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We introduce a new approach to investigate problem of DNA sequence alignment. The method consists

of three parts: (i) simple alignment algorithm, (ii) extension algorithm for largest common substring,

(iii) graphical simple alignment tree (GSA tree). The approach firstly obtains a graphical representation

of scores of DNA sequences by the scoring equation R0 � R�S0 � S�T0 � ðaþbkÞ. Then a GSA tree is

constructed to facilitate solving the problem for global alignment of 2 DNA sequences. Finally we give

several practical examples to illustrate the utility and practicality of the approach.

Crown Copyright & 2009 Published by Elsevier Ltd. All rights reserved.
1. Introduction

The decoding of different genomes, in particular the human
genomes has triggered a great deal of bioinformatics research. The
research of sequence similarity to a known protein sequence or
DNA sequence has been an important method to provide the first
clues about the function of a newly sequenced gene. The research
becomes increasingly useful in the analysis of newly sequenced
genes as the sequence databases, such as DNA and protein
databases, continue to grow in size. There are a number of
standard schemes widely used to search for homologous
sequences in nucleotide and protein databases to distinguish
biologically significant relationships from chance similarities
(Smith and Waterman, 1981; Waterman, 1984; Pearson and
Lipman, 1988; Altschul et al., 1990, 1997; Tatiana and Thomas,
1999). The dynamic programming algorithms (Smith and Water-
man, 1981; Waterman, 1984) assign scores to insertions, dele-
tions and replacement, and compute an alignment of two
sequences. These algorithms are impractical for searching large
database because of their computational requirements. Rapid
heuristic algorithms (Pearson and Lipman, 1988; Altschul et al.,
1990, 1997) compare protein and DNA sequences much faster
than the above methods. They are widely used for large database
searches. However, a number of important scientific contexts
involve the comparison of only two sequences and do not require
009 Published by Elsevier Ltd. All

. Qi).
a time-consuming database search. In order to meet these
needs, many important tools for large database searches (Tatiana
and Thomas, 1999; http://www.ebi.ac.uk/Tools/emboss/align/
index.html; http://blast.ncbi.nlm.nih.gov/bl2seq/wblast2.cgi) are
further developed to employ global alignment of 2 protein and
nucleotide sequences. These methods can provide the global
profile of similarity degree. Recently, many graphical methods
have also been used to examine the global similarities/dissim-
ilarities among the coding sequences of different species (Qi et al.,
2007; Qi and Qi, 2007, 2009; Qi and Fan, 2007; Yao et al., 2006,
2008a, b; Randić et al., 2003a, b). Because of the advantages in
visualization, graphical methods have become a powerful bioin-
formatics tool for the analysis of complicated biological systems,
such as enzyme-catalyzed system (Chou et al., 1979; Chou, 1980;
Chou and Forsen, 1980, 1981; Chou and Liu, 1981; Myers and
Palmer, 1985; Zhou and Deng, 1984; Chou, 1989, 1990; Kuzmic
et al., 1992; Andraos, 2008), protein folding kinetics (Chou, 1990,
1993), condon usage (Chou and Zhang, 1992; Zhang and Chou,
1994), HIV reverse transcriptase inhibition mechanisms (see
Althaus et al., 1993a, b, c, as well as a review article (Chou et al.,
1994)), base frequency distribution in the anti-sense strands
(Chou et al., 1996) and classifying organisms (Sorimachi and
Okayasu, 2008; Okayasu and Sorimachi, 2009; Qi et al., 2009).
Recently, the images of cellular automata were used to represent
biological sequences (Xiao et al., 2005a), predict protein sub-
cellular location (Xiao et al., 2006a), investigate HBV virus gene
missense mutation (Xiao et al., 2005b) and HBV viral infections
(Xiao et al., 2006b), predicting protein structural classes (Xiao
et al., 2008) and G-protein-coupled receptor functional classes
rights reserved.
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(Xiao et al., 2009), as well as analyze the fingerprint of SARS
coronavirus (Wang et al., 2005; Gao et al., 2006).

In this paper, we suggest a heuristic approach to align a pair of
DNA sequences with the tree data structure. Some graphical
descriptions are also used to intuitively explain the scheme. The
method consists of three parts: (i) simple alignment algorithm, (ii)
extension algorithm for largest common substring, (iii) graphical
simple alignment tree (GSA tree). Here, we firstly obtain a
2-dimension (2D) graphical curve by graphical representation of
scores of DNA sequences. A good simple alignment of the DNA
sequences is generated when the score of the scoring curve
reaches its peak value. The 2D graphical curve can intuitively
show the global change of simple alignment scores based on
scoring matrix. Then the largest common substrings of the good
simple alignment are found out. Because of the limit of the initial
alignment reaching peak score, the largest common substrings of
original two sequences may be split by the largest common
substrings of the good simple alignment. In order to protect these
common substrings from being split, an extension algorithm for
the largest common substring is suggested. Then all largest
common substrings are found out when the initial alignment
reaches peak score. The process is repeatedly done until GSA tree
comes into being. The tree can facilitate solving the problem for
global alignment of 2 DNA sequences. At last, we give several
practical examples to illustrate the utility and practicality of the
approach.
Step 1 (Initial position) 

N

M

gggg

gggg
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Step 2 ( 1G moves one base position along the right direction) 

MM gggg 121 −
2. Simple alignment algorithm and graphical representation
of scores of DNA sequences based on scoring matrix

2.1. The scoring equation based on scoring matrix

In bioinformatics, scoring matrix is also called as substitution
matrix. As for protein sequences, the matrix is often based on
observed substitution rates, derived from the substitution frequen-
cies seen in multiple alignments of sequences. Every possible
identity and substitution is assigned a score based on the observed
frequencies in alignments of related proteins. Similarly, every
possible identity and substitution in alignments of related DNA
sequences is also assigned a score. However, the scoring matrix in
alignment of DNA sequences is relatively simple and intuitional.
Table 1 is a scoring matrix. An identity in scoring matrix is assigned
a positive score R ðR40Þ. A substitution is assigned a positive score S

ðS40Þ. But the score S must be subtracted from the total score of an
alignment. For example, an alignment of two short DNA sequences
ATGGTGCAACTGACT and ATGGTGCACTTGACT is the following:

The score of alignment should be 13R�2S.
Another important problem for alignment is the treatment of gaps,

i.e., spaces inserted to optimize the alignment score. A ‘gap open’
penalty is one that is the cost for the first space of each gap spaces. A
‘gap extension’ penalty is one that is the cost for one of each gap
Table 1
A usual scoring matrix.

A C G T

A R �S �S �S

C �S R �S �S

G �S �S R �S

T �S �S �S R
spaces except for the first space. Typically, the cost of extending a gap
is set to be 5–10 times lower than the cost for opening a gap (http://
www.ebi.ac.uk/Tools/emboss/align/index.html). There is one way to
compute a penalty for a gap of n positions: gap opening penalty +
ðn�1Þ� gap extension penalty. Now, let parameter a be gap
opening penalty and parameter b be gap extension penalty. And let
parameter k be n�1. Then we have the scoring equation:
R0 � R�S0 � S�T0 � ðaþbkÞ, where R is the score of each match, and
S is the score of each mismatch and aþbk is the score of each gap. The
parameters R0, S0 and T0 denote the total amount of matches, the total
amount of mismatches and the total amount of gaps, respectively.
2.2. Simple alignment algorithm and graphical representation of

scores of DNA sequences based on scoring matrix

There are two primary DNA sequences: G1 (g1g2 � � � gM) and G2

(g1g2 � � � gN), where M and N denote the length of G1 and G2,
respectively. Fig. 1 shows the building steps of all possible simple
alignments without spaces within G1 and G2. The gap formed by
spaces lies in the hanging ends of the overlap. Step 1 of Fig. 1 gives
the initial alignment that the last base of G1 overlaps the first base
of G2. Then every time G1 moves one base position along the
direction of G2. Step MþN�1 of Fig. 1 gives the last alignment that
the first base of G1 overlaps the last base of G2. Every alignment
has a score according to the scoring equation R0 � R�S0�

S�T0 � ðaþbkÞ. Then we can obtain a serial of dots ðx; yÞ, where x

denotes index of steps and y denotes the score value
corresponding to x. When one connects adjacent dots with lines,
then one obtains a zigzag like curve of definite geometrical shape.
In Fig. 2 we illustrate the graphical score representation of simple
alignments of sequences G1 and G2 (G1, GGCCTCTGCCTAATC-
ACACAGATCTAACAGGATTATTTC; G2, GGCCTCT GCCTTATTACAC-
AAATCTTAACAGGACTATTTC). The scoring equation is R0 � R�S0�

S�T0 � ðaþbkÞ, where identity score R is 9, substitution score S is
1, gap opening penalty a is 15, and gap extension penalty b is 1.

The values about the parameters in the above scoring equation
are chosen according to a choice of ‘EMBOSS Pairwise Alignment
Algorithms-needle’ (http://www.ebi.ac.uk/Tools/emboss/align/
index.html). It is well known that changing the values of the
parameters may change the number and length of gaps in an
alignment. However, there is no analytical formula that deter-
mines the ‘best’ gap values to use, so that one may wish to
experiment with values in order to explore more of the alignment
‘space’ (Tatiana and Thomas, 1999). As for needle, one can
experiment with different combinations of parameters. Here, we
choose some typical values of parameters, such as R=9, S=1, a=15
and b=1. Of course, one can choose different values by his
Ngggg 321

Step 1−+ NM  ( 1G moves 1−+ NM  bases position along the right direction) 
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Fig. 1. The building steps of all possible alignments without spaces within G1 and G2.
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Fig. 2. The figure illustrates the graphical score representation of simple alignments of sequences G1 and G2. The scoring equation is
P

R�
P

S�
P
ðaþbkÞ, where identity

score R is 9, substitution score S is 1, gap opening penalty a is 15, and gap extension penalty b is 1.
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experiment. In this paper, we choose these values anywhere in
order to maintain consistency in the context.

Fig. 2 clearly shows the graphical ‘signatures’ of simple
alignments of sequences G1 and G2. Obviously, graphical ‘signa-
tures’ enable much easier visual inspection of simple alignments of
DNA sequences than their representation by strings over the DNA
alphabet {A, T, G, C}. A close look at Fig. 2, one can easily find out
that the score of the simple alignment reaches its peak score when
the index is 39. In this paper, we call the simple alignment with
peak score as a good simple alignment of sequences G1 and G2.

The 2D scoring curve can intuitively show the global change of
simple alignment scores based on scoring matrix. One can easily
obtain the peak point by observing the curve. Of course, it is not
necessary to draw the graphical scoring curve when one dose not
want to observe the global change of simple alignment scores or
need deal with thousands of pairs of DNA sequences. He can also
determine the peak point by doing data comparison.
ggggg
NM321

Fig. 3. Improved simple alignment process with less consuming time (The length

of G1 is M. The length of G2 is N. And let MrN).

2.3. Improved simple alignment algorithm with less consuming time

The above simple alignment algorithm shown in Fig. 1 is a
time-consuming algorithm. Its time complexity is OðN2Þ if the two
aligned sequences have equal length N. Here, we provide an
improved alignment process to obtain a lower time complexity.
A close look at Fig. 1 shows that the beginning steps and the
ending steps of the sliding process are not necessary. These
unnecessary steps consume some time. Now, we need to find out
the unnecessary steps to save time.

Fig. 3 shows the improved process. Step (1) of Fig. 3 gives the
initial alignment that the first base of G1 overlaps the first base of G2.
Then the sliding process is done along the left and the right,
respectively. Firstly, we consider the sliding process is done along the
right, as shown in step (2). Every alignment has a score S according to
the scoring equation R0 � R�S0 � S�T0 � ðaþbkÞ. Let score Si be the
score of the ith step. Let Smax be the top score within all the scores
(i.e., Smax ¼maxfS1; S2; . . . ; Si�1g, i41). As for every step, we still
define another score S0i. The score S0i is obtained by another scoring
equation R0 � RþS0 � R�T0 � ðaþbkÞ. In the new scoring equation we
assume all overlapped bases are matched each other. The sliding
process is stopped when SmaxZS0i. Obviously, the remaining steps
along the right are unnecessary because all scores of the remaining
steps have no chance to obtain a higher score than Smax.
Then we consider the sliding process is done along the left. The
top score within all the scores S0max is maxfSmax; S1; S2; . . . ; Sj�1g

(j41). The score S0j is obtained by the scoring equation
R0 � RþS0 � S�T0 � ðaþbkÞ. The sliding process is stopped when
S0maxZS0j. The remaining steps along the left are unnecessary.

By the above sliding process the improved simple alignment
algorithm can save some time. Now we discuss the time
complexity. Let N and M be the length of sequences G1 and G2,
respectively. Let k be the total amount of the sliding steps when
the sliding process is stopped. Then we can draw a conclusion that
the time complexity is Oðk �MÞ if MrN. Obviously, the more two
sequences are similar, the smaller the parameter k is. Especially,
the time complexity is OðNÞ if G1 ¼ G2.
3. Methods

3.1. Extension algorithm for the largest common substring

By the simple alignment algorithm a good simple alignment R

of G1 and G2 is determined when the score of the simple
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alignment reaches its peak. Let C be the largest common
substrings of R, where C ¼f [ fC1;C2; . . . ;Cmg. If C ¼f, there is
no largest common substring. When C ¼ fC1;C2; . . . ;Cmg, there are
m largest common substrings, where jC1j ¼ jC2j ¼ � � � ¼ jCmj ¼ k

and k denotes the number of matches within a largest common
substring. Here, we can see that the largest common substring Ci

(i¼ 1;2; . . . ;m) of R devotes its maximal score to the initial
alignment reaching peak score. The alignment shows the
approximate overall alignment feature of G1 and G2. However,
some Ci of the largest common substrings of R may be a part of a
larger common substring than Ci because of the limit of the initial
alignment reaching peak score. In order to protect a larger
common substring than Ci from being split by Ci and find out the
substring, an extension algorithm for the largest common
substring is suggested as the following.
(1)
 Let K be the length of the largest common substring of G1 and
G2. Its value is generated when the simple alignment
algorithm applies to the sequences G1 and G2.
(2)
 When k¼ K , none of the largest common substrings Ci of R can
be extended into larger common substring. The largest
common substrings of R are, C1;C2; . . .Cm.
(3)
 When koK , there exists at least a larger common substring
than Ci. There are several sub-steps to find out the larger
common substrings as the following:
(a) Let LL be the number of mismatches from the right end of

Ci�1 to the left end of Ci. When i¼ 1, LL denotes the
number of mismatches from the left end of G1 and G2 to
the left end of C1. Similarly, let LR be the number of
mismatches from the right end of Ci to the left end of Ciþ1.
When i¼ 1, LR denotes the number of mismatches from
the right end of C1 to the right end of G1 and G2.

(b) When KoLL, the K mismatches are extracted from the left
of Ci. Otherwise, the LL mismatches are extracted from the
left of Ci. Similarly, when KoLR, the K mismatches are
extracted from the right of Ci. Otherwise, the LR mis-
matches are extracted from the right of Ci. Then the
sequences extracted from the left of Ci, Ci and from the
right of Ci are connected into two new sub-sequences S1

i

and S2
i .

(c) Now, we apply the simple alignment algorithm to S1
i and

S2
i . If there exist a new larger common substring within S1

i

and S2
i than Ci, we will face a choice: the new larger

common substring or Ci. If there is an increment of sore
when the new larger common substring comes into being,
we will replace the original Ci with the new substring also
called as Ci.
(4)
 As for every Ci of R, the original Ci is replaced by the new
largest common substring if the new substring exists.
Now, we give a practical example to illustrate the above steps
for a better understanding. There are two random sequences: G1

(GCCTAGTTCCCCCA) and G2 (GCCTCGCATCCCCCA). By the simple
alignment algorithm a good simple alignment R of G1 and G2 is
determined, where the alignment R is

GCCTAGTTCCCCCA

GCCTCGCATCCCCCA:

The largest common substring C of R is ‘‘GCCT’’ (C1) and ‘‘CCCC’’
(C2). However, the largest common substring of G1 and G2 is
‘‘TCCCCCA’’. Its length K is 7. Obviously, there exists at least a
larger common substring than ‘‘GCCT’’ or ‘‘CCCC’’. As for ‘‘GCCT’’,
the two new sub-sequences are ‘‘GCCTAGTTC’’ (S1

1) and
‘‘GCCTCGCAT’’ (S2

1), respectively. Because there is no increment
of sore, the original common substring ‘‘GCCT’’ (C1) is unchanged.
As for ‘‘CCCC’’, the two new sub-sequences are ‘‘AGTTCCCCCA’’
(S1

2) and ‘‘CGCATCCCCCA’’ (S2
2), respectively. Because there is an

increment of sore, the original common substring ‘‘CCCC’’ (C2) is
replaced with the new largest common substring ‘‘TCCCCCA’’.

In sum, the extension algorithm for largest common substring
protects a larger common substring than Ci from being split by Ci.

Now, we let U denote the substrings spaced by C, where
U ¼f [ fU1;U2; . . . ;Ung. Then the strings G1 and G2 are aligned
into two types of substrings: (i) The largest common substrings C

with continuous matches: G1½i� ¼ G2½i� (of course, a single match is
also permitted) and (ii) The substrings U with continuous
mismatches: G1½i�aG2½i� and both without spaces. Obviously, a
good simple alignment R of G1 and G2 is alternately organized by C

and U (e.g. R¼ C1
1 U1

2C1
3 U1

4 , where jC1
1 j ¼ jC

1
3 j . Here, the superscript

of C or U denotes the level of sub-alignment. The superscript ‘‘1’’
denotes the first level. And the subscript denotes the index of
substrings in the current sub-alignment. The alignment R is the
result of the first level sub-alignment).

In order to expressly explain the above parameters, we give
a practical example. There are two random sequences:
G1 (GCCTAGTTCCCCCA) and G2 (GCCTCGCATCCCCCA). The G1½i�

and G2½i� denote the base of G1 and G2, respectively. They become
a match when G1½i� ¼ G2½i�. By the simple alignment algorithm a
good simple alignment R of G1 and G2 is determined, where the
alignment R is

GCCTAGTTCCCCCA

GCCTCGCATCCCCCA:

And by the extension algorithm the largest common substring C of
R is ‘‘GCCT’’ and ‘‘TCCCCCA’’. Then G1 and G2 are organized by C

into three substrings: C1
1 is ‘‘GCCT’’, U1

2 is ‘‘AGT’’ and ‘‘CGCA’’, C1
3 is

‘‘TCCCCCA’’.

3.2. Graphical simple alignment tree (GSA tree)

Given sequences G1 and G2, a graphical simple alignment (GSA)
tree is built up by the aforesaid simple alignment algorithm and
extension algorithm for largest common substring. In the
following, we will show how to use the algorithms to construct
a GSA tree of G1 and G2.

Let R be a good simple alignment of G1 and G2. Let C1
i and U1

j be

the largest common substring of R and be the substring spaced by

C1
i , respectively. We can see that the largest common substring C1

i

of R devotes its maximal score to the global alignment. However,

the U1
j of R may provide a increment of the score to the global

alignment if given appropriate gaps within U1
j , though the scores

of these U1
j are low in the first level sub-alignment.

In order to explore the appropriate gaps in U1
j , we give the

following several operation steps.
(1)
 Compute the scores of all simple alignments of U1
j by the

simple alignment algorithm. A good simple alignment R1
j of

U1
j is generated when its score reaches its peak.
(2)
 If there is a increment of the score due to appropriate gaps

within U1
j , U1

j can be further divided into the second level sub-

alignment. When and how to add the gaps in the sequences?

Now, let C2
i be the largest common substrings of R1

j , where

C2
i ¼f [ fC2

iþ1;C
2
iþ2; . . . ;C

2
iþmg. Then there are two sub-steps

as the following:
(a) If C2

i ¼ fC
2
iþ1;C

2
iþ2; . . . ;C

2
iþmg, there are m largest common

substrings. Then U1
j can be further divided into the second

level sub-alignment by C2
i . Let U2

j be the substrings spaced
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Fig. 4. An example of graphical simple alignment tree (Strings G1 and G2 includes

6 substrings in the first level sub-alignment: U1
1 C1

2 U1
3 C1

4 U1
5 C1

6 . The substring U1
1

includes 3 substrings in the second level sub-alignment: C2
1 U2

2 C2
3 . The substring U1

3

includes 2 substrings in the second level sub-alignment: U2
4 C2

5 . The substring

U1
5 includes 3 substrings in the second level sub-alignment: U2

6 C2
7 U2

8 . The substring

U2
2 includes 2 substrings in the third level sub-alignment: U3

1 C3
2 . The substring U2

8

includes 2 substrings in the third level sub-alignment: C3
3 U3

4 ).
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by C2
i , where U2

j ¼f [ fU2
jþ1;U

2
jþ2; . . . ;U

2
jþng. Then every

substring C2
iþk (k¼ 1;2; . . . ;m) of C2

i becomes a leaf node

in GSA tree. There are no gaps within them. As for every

substring U2
jþk (k¼ 1;2; . . . ;n) of U2

j , the operation flow

goes back to the step (1). And the level of sub-alignment
enters the next.

(b) If C2
i ¼f, there is no the largest common substrings in R1

j .
Then U1

j can not be further broken down. The good simple
alignment R1

j of U1
j becomes a leaf node in GSA tree. The

two sequences of R1
j might be entirely overlapping, or

partially overlapping, or one sequence might be aligned
entirely internally to the other. When the two sequences
of R1

j are entirely overlapping, there are no gaps within R1
j .

Otherwise, the hanging ends of the overlap come into
being the gaps of R1

j . The relative position of these gaps is
fixed, and becomes the gaps within the final global
alignment.
We repeatedly do the above steps until all U in the last level
sub-alignment cannot be further decomposed by the simple
alignment algorithm and the extension algorithm. Then we can
obtain a graphical simple alignment tree for strings G1 and G2,
consisting of a series of substrings. The Fig. 4 illustrates an
example of GSA tree.

3.3. The global alignment problem based on GSA tree

We can obtain a global alignment of strings G1 and G2 when
their GSA tree is generated. In the following, we will show how to
use GSA tree to generate a global alignment. Observing the GSA
tree (e.g. Fig. 4), we can see that there are two types of nodes:
inner nodes and leaf nodes. The inner nodes consist of substrings
U that can be aligned to more substrings. The leaf nodes include
substrings C and U, where U cannot be further aligned by the GSA
tree method. The global alignment of strings G1 and G2 should be
composed of all leaf nodes. In order to obtain the global
alignment, the GSA tree is traversed by post-order traversal of
tree. Then all inner nodes are deleted from the result of post-order
traversal. We will achieve the global alignment of strings G1 and
G2. For example, the result of post-order traversal of Fig. 4 is

C2
1 U3

1C3
2 U2

2C2
3 U1

1C1
2 U2

4C2
5 U1

3C1
4 U2

6C2
7 C3

3 U3
4U2

8U1
5C1

6 :

The global alignment is C2
1 U3

1C3
2 C2

3 C1
2 U2

4C2
5 C1

4 U2
6C2

7 C3
3 U3

4C1
6 by re-

moving all of inner nodes.
4. Application and discussion

4.1. The application of GSA tree

In this section, we give three examples to see the validity of
GSA tree for the global alignment of 2 DNA sequences. As for
every example, we compare the results by GSA tree with the
results by the important heuristic approach ‘‘EMBOSS Pairwise
Alignment Algorithms—needle’’ (http://www.ebi.ac.uk/Tools/
emboss/align/index.html).

We firstly apply the proposed method to the discussed 2
sequences: G1 (GGCCTCTGCCTAATCACACAGATCTAACAGGAT-
TATTTC) and G2 (GGCC TCTGCCTTATTACACAAATCTTAACAGGAC-
TATTTC). The scoring equation is R0 � R�S0 � S�T0 � ðaþbkÞ, where
identity score R is 9, substitution score S is 1, gap opening penalty
a is 15, and gap extension penalty b is 1. Of course, one may also
choose other values as the parameters of the scoring equation
according to practical requirement. Here, we choose the same
values in order to keep the context consistency. In Fig. 2, we have
described the graphical score representation of simple alignments
of sequences G1 and G2. One can easily find out that the score of
the simple alignment reaches its peak when index of step in Fig. 1
is 39. Then we can obtain the first level sub-alignment results
according to the simple alignment algorithm and the extension
algorithm. By similar rules, we can get all possible sub-alignment
results. Fig. 5 shows the GSA tree to be used to align the sequences
G1 and G2. Table 2 lists all substrings of Fig. 5 and the max score of
each pair of substrings. Then we obtain the global alignment of
the sequences: C1

1 U4
1C4

2 U4
3C3

2 U4
4C4

5 U4
6C2

2 U3
4C3

5 . According to the
results of Table 2, we illustrate the global alignment results as
the following:

The notation ‘‘-’’ denotes the gap within sequence. Then we apply
‘‘needle’’ program to G1 and G2. The values about gap opening
penalty a and gap extension penalty b are the same as the values
proposed the GSA tree algorithm. The default values about
identity score R and substitution score S are chosen because of
no other choice. The alignment results are shown as the
following:
Obviously, we get consistent results by two different methods.
Moreover, similar results can be found out in Table 1 of Randić
et al. (2006).

The aforesaid example about the validity examination gives
rise to a question: Is it possible to use the GSA tree in order to
facilitate solving less similar or longer DNA sequence alignment
problem? The answer is positive. Now, we randomly give two less
similar sequences: G1 and G2 (G1, GCCCTCGCGGGCAACATTTAATT-
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CACAGCCAGTTCTCTCAACAGTGATTATC; G2, CTGGGTCTTCAGGT-
CCTTTATGCTTAACACAAATCTATCGTTA ACAGGACTATTCT). Like
the above example, the scoring equation is R0 � R�S0�

S�T0 � ðaþbkÞ, where identity score R is 9, substitution score S

is 1, gap existence penalty a is 15, and gap extension penalty b is
1. By GSA tree algorithm, we can get the GSA tree and all possible
sub-alignment results. Fig. 6 shows the GSA tree to be used to
align the sequences G1 and G2. Table 3 lists all substrings in Fig. 6
and the max score of each pair of substrings. Then we obtain the
global alignment of the sequences:

U4
1C4

2 U4
3C4

4 U4
5C3

2 U3
3C2

2 U4
6C4

7 U4
8C3

5 U3
6C2

4 U2
5C1

2 U3
7C3

8 U3
9C3

10U3
11C2

7 U4
9

C4
10U4

11C3
13U3

14C2
9 U2

10C1
4U1

5 :

According to Table 3, we illustrate the global alignment results as
the following:
According to the results, we can obtain some conclusions of the
global alignment between the sequences G1 and G2: Length: 61;
Identities: 31/61 (50.8%); Gaps: 14/61 (22.9%); Score: 169. Then
we apply ‘‘needle’’ program to G1 and G2. The alignment results
are shown as the following:
Then we can obtain some conclusions of the global alignment
between the sequences G1 and G2: Length: 64; Identities: 32/64
(50%); Gaps: 20/64 (31.2%); Score: 29.

Obviously, in this example we get different results by two
different methods. A close look at the alignments reveals that
there are two different areas (the bold areas illustrate the almost
identical ones): the bases from 1 to 20 by GSA tree vs. the bases
from 1 to 21 by needle, and the bases from 34 to 46 by GSA tree
vs. the bases from 35 to 49 by needle. As for the first area, GSA
tree obtains 7 matches by 3 gap openings and 5 gap extensions
Level 1

Strings 1G  and 2G

1
1C

1
2U

2
1U 2

2C 2
3U

Level 2

3
1U 3

2C 3
3U 3

4U 3
5C

Level 3

4
1U 4

2C 4
3U 4

4U 4
5C 4

6U

Level 4

Fig. 5. The graphical simple alignment tree to be used to align the sequences G1

and G2 (G1, GGCCTCTGCCTAATCACACAGATCTAACAGGATTATTTC; G2, GGCCTCTGC-

CTTATTACACAAATCTTAACAGGACTATTTC).
while needle gets 6 matches by 2 gap openings and 8 gap
extensions. In the second area GSA tree gets 5 matches by 1 gap
openings and 0 gap extensions while needle obtains 7 matches by
2 gap openings and 3 gap extensions. From the global view, GSA
tree receives 31 matches by 7 gap openings and 7 gap extensions
while needle gets 32 matches by 7 gap openings and 13 gap
extensions. However, it is difficult for us to determine which one
is the better when it comes to the best global alignment of the
sequences considered. In fact, a close look at the alignments
discovers that both of the methods can find out those very similar
local areas, such as the bold areas of the alignments.

Finally, we give the third example with two long and very
similar sequences to see the validity of GSA tree for the global
alignment of 2 DNA sequences. Here, we apply the proposed
method to the complete coding sequence part of beta globin gene
of Human (ACCESSION U01317) and Opossum (ACCESSION
J03643) as shown in Table 4. The scoring equation is
R0 � R�S0 � S�T0 � ðaþbkÞ, where identity score R is 9,
substitution score S is 1, gap existence penalty a is 15, and gap
extension penalty b is 1. For simplification, we do not show the
detail of GSA tree and the results of all substrings. In Fig. 7, we
illustrate the final result. The notation ‘‘-’’ denotes the gap within
sequence. According to the figure, we can obtain some
conclusions of the global alignment between string G1 (the
complete coding sequence of ACCESSION U01317) and string G2

(the complete coding sequence of ACCESSION J03643): Length:
448; Identities: 328/448 (73.2%); Gaps: 8/448 (1.8%); Score: 2772.
Then we apply the web tool for ‘‘needle’’ program to G1 and G2.
The conclusions about the global alignment is the following:
Length: 448; Identities: 328/448 (73.2%); Gaps: 8/448 (1.8%);
Score: 1128.0. From the global view, the two methods almost get
the same statistics results except for their scores. There is only
one different area: the bases from 33 to 34 by GSA tree vs. the
bases from 33 to 34 by needle. In fact, the two different areas are
equivalent to each other. This example shows that it is possible to
use the GSA tree in order to facilitate solving long and very similar
DNA sequence alignment problem.

4.2. Discussion

The GSA tree algorithm is a gradual algorithm that step by step
explores suitable gaps to improve the score of the alignment
between 2 DNA sequences. The scheme firstly uses the simple
alignment algorithm and the extension algorithm to construct a
GSA tree. The substrings denoted by leaf node of GSA tree are
looked on as a part of the final global alignment. Obviously, GSA
tree method is a heuristic algorithm. There is no analytical
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Strings 1G  and 2G

Level 1

Level 2

Level 3

Level 4

2
1U 2

2C
2
3U 2

4C
2
5U 2

6U 2
7C

2
8U 2

9C
2
10U

1
2C

1
5U1

1U
1
3U 1

4C

3
1U 3

2C
3
3U 3

4U 3
5C

3
6U 3

7U 3
8C

3
9U 3

10C 3
11U 3

12U 3
13C 3

14U

4
1U 4

2C
4
3U

4
5U4

4C 4
6U

4
8U4

7C
4
9U

4
11U4

10C

Fig. 6. The graphical simple alignment tree to be used to align the sequences G1 and G2 (G1, GCCCTCGCGGGCAACATTTAATTCACAGCCAGTTCTCTCAACAG TGATTATC; G2,

CTGGGTCTTCAGGTCCTTTATGCTTAACACAAATCTATC GTTAACAGGACTATTCT).

Table 2
All substrings in Fig. 5 and the max score of each substring.

Substrings The max score

Level 1 G1, G2 C1
1 ðG1Þ ¼ C1

1 ðG2Þ: GGCCTCTGCCT 99

U1
2 ðG1Þ: AATCACACAGATCTAACAGGATTATTTC 127

U1
2 ðG2Þ: TATTACACAAATCTTAACAGGACTATTTC

Level 2 U1
2 ðG1Þ U2

1 ðG1Þ: AATCACACAGATC 72

U1
2 ðG2Þ U2

1 ðG2Þ: TATTACACAAATCT

C2
2 ðG1Þ ¼ C2

2 ðG2Þ: TAACAGGA 72

U2
3 ðG1Þ: TTATTTC U2

3 ðG2Þ: CTATTTC 53

Level 3 U2
1 ðG1Þ U3

1 ðG1Þ: AATC U3
1 ðG2Þ: TATT 16

U2
1 ðG2Þ C3

2 ðG1Þ ¼ C3
2 ðG2Þ: ACACA 45

U3
3 ðG1Þ: GATC U3

3 ðG2Þ: AATCT 11

U2
3 ðG1ÞU

2
3 ðG2Þ U3

4 ðG1Þ: T U3
4 ðG2Þ: C �1

C3
5 ðG1Þ ¼ C3

5 ðG2Þ: TATTTC 54

Level4 U3
1 ðG1ÞU

3
1 ðG2Þ U4

1 ðG1Þ: A U4
1 ðG2Þ: T �1

C4
2 ðG1Þ ¼ C4

2 ðG2Þ: AT 18

U4
3 ðG1Þ: C U4

3 ðG2Þ: T �1

U3
3 ðG1ÞU

3
3 ðG2Þ U4

4 ðG1Þ: G U4
4 ðG2Þ: A �1

C4
5 ðG1Þ ¼ C4

5 ðG2Þ: ATC 27

U4
6 ðG1Þ: – U4

6 ðG2Þ: T �15
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formula to determine the ‘best’ gap values. Though GSA tree
algorithm is a heuristic method, and could not always get the
optimal alignment, the validity and practicality of the results can
be ensured.

Firstly, we discuss the influence about the initial simple
alignment of GSA tree algorithm. In Section 3.2, we describe in
detail the construction steps of GSA tree by the initial simple
alignment. As for the overall result, the initial simple alignment is
very important. It determines the extent to which the consoli-
dated results close to optimal results. Next, we discuss the initial
simple alignment and its optimized features.

By the simple alignment algorithm a good simple alignment R

of sequences G1 and G2 is determined when the score of the
simple alignment reaches its peak. Then the largest common
substrings C of R is determined, where C ¼f [ fC1;C2; . . . ;Cmg.
When C ¼ fC1;C2; . . . ;Cmg, there are m the largest common sub-
strings. Because of the limit of the initial alignment reaching peak
score, some Ci of the largest common substrings of R may be a part
of a larger common substring than Ci. An extension algorithm for
the largest common substring is suggested to protect a larger
common substring than Ci from being split by Ci if the larger
common substring exists. Then we replace the original Ci with the
new larger common substring also called as Ci. Once the largest
common substrings Ci is determined, it is looked on as a part
of the overall result. Then in an optimal alignment of G1 and G2

(This hypothetical alignment may be obtained by an absolutely
optimized algorithm), the two sequences of Ci by GSA tree might
be entirely overlapping in the optimal alignment, or partially
overlapping, or one sequence might be entirely isolated from the
other. Obviously, for the latter two cases, a great deal of gaps and
mismatches may be introduced. So the substring Ci is most likely
to appear in the optimal alignment.

The above explanation gives some approximate analysis
instead of strict mathematical reasoning, but the conclusion is
reasonable from the biological point of view. As the sequences
under comparison are protein coding, gaps with lengths other
than multiples of three are highly unlikely, whereas the GSA tree
algorithm can avoid many single or two-base gaps by the
approximate approach. Unlike ‘‘EMBOSS Pairwise Alignment
Algorithms—needle (global)’’ or ‘‘—water (local)’’, the proposed
GSA tree algorithm is to find a balance between the global and
local. The algorithm is for aligning two sequences over their entire
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Table 3
All substrings in Fig. 6 and the max score of each substring.

Substrings The max score

Level 1 G1, G2 U1
1 ðG1Þ: GCCCTCGCGGGCAACATTTAATTC 40

U1
1 ðG2Þ: CTGGGTCTTCAGGTCCTTTATGCTTA

C1
2 ðG1Þ ¼ C1

2 ðG2Þ: ACA 27

U1
3 ðG1Þ: GCCAGTTCTCTCAACAGTGAT 49

U1
3 ðG2Þ: CAAATCTATCGTTAACAGGAC

C1
4 ðG1Þ ¼ C1

4 ðG2Þ: TAT 27

U1
5 ðG1Þ: C–; U1

5 ðG2Þ: TCT �17

Level 2 U1
1 ðG1Þ U2

1 ðG1Þ: GCCCTCGCG U2
1 ðG2Þ: CTGGGTCTTCA �1

U1
1 ðG2Þ C2

2 ðG1Þ ¼ C2
2 ðG2Þ: GG 18

U2
3 ðG1Þ: CAACATTTAA U2

3 ðG2Þ: TCCTTTATGC 10

C2
4 ðG1Þ ¼ C2

4 ðG2Þ: TT 18

U2
5 ðG1Þ: C U2

5 ðG2Þ: A �1

U1
3 ðG1Þ U2

6 ðG1Þ: GCCAGTTC U2
6 ðG2Þ:CAAATCTA 12

U1
3 ðG2Þ C2

7 ðG1Þ ¼ C2
7 ðG2Þ: TC 18

U2
8 ðG1Þ: TCAACAGT U2

8 ðG2Þ: GTTAACAG 23

C2
9 ðG1Þ ¼ C2

9 ðG2Þ: GA 18

U2
10ðG1Þ: T U2

10ðG2Þ: C �1

Level 3 U2
1 ðG1Þ U3

1 ðG1Þ: GCCC U3
1 ðG2Þ: CTGGGTCT �2

U2
1 ðG2Þ C3

2 ðG1Þ ¼ C3
2 ðG2Þ: TC 18

U3
3 ðG1Þ: GCG U3

3 ðG2Þ: A– �17

U2
3 ðG1Þ U3

4 ðG1Þ: CAACA U3
4 ðG2Þ: TCC �9

U2
3 ðG2Þ C3

5 ðG1Þ ¼ C3
5 ðG2Þ: TTTA 36

U3
6 ðG1Þ: A– U3

6 ðG2Þ:TGC �17

U2
6 ðG1Þ U3

7 ðG1Þ:GCC U3
7 ðG1Þ: CAA �3

U2
6 ðG2Þ C3

8 ðG1Þ ¼ C3
8 ðG2Þ:A 9

U3
9 ðG1Þ:GT U3

9 ðG1Þ:TC �2

C3
10ðG1Þ ¼ C3

10ðG2Þ: T 9

U3
11ðG1Þ: C U3

11ðG2Þ: A �1

U2
8 ðG1Þ U3

12ðG1Þ: TC U3
12ðG2Þ: GTT �7

U2
8 ðG2Þ C3

13ðG1Þ ¼ C3
13ðG2Þ: AACAG 45

U3
14ðG1Þ: T U3

14ðG2Þ: – �15

Level 4 U3
1 ðG1Þ U4

1 ðG1Þ: – U4
1 ðG2Þ: CTGG �18

U3
1 ðG2Þ C4

2 ðG1Þ ¼ C4
2 ðG2Þ: G 9

U4
3 ðG1Þ: C U4

3 ðG2Þ: T �1

C4
4 ðG1Þ ¼ C4

4 ðG2Þ: C 9

U4
5 ðG1Þ: C U4

5 ðG2Þ: T �1

U3
4 ðG1Þ U4

6 ðG1Þ: CAA U4
6 ðG2Þ: T– �17

U3
4 ðG2Þ C4

7 ðG1Þ ¼ C4
7 ðG2Þ: C 9

U4
8 ðG1Þ: A U4

8 ðG2Þ: C �1

U3
12ðG1ÞU

3
12ðG2Þ U4

9 ðG1Þ: – U4
9 ðG2Þ: G �15

C4
10ðG1Þ ¼ C4

10ðG2Þ: T 9

U4
11ðG1Þ: C U4

11ðG2Þ: T �1

Table 4
The complete coding sequence part of beta globin gene of Human (ACCESSION U01317) and Opossum (ACCESSION J03643).

Species Complete coding sequence

Human ACCESSION U01317; ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGG

CTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATGCTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTG

CTCGGTGCCTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGATCCTGAGAACTTCAGG

CTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCACCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGG

CCCACAAGTATCACTAA

Opossum ACCESSION J03643; ATGGTGCACTTGACTTCTGAGGAGAAGAACTGCATCACTACCATCTGGTCTAAGGTGCAGGTTGACCAGACTGGTGGTGAGGCCCTTGGCAGGATG

CTCGTTGTCTACCCCTGGACCACCAGGTTTTTTGGGAGCTTTGGTGATCTGTCCTCTCCTGGCGCTGTCATGTCAAATTCTAAGGTTCAAGCCCATGGTGCTAAGGTGTTGAC

CTCCTTCGGTGAAGCAGTCAAGCATTTGGACAACCTGAAGGGTACTTATGCCAAGTTGAGTGAGCTCCACTGTGACAAGCTGCATGTGGACCCTGAGAACTTCAAGATGCT

GGGGAATATCATTGTGATCTGCCTGGCTGAGCACTTTGGCAAGGATTTTACTCCTGAATGTCAGGTTGCTTGGCAGAAGCTCGTGGCTGGAGTTGCCCATGCCCTGGCCCA

CAAGTACCACTAA
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length. The match areas with local superiority are produced in the
global context. In bioinformatics, it may be reasonable to assume
that in the global context the local areas with closely related
sequences should be reflected because of the stability of these
areas. As for two possibly related sequences, giving priority to
these local areas may be a better choice. The accurate optimization
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GGCTGG T G T G G C T A A T G C C C T G G C C C A C A A G T A T C A C T A A  

GGCTGG A G T T G C C C A T G C C C T G G C C C A C A A G T A C C A C T A A

A T G G T G C A C C T G A C T C C T G A G G A G A A G - T C T GCCG T T A C T GCCCTGT G G G G  

A T G G T G C A C T T G A C T T C T G A G G A G A A G A A CT GC - A T C A C T A C C A T C T G G T C  

G1     1 

G2     1 

51 

51 

T C C T G A T G C T G T T A T GGGCAACC C T A A G G T G A A G G C T C A T G G C A A G A A A G T  

T C C T G G CGCTGT C A T G T C A A A T T C T A A G G T T C A A G C CCA T G G T G C T A A GGT 

G1    154 

G2    154 

204 

204 

GCTCGGT G C C T T T A G T G A T G G C C T G G C T C A C C T G G A C A A C C T C A A G G G C A C  

GTTGA C C T C C T T C G G T G A A G C A G T C A A G C A T T T G G A C A A C C T G A A G G G T A C  

G1    205 

G2    205 

255 

255 

G A A C T T C A G G C T C C T G GGCAA - - - C G T G C T G G T C T G T G T GCT G G C CCA T C A  

G A A C T T C A A G A T G C T G G G GAAT A T C A T T G T G A T C T G C - - - CT G G C TGAG C A

357 

357 

G1    307 

G2    307 

CT T T G GCAAA G A A T T C A C C C C A C C A G T G C A G G CTGC C T A T C A G A AA G T G G T  

C T T T G GCAAG G A T T T T A C T C C T G A A T G T C A G G TTGC T T G G C A G A A G C T C G T

G1    358 

G2    358 

408 

408 

G1    409 

G2    409 

448 

448 

C A A G G T G A A CGTGGATG A A G T T G G TGGTGAGGCCCTGGGCAGG C T G C T G GT 

T A A G G T G C A GGTT G A C C A G A C T G G TGGTGAGGCCCTT G G C A G G A T G C T C GT 

G1     52 

G2     52 

102 

102 

GG T C T A C C C T T G G A C C CAGAGGTT C T T T G A G T C C T T T GGGGA T C T G T C C A C  

TG T C T A C C C C T G G A C C A C C AGGT T T T T T GGGAGC T T T GGT G A T C T G T C C T C  

G1    103 

G2    103 

153 

153 

CTT T G C C A C A C T G A G T G A G C T G C A C T G T G A C A A G C T G C A C GTGGA T C C T G A  

TT A T GCCAAG T T G A G T G A G C T C C A C T G T G A C A A G C T G C A T GTGGA C C C T G A

G1    256 

G2    256 

306 

306 

Fig. 7. The global alignment between string a and string b. Identities: 328/448 (73.2%); Gaps: 8/448 (1.8%); Score: 2772.
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result could not show these local features because of the global
optimization. The proposed GSA tree algorithm is for aligning two
sequences over their entire length. This works best with closely
related sequences. If one uses GSA tree to align very distantly
related sequences, it will produce a result but much of the
alignment may have little or no biological significance. The three
examples of 4.1 give practical proofs for the validity and
practicality of the GSA tree algorithm. The Example 1 gives two
very similar but very short sequences. The GSA tree achieves the
same results as needle. The Example 3 gives two similar and long
sequences. There is only one different area:
This example shows that giving priority to these local areas
may be a better choice. The Example 2 gives two random
sequences. There are two different areas in their results. A close
look at the alignments discovers that both of the methods can find
out those very similar local areas. The main differences between
them lie in the very distantly related areas.

Finally, the following analysis shows why we consider the
substring Ci in the only initial alignment reaching peak score.
Because of the limit of the initial alignment reaching peak score,
some Ci of the largest common substrings of R may be a part of a
larger common substring than Ci. Then an extension algorithm for
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the largest common substring is suggested to protect a larger
common substring than Ci from being split by Ci if the larger
common substring exists. In the extension algorithm we introduce
three parameters: K, LL and LR, where K be the length of the largest
common substring of G1 and G2. When k¼ K ðk¼ jCijÞ, none of the
largest common substrings Ci of R can be extended into larger
common substring. The largest common substrings of R are
C1;C2; . . . ;Cm, respectively. There is no larger common substring
than Ci split by Ci. Otherwise, when koK , there exists at least a
larger common substring than Ci. The larger common substring
and Ci might be partially overlapping, or one might be entirely
isolated from the other. When they are entirely isolated from each
other, the larger common substring can be completely preserved
and found out in the next sub-alignment. As for being partially
overlapping, we face a choice: the larger common substring or Ci.
In order to give a better choice, we use parameters K, LL and LR to
construct two new sub-sequences S1

i and S2
i . We will replace the

original Ci with the new substring also called as Ci if there is an
increment of sore when the new larger common substring comes
into being. So we can protect a larger common substring than C1

i

from being split by C1
i and eliminate the limitations caused by the

only initial alignment reaching peak score.
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Randić, M., Zupan, J., Drazen, V.T., Plavsic, D., 2006. A novel unexpected use of a
graphical representation of DNA: Graphical alignment of DNA sequences.
Chemical Physics Letters 431, 375–379.

Smith, T.F., Waterman, M.S., 1981. Identification of common molecular subse-
quences. Journal of Molecular Biology 147, 195–197.

Sorimachi, K., Okayasu, T., 2008. Universal rules governing genome evolution
expressed by linear formulas. Open Genomics Journal 1, 33–43.

Tatiana, A.T., Thomas, L.M., 1999. Blast 2 sequences—a new tool for comparing
protein and nucleotide sequences. FEMS Microbiology Letters 174, 247–250.

Waterman, M.S., 1984. General methods of sequence comparison. Bulletin of
Mathematical Biology 46, 473–500.

Wang, M., Yao, J.S., Huang, Z.D., Xu, Z.J., Liu, G.P., Zhao, H.Y., Wang, X.Y., Yang, J.,
Zhu, Y.S., Chou, K.C., 2005. A new nucleotide-composition based fingerprint of
SARS-CoV with visualization analysis. Medicinal Chemistry 1, 39–47.

Xiao, X., Shao, S., Ding, Y., Huang, Z., Chen, X., Chou, K.C., 2005a. Using cellular
automata to generate image representation for biological sequences. Amino
Acids 28, 29–35.

Xiao, X., Shao, S., Ding, Y., Huang, Z., Chen, X., Chou, K.C., 2005a. An appli-
cation of gene comparative image for predicting the effect on replication
ratio by HBV virus gene missense mutation. Journal of Theoretical Biology 235,
555–565.

Xiao, X., Shao, S.H., Ding, Y.S., Huang, Z.D., Chou, K.C., 2006b. Using cellular
automata images and pseudo amino acid composition to predict protein
subcellular location. Amino Acids 30, 49–54.

Xiao, X., Shao, S.H., Chou, K.C., 2006b. A probability cellular automaton model for
hepatitis B viral infections. Biochemical and Biophysical Research Commu-
nication 342, 605–610.

Xiao, X., Wang, P., Chou, K.C., 2008. Predicting protein structural classes with
pseudo amino acid composition: an approach using geometric moments of
cellular automaton image. Journal of Theoretical Biology 254, 691–696.

Xiao, X., Wang, P., Chou, K.C., 2009. GPCR-CA: a cellular automaton image
approach for predicting G-protein-coupled receptor functional classes. Journal
of Computational Chemistry 30, 1414–1423.

Yao, Y.H., Nan, X.Y., Wang, T.M., 2006. A new 2D graphical representation-
classification curve and the analysis of similarity/dissimilarity of DNA
sequences. Journal of Molecular Structure: THEOCHEM 764, 101–108.

Yao, Y.H., Qi, D., Nan, X.Y., He, P.A., Nie, Z.M., Zhou, S.P., Zhang, Y.Z., 2008a. Analysis
of similarity/dissimilarity of DNA sequences based on a class of 2D graphical
representation. Journal of Computational Chemistry 29, 1632–1639.

Yao, Y.H., Qi, D., Li, C., He, P.A., Zhang, Y.Z., 2008b. Analysis of similarity/
dissimilarity of protein sequences. PROTEINS: Structure, Function, and
Bioinformatics 73, 864–871.

Zhang, C.T., Chou, K.C., 1994. Analysis of codon usage in 1562 E. coli protein coding
sequences. Journal of Molecular Biology 238, 1–8.

Zhou, G.P., Deng, M.H., 1984. An extension of Chou’s graphical rules for deriving
enzyme kinetic equations to system involving parallel reaction pathways.
Biochemical Journal 222, 169–176.

http://blast.ncbi.nlm.nih.gov/bl2seq/wblast2.cgi
http://www.ebi.ac.uk/Tools/emboss/align/index.html

	New method for global alignment of 2 DNA sequences by the tree data structure
	Introduction
	Simple alignment algorithm and graphical representation of scores of DNA sequences based on scoring matrix
	The scoring equation based on scoring matrix
	Simple alignment algorithm and graphical representation of scores of DNA sequences based on scoring matrix
	Improved simple alignment algorithm with less consuming time

	Methods
	Extension algorithm for the largest common substring
	Graphical simple alignment tree (GSA tree)
	The global alignment problem based on GSA tree

	Application and discussion
	The application of GSA tree
	Discussion

	References


