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ABSTRACT
Background: Diet affects the human gastrointestinal microbiota. Blood and urine samples have been used to

determine nutritional biomarkers. However, there is a dearth of knowledge on the utility of fecal biomarkers, including

microbes, as biomarkers of food intake.

Objectives: This study aimed to identify a compact set of fecal microbial biomarkers of food intake with high predictive

accuracy.

Methods: Data were aggregated from 5 controlled feeding studies in metabolically healthy adults (n = 285; 21–75 y;

BMI 19–59 kg/m2; 340 data observations) that studied the impact of specific foods (almonds, avocados, broccoli, walnuts,

and whole-grain barley and whole-grain oats) on the human gastrointestinal microbiota. Fecal DNA was sequenced

using 16S ribosomal RNA gene sequencing. Marginal screening was performed on all species-level taxa to examine the

differences between the 6 foods and their respective controls. The top 20 species were selected and pooled together

to predict study food consumption using a random forest model and out-of-bag estimation. The number of taxa was

further decreased based on variable importance scores to determine the most compact, yet accurate feature set.

Results: Using the change in relative abundance of the 22 taxa remaining after feature selection, the overall model

classification accuracy of all 6 foods was 70%. Collapsing barley and oats into 1 grains category increased the model

accuracy to 77% with 23 unique taxa. Overall model accuracy was 85% using 15 unique taxa when classifying

almonds (76% accurate), avocados (88% accurate), walnuts (72% accurate), and whole grains (96% accurate). Additional

statistical validation was conducted to confirm that the model was predictive of specific food intake and not the studies

themselves.

Conclusions: Food consumption by healthy adults can be predicted using fecal bacteria as biomarkers. The fecal

microbiota may provide useful fidelity measures to ascertain nutrition study compliance. J Nutr 2021;151:423–433.
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Introduction

Research is increasingly demonstrating that the gastrointestinal
microbiota affects human health (1, 2). The gastrointestinal
microbiota is influenced by genetic, physiological, and environ-
mental factors (3). Diet is a modifiable environmental factor
that affects the composition of the gastrointestinal microbiota
(4, 5). Fruits, vegetables, whole grains, and nuts are incompletely
digested and, thus, serve as substrates for microbial metabolism
(3). Indeed, the measured metabolizable energy of almonds
is 25% less than the estimated value using Atwater specific
factors (6), the metabolizable energy from walnuts is 21% less

than that predicted (7), and a grain-based diet provides ∼8%
less energy than predicted (8). We previously reported that
consumption of walnuts (9), almonds (10), and avocado (11)
affected bacterial genera within the Firmicutes phylum, whereas
broccoli (12) consumption increased the relative abundance
of genera in the Bacteroidetes phylum. Research examining
barley consumption revealed an increase in relative abundances
of Clostridiaceae, Roseburia, and Ruminococcus (13). This
growing body of research indicates that foods that contain
nondigestible nutrients and fiber differentially affect the human
gastrointestinal microbiota.
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Self-reported measures of food intake and compliance are
frequently utilized in nutrition research. Their benefits include
the relative ease of collection and low costs (14, 15); however,
there are challenges related to these self-reported measures
that limit their ability to accurately measure food intake
(16). Therefore, objective biomarkers that can complement or
replace self-reported measures of food intake are of interest.
Biomarkers for nutrient intake, like urinary sodium (sodium
intake), nitrogen (protein intake), and energy, have been a major
focus in the field (17, 18). Previous work has demonstrated
the efficacy of various nutrients as food-specific biomarkers,
including lutein, carotenoids, tocopherols, folate, vitamin B-12,
and phospholipid fatty acids (19–21). Whereas there are reports
on the use of urinary and blood biomarkers for specific foods
and food groups (22–26), there is a dearth in knowledge on
the utility of fecal samples, a noninvasive biological sample,
to generate nutritional biomarkers. Importantly, the ability
to easily collect fecal samples on a population level was
demonstrated by the American Gut Project, which has collected
>11,000 fecal samples from US citizens across the lifespan (27).
However, to our knowledge, bacterial biomarkers of food intake
have not been reported.

Ultimately, the unique impact of whole foods on the human
gastrointestinal microbiota could allow for the development
of noninvasive microbial biomarkers of food intake. Thus,
we aimed to develop a proof-of-concept predictive model
to identify fecal bacterial biomarkers of intake of specific
foods that had previously been shown to affect the human
gastrointestinal microbiota, including almonds, avocados, broc-
coli, walnuts, and whole grains. Herein, we describe analyses
conducted on data generated from fecal samples collected
at the baseline and end of 5 feeding trials. The purpose
of the present investigation was to utilize a computationally
intensive, multivariate, machine learning approach to identify
bacterial biomarkers with high predictive accuracy of food
intake.

Methods
Participants and treatments
Data were from 5 separate feeding studies examining almond,
avocado, broccoli, walnut, or whole-grain barley and whole-grain
oat consumption in adults (n = 285) between 21 and 75 y of age
(Supplemental Table 1). All study procedures were administered in
accordance with the Declaration of Helsinki and were approved by the
Institutional Review Board of the MedStar Health Research Institute
(almond, broccoli, walnut, and whole grains) or the University of Illinois
Institutional Review Board (avocado).
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Almond.
Methods undertaken in the almond trial (NCT02034383) were
previously described (6). Briefly, 18 metabolically healthy adults [25–
75 y, BMI (in kg/m2): 21.9–36.1] underwent a completely controlled-
feeding, randomized, crossover trial with five 3-wk periods separated by
1-wk washouts between each period. Five treatments were completed
including 1) 0 servings/d of almonds (control), 2) 1.5 servings (42 g)/d
of whole almonds; 3) 1.5 servings/d of whole, roasted almonds; 4)
1.5 servings/d of roasted, chopped almonds; and 5) 1.5 servings/d of
almond butter (not included in these analyses). The almonds provided
257 kcal and 15% of the percentage Daily Value for dietary fiber (28).
Fecal samples were collected before the intervention and at the end of
each diet period.

Avocado.
Metabolically healthy adults (n = 163; 25–45 y, BMI: 23.9–58.8) un-
derwent an investigator-blinded, parallel-arm, randomized, controlled
trial (NCT02740439), as previously described (11, 29). Participants
consumed isocaloric meals with or without avocado once daily for
12 wk. Men in the avocado group consumed 175 g avocado/d [192 kcal;
42% of the DV for dietary fiber (28)], whereas women consumed 140
g/d [153 kcal; 33% of the DV for dietary fiber (28)]. Fecal samples were
collected at baseline (before the intervention) and at the end of the 12-
wk intervention period.

Broccoli.
Methods undertaken for this trial (NCT02346812) were previously
described (30). Briefly, 18 metabolically healthy adults (21–70 y, BMI:
19.0–36.6) underwent a completely controlled-feeding, randomized,
crossover trial consisting of two 18-d treatment periods separated by
a 24-d washout. The 2 treatments were 1) a Brassica-free control diet
and 2) the same diet with 200 g of cooked broccoli and 20 g of fresh
daikon radish per day. Broccoli provided 68 kcal and 19% of the DV for
dietary fiber (28). Fecal samples were collected before the intervention
and at the end of each treatment period.

Walnut.
Methods undertaken for this trial (NCT01832909) were previously
described (7). Briefly, 18 metabolically healthy adults (25–75 y, BMI:
20.2–34.9) underwent a completely controlled-feeding, randomized
crossover trial. Two isocaloric diet periods were completed including 1)
0 g walnuts/d (control) and 2) 42 g walnuts/d for two 3-wk periods, with
a 1-wk washout between diet periods. The walnuts provided 275 kcal
and 10% of the DV for dietary fiber (28). Fecal samples were collected
before the intervention of this controlled feeding trial and at the end of
each diet period.

Whole-grain oats and barley.
Metabolically healthy adults (n = 68; 25–70 y, BMI: 18.9–38.3) un-
derwent a 6-wk randomized, double-blinded, parallel-arm, completely
controlled-feeding trial (NCT01293604) (31). The isocaloric conditions
were 1) 0.7 daily servings (11.2 g) of whole grain/1800 kcal (control),
2) 4 daily servings (64 g) of whole-grain barley/1800 kcal, or 3) 4 daily
servings (64 g) of whole-grain oats/1800 kcal. The barley treatments
provided 227 kcal and 40% of the DV for dietary fiber (28). The oats
provided 243 kcal and 23% of the DV for dietary fiber (28). Fecal
samples were collected before the intervention and at the end of each
diet period.

Microbiota composition
Fecal samples were collected at the beginning and end of each dietary
period for all 5 studies. Fecal sample collection, DNA extraction,
and 16S ribosomal RNA (rRNA) gene (V4 region) sequencing were
conducted as previously described (11). There was a mean ± SD
of 50,053 ± 37,433 sequences per sample (range: 3764–373,284).
Sequences from all 5 studies were analyzed together with bioinformatics
software [Divisive Amplicon Denoising Algorithm 2 (DADA2) and
Quantitative Insights Into Microbial Ecology 2 (QIIME 2, version
2018.6)] (32, 33). Briefly, DADA2 was used to denoise and dereplicate
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the sequences, trim off the primers, and remove chimeras and reads with
a quality score <20. A total of 4375 amplicon sequence variants were
identified. Taxonomy was assigned using SILVA release 132 (34).

The raw taxonomic data set contained 742 observations, including
the baseline and end data for all subjects across the 5 feeding studies
(Supplemental Figure 1). First, avocado subjects with missing baseline
or end sequence data were removed (718 observations remaining).
Next, the sequence data from the almond butter group in the almond
trial were removed owing to the Atwater values revealing the butter
was completely digested (35) and there being no differences between
the control and almond butter fecal microbiota (10), resulting in 682
remaining observations. Two additional almond observations were
dropped owing to missing baseline or end data for the roasted and
chopped treatment arms, respectively (680 observations remaining).
Finally, the differences between baseline and end relative abundances
for those 680 observations were calculated to generate 340 observations
for subsequent analyses. These 340 observations contain the treatment
data set (n = 199), i.e., the study periods where study diets contained
the specific foods, and the control data set (n = 141).

Statistics

Feature selection and classification.
The predeclared primary endpoint, bacterial species as biomarkers of
food intake, was not changed during the course of this study. First,
we considered the changes in relative abundance (treatment end minus
baseline) for each of the features (fecal bacterial species) to perform
the analyses. Using the difference between baseline and postintervention
also allows for determination of the internal differences or batch effects
related to performance of these studies at 2 different sites and the
background diet, as well as reducing biases related to utilization of
only the study endpoints (36). Furthermore, analyzing the difference
in abundances results in a normal distribution centered at 0, making it
more suitable to model.

In addition to investigating whether an individual’s food intake can
be predicted from changes in fecal microbial composition, a secondary
aim of the study was to identify a compact set of bacteria that are
mainly driving the prediction of the diet for interpretation purposes.
Thus, we conducted feature selection to create a smaller feature space
with high classification performance. This was done by first reducing the
number of features (fecal bacterial species) by removing sparse features
(species) with predominantly zero values. Removal of the sparse features
also prevented the random forest model from simply considering the
nonzero values compared with the zero values, which would bias the
classification, and increase the noise and computational inefficiency of
the analyses.

Next, we performed marginal screening using the Kruskal–Wallis
test (37) using each species as the covariate (predictor) and the specific
food (i.e., almonds, avocados, broccoli, walnuts, whole-grain barley,
or whole-grain oats) as the outcome, which allowed for assessment of
the difference in distribution between each control (absence of study-
specific food) and treatment group (inclusion of study-specific food).
The 20 most significant bacterial taxa differentiating the treatment
groups from their corresponding control groups were selected from each
of the 5 studies, totaling 89 distinct features. According to our numerical
experiments, choosing 20 significant features per food was sufficient to
capture the main signal of the microbiota, with no evident improvement
in performances if more features were considered.

Next, we used random forests to model these data and further select
the set of features that distinguished the treatment labels. This was done
with the randomForest package (38). For tuning the random forest, the
number of trees was set to 2000 and the node sizes range from 1 to 10.
The “mtry” parameter was set to the default value of

√
p, where p is the

number of features considered for the model. We then implemented grid-
search across the considered tuning parameters to choose the best model
using the out-of-bag estimates (39) generated from the random forest
model. The results and variable importance from this step revealed that
not all of the features (20 features from each food) identified during
marginal screening were predictive in the random forest model. Thus,
the number of species used as features was further decreased using
variable importance scores generated from the initial random forest to

determine a compact feature set with a minimum loss in classification
accuracy. The top 20, 15, 12, 10, 7, 5, 3, and 2 species (as ranked by
variable importance) from each study were selected and pooled. The
number of resulting unique species varied according to the number of
foods considered. Supplemental Figure 2 provides further details of this
model selection approach to determining the final number of features-
per-food (and consequently, the number of unique features overall).

Selecting 10 species from each of the 6 foods and pooling resulted
in 22 unique bacterial species. Collapsing barley and oats into a
grains category (5 foods) resulted in 23 species after feature selection.
Removing broccoli from the data set (4 foods) reduced the number
of unique species remaining after feature selection to 15. The unique
species selected (either 22, 23, or 15) from pooling the top 10 most
significant species for each food were refit into a second random forest
using the same parameters to classify the specific foods consumed.

Removing the study-specific batch effect.
To ensure that the results signified the food consumed rather than
participation in a specific study, we quantified and removed the batch
effect. We consider a shift in microbiota composition in the treatment
groups (i.e., the treatment signal) to be driven by 2 separate effects. The
first is the effect of the food (e.g., almond), which we call the treatment
effect. The second is the effect of the background diet (the batch effect),
which is indicative of all the foods each participant consumed aside
from the study-specific food of interest. We considered any bacterial
signatures present in both control and treatment subjects as a batch
effect, because their presence could artificially inflate the classification
accuracy of the models. Because the objective was to predict intake
of the 6 foods (i.e., almonds, avocados, broccoli, walnuts, whole-grain
barley, and whole-grain oats), the food effect signal was extracted from
the entirety of the treatment signal. We removed the batch effect from
the feature set by removing the influence of the first few principal
components (PCs) of the control group data from the treatment group
data (40). The precise number of PCs removed from each of the food
groups (6, 5, and 4 foods) was determined via the elbow method (41)
(Supplemental Figure 3).

Next, we performed singular value decomposition on the feature set
for all participants in the control group from each food:

Xcont = Ucont DcontVT
cont (1)

Then, the treatment group feature set was projected onto the column
space spanned by the PCs of the control group by multiplying the
projection matrix:

X̃treat = XtreatVcontVT
cont (2)

Finally, X̃treat was subtracted from Xtreat, effectively removing the
main signal within the control group from the treatment group. If
the study foods (and not just the studies) altered the composition of
the microbiota in different directions, we expected the classification
performance to be similar when using treatment or treatment
effect. Figure 1 provides a theoretical demonstration of this batch effect.

Additional calculations were conducted to validate the food
prediction approach. The random forest model built previously was
used to classify the control subjects from each trial to predict the
food consumed, using the same methodology applied to treatment
data. These classification results were then compared with baseline
performance as an approach to ensure that the model was predicting
food consumption rather than trial participation.

Results
Because the objective of this study was to maximize classifica-
tion accuracy with a minimal set of features, or biomarkers,
from each food (i.e., almonds, avocados, broccoli, walnuts, and
whole-grain barley and whole-grain oats), we first examined the
influence of the number of features selected on model accuracy.
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FIGURE 1 Theoretical representation of the batch effect. The batch
effect occurs when the control and treatment groups exhibit different
changes across different study sites. The measured signal within the
control group represents the background conditions of the study,
and the measured treatment signal is comprised of the background
conditions of the study and the effect of the specific food. Scenario 1
depicts the case where all of the directions are the same for both
foods. The measured treatment signal (solid line) is similar to the
treatment effect, or true effect, of the food (dashed line). In this
scenario, controlling for the control, or batch effect, will not have an
impact on the classification accuracy. Scenario 2 represents the case
where treatments from both foods are pointing in the same direction.
However, the treatment effects between the 2 are different from one
another because the control groups move in different directions. If
we correct for the control group in scenario 2, we are able to account
for the true treatment effect and correctly separate the control from
the treatment. However, if we do not adjust for the background diet
effect here, we will not observe the effect, leading to a false negative
(type II error). Finally, in scenario 3, both treatment groups are moving
in different directions from baseline, but the treatment effects of the
2 foods are in the same direction. Therefore, if the background diet
effect is not accounted for in this scenario, we observe differences
between the 2 groups, when in reality, there is not one (type I error).

Selecting more than the 10 important features from each study
group for model training did not provide a significant increase in
classification performance, i.e., the classification accuracy was
71% when using 10 features compared with 69% when using
20 features for each of the 6 foods (Supplemental Figure 2).

Furthermore, the P values from the paired-difference cross-
validation t test between the models with >10 features were not
significant. Because the data set is unbalanced (Supplemental
Figure 4)—the avocado study comprises the largest number of
participants and datapoints—we also considered the AUC as a
performance criterion for classification.

Table 1 reports the top 23 bacterial species (selected from the
highest 10 variable importance scores from the random forest
model for each study) that were used in the analyses. Species
assignments are listed in descending rank order as determined
via variable importance from the random forest model.

Tables 2–4 are formatted as follows. With batch effect rows
contain the confusion matrices, per-class accuracy, and overall
accuracy of a random forest model trained on the differences
in relative abundance of the taxa selected as discussed in
the Statistics section. Removed batch effect rows contain the
confusion matrices, per-class accuracy, and overall accuracy of
the same random forest model trained on the same data set
with the batch effect removed. Finally, Control rows contain
the confusion matrices, per-class accuracy, and overall accuracy
of the same random forest model when predicting the foods

using the control subjects rather than the participants that
consumed the study foods, i.e., the participants in the treatment
conditions of each study. Because the control subjects should
exhibit none of the signal learned by the training data, the
results reported in the control rows of each table indicate
the baseline performance of that machine learning model.
Effectively, baseline performance indicates how well a machine
learning model could classify inputs given useless (or no)
training data. The classification accuracy of the models in the
control rows (near 50%) corresponds to the proportion of
avocado training samples (near 50%) (Supplemental Figure 4).
Because avocado is the largest group within the training data,
we expected that this model would classify almost all control
subjects into the avocado group, confirming the training data
had the batch effect removed.

The performance seen in the With batch effect and Removed
batch effect rows of Tables 2–4 is then compared with the
baseline performance of the control group (Control rows) to
determine if the machine learning models were given useful
training data. If the Control rows are similar to the other
2 models (With batch effect and Removed batch effect rows),
it would indicate that the models had learned no useful
information from the training data, i.e., how to predict which
specific food was eaten. Ideally, the performance seen in the
With batch effect and Removed batch effect rows should largely
exceed the baseline performance metric in the Control rows. In
addition to the prediction accuracy, we also present multiclass
classification AUC results using the pROC package (42).

With all 6 foods in the model, the data set had adequate
signal to predict the foods consumed, resulting in an overall
model accuracy of 70%, with broccoli being confused for
avocado 89% of the time and oats and barley frequently
being confused for one another as shown in Table 2 (With
batch effect). After removing the batch effect, we re-examined
classification performance. If classification performance were to
fall drastically, that would indicate the original classification
accuracy using just the data from participants in the treatment
condition was artificially inflated and the model was only
performant at detecting which research study a given subject
participated in. Overall model accuracy fell to 66% as shown
in Table 2 (Removed batch effect). However, the reduction
in classification accuracy from the initial models (Table 2,
With batch effect) to the models without the batch effect
present (Table 2, Removed batch effect) was not large. Because
classification accuracy did not fall drastically when the batch
effect was removed from the training data, we concluded that
the effect of consuming a specific food exhibited an adequate
bacterial signal in each study participant, leading to ideal
classification performance.

In addition to retaining classification accuracy after removal
of the batch effect, we were able to further confirm the validity
of the results by comparing the classification accuracy of control
subjects with baseline results. In this case, baseline results
correspond to classification of the specific food, given there
was no signal separating the foods within the data set (i.e., it
would be a random guess as to which food was consumed). To
maximize classification accuracy given no data, the best method
is to classify every subject as belonging to the largest group
present in the training data, which was the avocado group in
the current report. To confirm that the models were trained on
data with a minimal batch effect, we compared the results of
classifying control subjects with the baseline results as shown in
Table 2 (Control). As expected, the model classified almost all of
the subjects into the avocado group using control data, because
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TABLE 1 Bacterial biomarkers using the top fecal microbiota species from metabolically healthy
adults who consumed 4 foods, 5 foods, and 6 foods1

Rank (overall variable importance)2

SILVA assignment 4 Foods 5 Foods 6 Foods

Roseburia undefined 1 (0.097) 1 (0.077) 1 (0.069)
Lachnospira spp. 2 (0.043) 3 (0.034) 5 (0.021)
Oscillibacter undefined 3 (0.039) 4 (0.032) 4 (0.023)
Subdoligranulum spp. 4 (0.039) 5 (0.030) 3 (0.025)
Streptococcus salivarius subsp. thermophilus 5 (0.039) 2 (0.035) 2 (0.026)
Parabacteroides distasonis 6 (0.032) 7 (0.023) 9 (0.015)
Roseburia spp. 7 (0.026) 6 (0.025) 7 (0.017)
Anaerostipes spp. 8 (0.023) 8 (0.019) 6 (0.020)
Lachnospiraceae ND3007 group undefined 9 (0.022) 9 (0.018) 8 (0.016)
Ruminiclostridium spp. 10 (0.022) 10 (0.015) 10 (0.011)
Lachnoclostridium undefined 11 (0.013) 13 (0.009) 15 (0.005)
Undefined species in Clostridiales order 12 (0.011) 12 (0.010) —
Faecalibacterium undefined 13 (0.010) 14 (0.008) 12 (0.007)
Ruminococcaceae UCG-013 undefined 14 (0.008) 15 (0.006) 13 (0.006)
Lachnospiraceae UCG-001 undefined 15 (0.006) 18 (0.004) 21 (0.001)
Bacteroides spp. — 11 (0.013) 14 (0.005)
Ruminiclostridium spp. — 16 (0.005) 11 (0.007)
Butyricimonas undefined — 17 (0.004) 17 (0.003)
Dialister spp. — 19 (0.003) 16 (0.004)
Ruminococcaceae NK4A214 spp. — 20 (0.002) 18 (0.003)
Hydrogenoanaerobacterium spp. — 21 (0.002) 20 (0.002)
Lachnospiraceae UCG-001 spp.3 — 22 (0.001) —
Intestinimonas spp. — 23 (0.001) 22 (0.001)
Sutterella spp.4 — — 19 (0.003)

1Top 10 species-level SILVA taxa from each of the 4 foods (collapsed grains category, broccoli removed; 15 total taxa); 5 foods
(collapsed grains category; 23 total taxa); and 6 foods (22 total taxa).
2Variable importance scores were generated from each food using the initial random forest model to determine a compact feature
set with a minimum loss in classification accuracy. The top 20, 15, 12, 10, 7, 5, 3, and 2 species (as ranked by variable importance)
from each study were selected and pooled. The number of resulting unique species varied. Selecting >10 species from each study
did not significantly increase classification accuracy.
3Unique to 5 foods analyses.
4Unique to 6 foods analyses.

the avocado trial had the largest sample size. Classification of
the control group yielded an overall baseline accuracy of 50%
as shown in Table 2 (Control).

These same interpretations can be applied to the results
shown in Tables 3 and 4. Aggregating oats and barley into
1 category, whole grains, improved the classification accuracy
of the whole grain category to 94% and improved the overall
model accuracy to 77%, as shown in Table 3 (With batch effect).
Overall model accuracy after removing the batch effect was
73%, and the baseline accuracy was 55% as shown in Table 3
(Removed batch effect and Control, respectively).

Removing broccoli from the model due to low classification
accuracy, resulting in 4 foods, increased the model accuracy to
85% as shown in Table 4 (With batch effect). Removing the
batch effect reduced this model accuracy to 76% as seen in
Table 4 (Removed batch effect), and the baseline accuracy was
55% as seen in Table 4 (Control).

Discussion

Although diet–microbiota studies have demonstrated that spe-
cific foods affect the fecal microbiota, to our knowledge, none
have used machine learning to generate bacterial biomarkers
that predict specific food consumption. Because the composition
of the gastrointestinal microbiota is complex, machine learning

models have become a novel tool for extracting useful
information from these large data sets (43). This study predicted
dietary intake of specific whole foods (i.e., almonds, avocados,
broccoli, walnuts, whole-grain barley, and whole-grain oats)
with 70%–85% accuracy using 22 and 15 fecal bacteria as
biomarkers of food intake, respectively. The maximal model
accuracy, 85% accuracy, was achieved when whole-grain oats
and whole-grain barley were collapsed into 1 whole grains
category and broccoli was removed from the model (4 food
groups). Examining the classification accuracy after removing
the batch effect and the baseline model, these results revealed
the ability to predict the food consumed, rather than research
trial participation. From these results, we can conclude that
the model did not falsely detect the bacterial signatures of the
foods within the control group. Conversely, because the same
model performed well on the treatment groups, we can also
conclude it was trained using data with adequate signal strength
to determine the effects of the studied foods.

Biomarkers for nutrient intake, like urinary sodium (sodium
intake), nitrogen (protein intake), and energy, have been a
major focus in the nutrition field (17, 18). Previous work has
demonstrated the efficacy of various nutrients serving as food-
specific biomarkers, including lutein as a biomarker of avocado
intake (29) and tocopherols as a biomarker for almonds intake
(20). Although urinary and blood biomarkers have been used
for specific foods and food groups (22–26), there is a dearth
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TABLE 2 Prediction of specific food intake from metabolically healthy adults who consumed 6 foods using random forest with batch
effect, removal of batch effect, and control groups1

Almond, n Avocado, n Broccoli, n Walnut, n Barley, n Oats, n Accuracy, %

Almond
With batch effect2 37 12 0 0 0 0 76
Removed batch effect3 38 11 0 0 0 0 78
Control4 1 13 0 0 4 4 6

Avocado
With batch effect2 5 59 2 0 1 0 88
Removed batch effect3 10 55 1 0 0 1 82
Control4 2 62 0 0 2 2 94

Broccoli
With batch effect2 0 16 1 0 1 0 6
Removed batch effect3 2 12 4 0 0 0 22
Control4 0 16 0 0 2 2 0

Walnut
With batch effect2 1 2 0 13 2 0 72
Removed batch effect3 3 3 0 10 2 0 56
Control4 1 10 0 0 7 7 0

Barley
With batch effect2 0 1 0 0 18 5 75
Removed batch effect3 0 3 0 1 13 7 54
Control4,5 1 3 0 0 17 17 81

Oats
With batch effect2 0 2 0 0 10 11 48
Removed batch effect3 1 4 0 1 6 11 48
Control4 1 3 0 0 17 17 81

Overall accuracy and AUC
With batch effect2 70 (AUC: 0.92)
Removed batch effect3 66 (AUC: 0.89)
Control4 57 (AUC: 0.78)

1All analyses utilized the top 10 species-level SILVA taxa from each of the 6 foods (22 total taxa).
2Values from random forest classification model with batch effect present predicting 6 foods.
3Values from random forest classification model removing batch effect (via removal of principal components) predicting 6 foods.
4Values from random forest classification model predicting 6 foods from control group participants.
5Whole-grain barley and whole-grain oats control groups were the same.

in knowledge on the utility of fecal samples, a noninvasive
biological sample, to generate nutritional biomarkers. Ulti-
mately, the unique impact of whole foods on the human fecal
microbiota, metagenome, and metabolome could allow for
the development of noninvasive microbial biomarkers of food
intake to complement current practices.

Although, to our knowledge, bacterial biomarkers have
not previously been utilized to predict food intake, others
have utilized fecal microbiota as biomarkers for health status,
including glycemic responses (44), and variability in BMI,
triglyceride, and HDL cholesterol concentration (45). In
addition, microbes in the oral cavity, gastrointestinal tract, and
pancreatic tissue differed in patients with pancreatic cancer
compared with healthy controls (46). Also, Das et al. (47)
linked microbial metabolites to inflammatory bowel disease
and Turnbaugh et al. (48) revealed changes in fecal microbial
structure, gene expression, and subsequent metabolic pathways
due to dietary changes. Although these studies are not without
limitations, they reveal promise in the utility of fecal samples to
fill the need for noninvasive, inexpensive, and specific markers
of dietary intake and health status (49). Importantly, our results
help fill the gap in knowledge related to the utility of fecal
microbial biomarkers for food intake.

Random forest was performant in the classification of
various labels based on microbial composition of the micro-
biome (50). Theoretically, it may be possible to accomplish

the same goal using traditional linear models by adding the
batch effect as a covariate (50, 51); however, linear modeling
does not adequately account for multicategorical outcomes like
the random forest (52). In addition, we also considered the
lasso model (53) initially for our study, but the results were
inferior to the random forest (Supplemental Table 2). Random
forest models can also model highly nonlinear relations leading
to better classification performance (54). In addition to their
robustness for classification, random forest models provide
methods for feature selection by assigning variable importance
scores to each input feature (e.g., the change in relative
abundances for specific taxa across all subjects), allowing for
an easy reduction of the feature space by eliminating the
least important variables. Conversely, the use of random forest
necessitated additional methods to remove the batch effect and
use cross-validation to assess false detections.

The highest model performance was observed after aggregat-
ing whole-grain oats and barley into a single category (whole
grains) and removing broccoli, which was often misclassified as
avocado. Given that oats and barley contain similar insoluble
and soluble fibers (mainly β-glucans), resistant starch, lipids,
proteins, and phenolic content, we ultimately aggregated the
2 into 1 whole grains category (55, 56). Broccoli misclassi-
fication may be due to a number of factors, such as small
sample size (n = 18) or similar nutrient composition to the other
foods investigated, thereby resulting in an inadequate bacterial
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TABLE 3 Prediction of specific food intake from metabolically healthy adults who consumed 5 foods using random forest with batch
effect, removal of batch effect, and control groups1

Almond, n Avocado, n Broccoli, n Walnut, n Grains, n Accuracy, %

Almond
With batch effect2 37 12 0 0 0 76
Removed batch effect3 38 11 0 0 0 78
Control4 1 10 0 0 7 6

Avocado
With batch effect2 6 57 3 0 1 85
Removed batch effect3 9 55 0 0 3 82
Control4 2 51 0 0 13 77

Broccoli
With batch effect2 0 15 2 0 1 11
Removed batch effect3 2 13 1 0 2 6
Control4 0 13 0 0 5 0

Walnut
With batch effect2 1 2 0 13 2 72
Removed batch effect3 3 4 0 9 2 50
Control4 0 4 0 0 14 0

Grains
With batch effect2 0 3 0 0 44 94
Removed batch effect3 0 5 0 0 42 89
Control4,5 0 2 0 1 18 86

Overall accuracy and AUC
With batch effect2 77 (AUC: 0.93)
Removed batch effect3 73 (AUC: 0.90)
Control4 50 (AUC: 0.77)

1Barley and oats were collapsed into 1 “grains” category. All analyses utilized the top 10 species-level SILVA taxa from each of the 5 foods (23 total).
2Values from random forest classification model with batch effect present predicting 5 foods.
3Values from random forest classification model removing batch effect (via removal of principal components) predicting 5 foods.
4Values from random forest classification model predicting 5 foods from control group participants.
5Whole-grain barley and whole-grain oats control groups were the same.

signature to allow for accurate food intake classification.
Specific to the similarities in nutrient composition contributing
to the incorrect classification of broccoli consumption as
avocado consumption, both avocados and broccoli are sources
of pectin, lutein, and β-sitosterol (57–65). The inability to
accurately classify broccoli intake from 16S rRNA bacterial
sequence data may also be due to phenotypic responses (66).
Future work is necessary to better understand the individualized
nature of diet–microbiota interactions.

The high classification accuracy of the model points to the
impact of specific whole foods on the intestinal microbiota,
which is largely due to their supply of nondigested nutrients
and fiber that is available for microbial metabolism. Specific to
our work, almonds, broccoli, and walnuts are good sources of
dietary fiber (providing 10%–19% of the recommended daily
intake per reference amount customarily consumed), whereas
avocado, whole-grain oats, and whole-grain barley are excellent
sources of dietary fiber (providing ≥20% of the recommended
daily intake per reference amount customarily consumed) (28).
On a daily basis, ∼40 g of dietary carbohydrates, 12–18 g
of protein, and 5% of dietary lipids are not digested and
reach the colon (67). Because the enzymatic capacity of the
gastrointestinal microbiome far exceeds that of the human
genome, these nondigested components are able to serve as
substrates for a range of microbes, resulting in a signature of
fecal microbial changes due to dietary intake. For example,
certain PUFAs, which are found in almonds, avocados, walnuts,
and whole grains, can be metabolized by intestinal microbes.
In vitro studies examining Roseburia spp. revealed their ability
to conjugate linoleic acid (68, 69). Furthermore, the intestinal

microbiota partially controls the synthesis and regulation of
bile acid secretion (70). The type of dietary fat also affects the
interactions between bile acids and the intestinal microbiota
(71). For example, walnut consumption resulted in reductions
in the microbially derived secondary bile acids, deoxycholic
acid and lithocholic acid (9). Participants who consumed
avocado had lower concentrations of the bile acids, cholic and
chenodeoxycholic acid, than controls (11). These unique host–
microbe interactions, which are facilitated by the nutrients in
specific foods, contribute to the signatures of food consumption
and ability to create a panel of fecal bacterial biomarkers of food
intake.

The bacterial species identified as the most relevant biomark-
ers for predicting food consumption align with previous
findings. Specifically, the relative abundance of Roseburia spp.
was significantly increased in previous studies examining the
impact of almond, walnut, and whole-grain barley and oat
intake on the microbiota (9, 10, 13, 72, 73). In addition, the
relative abundance of Lachnospira spp. was increased with
almond and avocado intake and identified as a predictive feature
in the current report (10, 11). Furthermore, participants who
consumed avocado had enriched Faecalibacterium (11). Others
have also reported increased abundances of Lachnospira spp.
after whole grain (73) and whole-grain barley consumption
(13). Also, walnuts were reported to significantly increase the
abundance of the Ruminococcaceae family when compared
with a nut-free control (74). It is important to note that
some of these previous findings utilize the same data as the
current effort (9–11). Therefore, although the sequence data
were reanalyzed in the present report, the similarity in findings
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TABLE 4 Prediction of specific food intake from metabolically healthy adults who consumed 4 foods using random forest with batch
effect, removal of batch effect, and control groups1

Almond, n Avocado, n Walnut, n Grains, n Accuracy, %

Almond
With batch effect2 37 12 0 0 76
Removed batch effect3 35 12 1 1 71
Control4 2 10 0 6 11

Avocado
With batch effect2 5 59 0 3 88
Removed batch effect3 3 57 1 6 85
Control4 1 54 0 11 82

Walnut
With batch effect2 1 2 13 2 72
Removed batch effect3 5 3 9 1 50
Control4 0 10 0 8 0

Grains
With batch effect2 0 2 0 45 96
Removed batch effect3 1 9 0 37 79
Control4 0 8 1 12 57

Overall accuracy and AUC
With batch effect2 85 (AUC: 0.95)
Removed batch effect3 76 (AUC: 0.89)
Control4 55 (AUC: 0.69)

1Barley and oats were collapsed into 1 “grains” category and broccoli was removed from the model. All analyses utilized the top 10 species-level SILVA taxa from each of the 4
foods (15 total).
2Values from random forest classification model with batch effect present predicting 4 foods.
3Values from random forest classification model removing batch effect (via removal of principal components) predicting 4 foods.
4Values from random forest classification model predicting 4 foods from control group participants.

is expected. Previous research demonstrating the importance of
these microbes in relation to the consumption of the specific
foods within our current effort shows the promise in future
research utilizing these and other microbes as biomarkers of
food intake.

The major strength of this work is that 4 of the 5
studies from which data were aggregated were randomized,
controlled, crossover studies that provided participants with
all of the foods consumed during the study period. Therefore,
the only difference between the treatment and control diets
was the addition of the studied food, i.e., almonds, broccoli,
walnuts, and whole-grain barley or whole-grain oats. This
is the strongest possible design for studying the impact of
consumption of specific foods on the human gastrointestinal
microbiota. Although the controlled feeding component of
the trials included in this study is a major strength, it may
limit translation of these findings to studies of the general
population owing to selection biases and external validity issues
inherent to randomized controlled trials. Participants in the
current study were metabolically healthy adults 21–75 y of
age with a wide BMI range (19–59). Therefore, although our
sample encompasses a wide range of ages and BMI categories,
findings cannot be generalized to children or those with various
disease states. As such, future studies that include more diverse
populations are needed for external validity. It is also important
to note that our model does not reveal a quantitative measure
of intake, but rather a qualitative measure. In addition, our
approach utilized a change in relative abundance of taxa in
our treatment groups compared with their control groups to
identify bacteria of interest, which may pose limitations in
applying these methods to observational studies. However,
others have utilized semiquantitative methods that have been
deemed appropriate for exploratory studies aimed at identifying

biomarkers of food intake to examine their robustness in
observational trials (23). More human intervention studies with
varying doses of specific foods and quantitative methods of
analysis are necessary to develop complete biomarkers. Future
research should re-examine the impact of the foods examined
herein in independent cohorts, in addition to new foods of
interest, to validate the reliability and generalizability of our
classification model. Furthermore, cooking and processing alter
the physiochemical properties of food, which can result in
differential impact on the gastrointestinal microbiota (10,
75). Therefore, food form should be considered in future
studies.

Potential future work could consider different machine
learning models to address the dietary predictive question (or
similar issues). The main reason we utilized random forest
is because of its ease of usage for addressing multiclass
classification problems. This problem is a challenge in and of
itself, which narrows the selection of choices for viable models.
Nevertheless, methods such as boosting (76, 77) or angle-
based support vector machines (78) are possible alternatives and
may be worth exploring in future studies. Deep learning (79)
also handles such unbalanced multiclass classification problems
well; however, the performance may be limited in studies with
small sample sizes (80). This may require more sophisticated
constraints or assumptions to handle such issues. The small
data size issue is also why we considered the built-in out-of-
bag estimates (39) from the random forest model for cross-
validation, which is shown to yield similar generalized accuracy
to the leave-one-out cross-validation (81). This built-in feature
prevents the need to further divide the data into smaller subsets
for traditional k-fold cross-validation.

In summary, our results reveal fecal bacterial biomarkers
can be utilized as indicators of consumption of specific foods
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by healthy adults. These findings are important because they
establish proof-of-concept for the use of bacterial biomarkers
for predicting food intake. The constructed panel of microbes,
or, more broadly, the analytic approach utilized to establish
this panel, lays the foundational work necessary for future
studies that aim to predict food intake using fecal microbial
biomarkers. Furthermore, generation of biomarkers from stool
samples has the potential to increase the robustness of other
biomarkers from urine or blood to bolster objective assessment
of dietary intake and compliance of participants in nutrition
intervention studies. Overall, the identification of biomarkers
of food intake will complement traditional dietary assessment
methods, advance compliance evaluation in nutritional inter-
vention studies, and move us toward diet–microbiota tailored
therapies for disease prevention and treatment. Ultimately,
establishing microbial biomarkers of food intake will facilitate
the development of personalized nutrition approaches that
modulate the gastrointestinal microbiome for human health
benefit.
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