the presence of VTE. In
scenarios such as hazard increases to a finite constant but not infinity or
hazard decreases to a constant but not zero, the proposed sample size
calculation approach using gamma distribution can provide an alter-
native option that might be closer to the truth compared to the existing
options.

To use the gamma approach for sample size calculation, a known
shape parameter estimate is needed, and this point estimate is often
extracted using published resources. Our simulation study provides the
results of assessing the accuracy of the gamma shape parameter esti-
mated from published data. These results facilitate statisticians to make
informed decisions when designing a single-arm trial with a time-to-
event endpoint under the gamma distribution framework. In cases
where the gamma-distributed event time assumption is valid; our results
enable statisticians to decide whether a historical study has a large
enough sample size to extract an accurate gamma shape parameter from.
Our results suggest that, in a decreasing hazard scenario, with at least
three information points (NIP ≥ 3), a published study with n = 60 and

c ≤ 20 % will be sufficient to provide a gamma shape estimate with ARB
<5 %. Since our simulation uses interpolated information points from
the Kaplan-Meier curve, we suggest that for the same setting as above, a
statistician should use a published study with more than 60 sample sizes
to obtain a reasonably accurate gamma shape estimate.

To our knowledge, in phase II clinical trials, the researchers often use
the historical result as the null hypothesis and try to show that the new
treatment performs better than the results of previously conducted tri-
als. It is not uncommon that historical trials have small sample sizes and
relatively high censoring rates. In such scenarios, our simulation result
suggests more information points from the KM curve are needed to
provide an accurate gamma shape estimate (ARB < 5%). In extreme
cases where insufficient information points are available from a previous
study with small sample size and high censoring rate, a statistician may
consider a relaxed threshold of ARB ≤ 10 % instead of ARB ≤ 5 % or use
a more conservative Gamma shape parameter estimate for sample size
calculation using the proposed approach.

Our study results also show that when the underlying distribution is
misspecified, i.e., true event time is Weibull distributed but researchers
incorrectly assume gamma distribution, the proposed sample size
calculation approach will underestimate the required sample size when
the true hazard decreases faster than assumed and overestimate the
required sample size when the true hazard increases faster than
assumed. Statisticians should be cautious when designing clinical trials
assuming gamma-distributed survival time, and our method should not
be used if the assumption of gamma distribution is inappropriate.

We have introduced a novel approach to determine the sample size
for fixed-sample single-arm design utilizing the gamma distribution. In

Fig. 3. Comparison of sample sizes using Weibull approach and gamma approach. Assuming true distribution is Weibull with different shape values and null median
time of 2.5 months. Sample size calculated for various settings of alternative median times.
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the realm of potential future advancements, we recognize that inte-
grating adaptive elements into a trial design could enhance the trial’s
flexibility, enable interim evaluation of the treatment effectiveness, and
improve decision-making for researchers. Stochastic curtailment
methods are often utilized in the interim analysis to detect early evi-
dence of efficacy or futility for curtailment. Beyond the proposed fixed
design method, we aim to incorporate futility-stopping rules using sto-
chastic curtailment methods, like conditional power, predictive power,
and Bayesian predictive probability to this the fixed design to optimize
its use in designing single-arm trials with time-to-event endpoints.
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Appendix

(a)

For each individual subject, assume the event time T and censoring time C are independent.

Let event time T ~ gamma(k,θE), shape is k and scale is θE. The pdf of t is f(t) = 1
Γ(k)θE

(
t

θE

)k− 1
e−

t
k.

censoring time C ~ gamma(1,θC), shape is 1 and scale is θC. The pdf of t is f(c) = 1
θce

− t.
Then the probability of T is censored by C is

P(T>C)=E[P(T>C|T)]
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Rearrange the integrand:

P(T>C)=1 −
1

Γ(k)θE

∫ ∞

0

(
t

θE

)k− 1

e
− t

(
1
θE
+ 1

θc

)

dt=1 −
1

Γ(k)θkE

∫ ∞

0
tke

− t

(
1
θE
+ 1

θc

)

t− 1dt

Let λ = 1
θE
+ 1

θc
, change of variables

u= λt, t=
u
λ
, dt=

1
λ
du, t− 1dt=

(u
λ

)− 11
λ
du= u− 1du

Then

P(T>C)=1 −
1

Γ(k)θkE

∫ ∞

0

(u
λ

)k
e− uu− 1du=1 −

1
Γ(k)θkEλk

∫ ∞

0
e− uu− 1du=1 −

1
θkEλk

=1 −
1

(

1 + θe
θc

)k

To maintain a prespecified event rate of m = 1 − P(T> C) = 1(

1+θe
θc

)k.

We obtain θC = θE ∗ m1/k

1− m1/k.
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(b)

In the scenario where no censoring and all events observed. The Kaplan Meier estimate of 75 % survival time is the time of the event when survival
percentile first dropped below 75 %.

If there are 25 total subjects, and all events are observed. When the 6th event happens, the KM estimate of survival probability is 0.76, when the 7th
event happens, the KM estimate of survival probability is 0.72. So, the 75 % survival time is the time when the 7th event happens.

Similarly, when there are 27 total subjects, and all events are observed. When the 6th event happens, the KM estimate of survival probability is
0.7778, when the 7th event happens, the KM estimate of survival probability is 0.7407. So, the 75 % survival time is the time when the 7th event
happens.

(c)

Using the median rank procedure to obtain the Weibull shape estimate. Denote survival probability as S(t), survival time as t, shape parameter β,
and scale parameter θ. log [ − log(S(t)] = β log(t) − β log (θ).

With two or more sets of S(t) and t, β can be estimated by fitting a least squares regression line, the estimate of Weibull shape β is the slope of the
regression line.
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