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Abstract

Headwater species and peripheral populations that occupy habitat at the edge

of a species range may hold an increased conservation value to managers due

to their potential to maximize intraspecies diversity and species’ adaptive capa-

bilities in the context of rapid environmental change. The southern Appalachian

Mountains are the southern extent of the geographic range of native Salvelinus

fontinalis and naturalized Oncorhynchus mykiss and Salmo trutta in eastern

North America. We predicted distributions of these peripheral, headwater wild

trout populations at a fine scale to serve as a planning and management tool

for resource managers to maximize resistance and resilience of these popula-

tions in the face of anthropogenic stressors. We developed correlative logistic

regression models to predict occurrence of brook trout, rainbow trout, and

brown trout for every interconfluence stream reach in the study area. A

stream network was generated to capture a more consistent representation of

headwater streams. Each of the final models had four significant metrics in

common: stream order, fragmentation, precipitation, and land cover. Strahler

stream order was found to be the most influential variable in two of the three

final models and the second most influential variable in the other model.

Greater than 70% presence accuracy was achieved for all three models. The

underrepresentation of headwater streams in commonly used hydrography

datasets is an important consideration that warrants close examination when

forecasting headwater species distributions and range estimates. Additionally, it

appears that a relative watershed position metric (e.g., stream order) is an

important surrogate variable (even when elevation is included) for biotic inter-

actions across the landscape in areas where headwater species distributions are

influenced by topographical gradients.

Introduction

Headwater streams are often underrepresented in com-

monly used topographic maps in the United States and

abroad despite their prevalence on the landscape and the

importance of their hydrologic and biological form and

function (Meyer et al. 2007; Storey et al. 2011). The biota

of headwater streams represent many functional biological

groups that are important components of biodiversity in

a river network. According to Meyer et al. (2007), fishes

that use headwaters can be classified into three general

classes: (1) specialists that use headwater streams through-

out the year, (2) generalists that use headwaters as one of

many habitats, and (3) fish that live in large streams but

use small streams for spawning and nursery areas. Head-

water species may be vulnerable to extirpation due to the

variability in conditions of headwater streams, but may

also find refuge in headwater streams from threats in

other parts of the stream network.

Peripheral populations that occupy habitat at the

edge of a species’ geographic range are assumed to

occupy marginal habitat and are often more isolated than

populations closer to the core of a species range (Sagarin

and Gaines 2002; Sagarin et al. 2006; Haak et al. 2010).
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As a result of higher degrees of genetic drift and selective

pressures, genetic characteristics of peripheral populations

are thought to be potentially more distinctive and adap-

tive compared to larger, more stable core populations

(Lesica and Allendorf 1995; Nielsen et al. 2001; Hardie

and Hutchings 2010). Due to their potential to maximize

intraspecies diversity and species’ adaptive capabilities

and their importance for species persistence in the con-

text of climate change, peripheral populations may war-

rant a higher conservation priority to managers (Lesica

and Allendorf 1995; Nielsen 1999; Nielsen et al. 2001;

Haak et al. 2010; Hardie and Hutchings 2010).

The worldwide distribution and abundance of native

salmonid populations have undergone large-scale declines

for the previous century or more (Piccolo 2011). Recent

research has advocated for implementation of a diverse

management portfolio into native trout conservation

strategies that aims to increase representation, resilience,

and redundancy (Haak and Williams 2012). New strate-

gies focused on improving resistance and resilience of

natural systems – such as increasing connectivity, increas-

ing the number and size of habitat reserves, and intensive

management of stressed populations – have been pro-

posed to aid in climate change adaptation strategies for

fishery managers (Haak and Williams 2012).

Distribution modeling using GIS has made it possible

to predict fish distributions across a region using land-

scape-scale variables, and given the logistical and eco-

nomical limitations of field sampling, it is perhaps the

only realistic way to obtain spatially comprehensive fine-

scale distribution information to be applied in resource

management decisions at the regional scale. Although

in-stream habitat variables cannot be included in this

type of modeling, landscape variables can be extracted at

multiple scales to allow for inclusion of local and accu-

mulative upstream conditions. Several recent studies

have demonstrated the efficacy of predicting freshwater

fish distributions from GIS-derived landscape variables

(Steen et al. 2006, 2008; Brewer et al. 2007; Dauwalter

and Rahel 2008; Hopkins and Burr 2009; McKenna and

Johnson 2011; Kristensen et al. 2012; Sindt et al. 2012;

Filipe et al. 2013; Maloney et al. 2013; McKenna et al.

2013).

The southern Appalachian Mountains are the southern

extent of the geographic range of native brook trout Salv-

elinus fontinalis (Fig. 1) and naturalized rainbow trout

and brown trout in eastern North America (Maccrimmon

and Campbell 1969; Flebbe 1994). From the 1930s to the

1970s in the Great Smoky Mountains of North Carolina

and Tennessee, brook trout populations experienced shifts

to upper headwater streams due to success of introduced

rainbow trout (Kelly et al. 1980; Larson and Moore 1985)

and brown trout at lower elevations.

The shift over time of brook trout into headwater

streams due to encroachment by rainbow trout and

brown trout has resulted in isolation of populations,

which limits gene flow and can cause genetic drift and

inbreeding (Stoneking et al. 1981; Fausch et al. 2009).

Genetic research to evaluate suspected phylogenetic dif-

ferences between southern Appalachian and hatchery

reared, northern-derived brook trout has been a prolific

topic in the literature, and there are numerous studies

that indicate distinct genotypic differences do exist

between the two. Long-term survival of brook trout

and reductions in their distribution in the southern

Appalachians has been a concern for fisheries resource

managers since the early twentieth century (King 1937),

and much emphasis has been placed on conservation

and restoration of brook trout in recent research and

management efforts.

Fisheries managers suspect that the quality of salmonid

sport fisheries in the southern Appalachians has declined

over time, resulting in the gradual reduction of self-sus-

taining wild trout populations. Salmonid fisheries are vital

economic, cultural, and recreational resources in the

southern Appalachian Mountains as well as ecological

indicators of stream quality (Habera et al. 2005; NCWRC

2009). As native stocks continue to be extirpated, fish

ecologists are tasked with predicting the distribution and

abundance of the remaining salmonid stocks to provide

decision-support to managers and policymakers responsi-

ble for conservation and restoration of threatened or

depleted populations (Piccolo 2011). Fish occurrence data

for brook trout, rainbow trout, and brown trout exist for

only a small portion of the total number of stream

reaches that likely support these species. A landscape-level

tool to integrate information on stream salmonid distri-

bution would serve a vital need for ecological understand-

ing and fisheries planning and management, given the

threats to these peripheral populations from numerous

forms of environmental degradation.

Our goal was to provide a tool to assist resource man-

agers in prioritization of conservation efforts for wild

trout across the landscape of western North Carolina.

Specifically, the objective of this study was to use readily

Figure 1. Brook trout Salvelinus fontinalis.
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available or easily calculated GIS-derived landscape vari-

ables as predictors of occurrence in correlative logistic

regression models for each species. To overcome the

underrepresentation of headwater streams in more com-

monly used hydrography datasets like the USGS National

Hydrography Dataset, model predictions were applied to

a stream network generated specifically for this project

that captures potential headwater stream trout habitat

(i.e., the potential species range) more consistently across

the study area.

Methods

Study area

We used EPA Level IV ecoregion boundaries to determine

the study area boundary (Fig. 2). We included all of the

westernmost ecoregions in North Carolina that encom-

pass the mountainous terrain. We extended the eastern

study area boundary sixteen kilometers to the east,

because the ecoregion boundaries are somewhat arbitrary

and we wanted to ensure that the entirety of the southern

Appalachian Mountains (excluding the foothills) within

North Carolina was included. The study area encom-

passed approximately 23,411 km2.

Fish survey data

The North Carolina Wildlife Resources Commission (NC

WRC) collected trout occurrence data in the field from

1968 to 2009. We sought to model current trout distribu-

tions, so we identified a temporal range of empirical data

that represented adequate spatial distribution and sample

sizes for each species (i.e., sufficient presence and absence

points). Field surveys conducted from approximately

2001 to 2009 were primarily focused on private lands in

the northeastern portion of the study area, while those

conducted from the mid-1990s through 2000 were heavily

focused on public lands in the southwestern portion of

the study area. We also wanted to use fish data from a

time period relatively close to dates at which changeable

GIS-derived landscape predictors were derived (e.g., land

cover, road density). Based on these criteria, we elected to

apply data collected from 1995 to 2009 (Fig. 2) to model

trout distributions.

Development of the GIS Framework

The GIS framework implemented for this study was devel-

oped using methods proposed by Brenden et al. (2006) for

a standardized GIS methodology for stream ecological

Figure 2. Study area with field data collections points for fish surveys conducted from 1995 to 2009.
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research. The framework was intended for research related

to the functional linkages between rivers and multiscale

landscape variables and has been shown to perform well in

predictive modeling with the presence–absence fish data

collected on a regional scale (Steen et al. 2006).

We generated our own stream network using Arc

Hydro Tools Version 1.3 (ESRI 2009) rather than using

the National Hydrography Dataset (NHD) because of

underrepresentation of headwater streams and inconsis-

tencies in the density of stream networks in the NHD,

including significant documented deficiencies in the study

area (Meyer et al. 2001; Colson 2006). Omission errors

found along USGS topographic map boundaries (Fig. S1),

potentially due to different map publication dates or dif-

ferent cartographers working on adjacent quadrangles,

result in frequent abrupt termination of streams at the

boundary of map sheets. Trout in western North Carolina

inhabit headwater streams, so it was important to have a

stream network that depicted headwater streams consis-

tently across the study area because they represent the

potential species ranges. We used a drainage area thresh-

old of 0.024 km2 (six acres) as prescribed by the North

Carolina Stream Mapping Project for western North Car-

olina. This threshold, which will reportedly capture

approximately 95% of intermittent and perennial stream

breakpoints (NCDENR 2005), was applied to one arc sec-

ond resolution elevation data from the National Elevation

Dataset to generate the stream network.

Landscape variables

Candidate predictor variables (Table S1) were chosen based

on the literature and professional opinions of NC WRC

personnel. The metrics were selected to represent elements

that have been linked to fish assemblage structure, and they

fall into several broad categories including land cover char-

acteristics, watershed position, surficial geology, climate,

terrain, fragmentation, land ownership (i.e., private or pub-

lic), and hydrologic connectivity to impoundments.

Model development

Multiple logistic regression performs well when fitting

models with binary response variables and either categori-

cal or continuous predictor variables (Hosmer and Leme-

show 1989) and is applicable for predictive modeling with

the presence–absence fish data collected at a regional scale

(Rashleigh et al. 2005; Steen et al. 2006; Dauwalter and

Rahel 2008; Sindt et al. 2012).

We partitioned the NC WRC data into calibration and

validation subsets (Table 1) using guidelines provided by

Huberty (1994) that recommend using 70% of the data

for calibration and 30% for validation and Harrell (1997)

that recommended that the sample size for the number of

absences to be included in the prediction model should

be roughly three times the number of presences. To com-

pare model structures (see Appendix S1) and select the

final models, we evaluated the AIC score (Akaike 1974),

Wald chi-square test statistic (Wald 1943), area under the

receiver operating characteristic curve (AUC), and the

Hosmer-Lemeshow goodness-of-fit test statistic (Hosmer

and Lemeshow 1989). When selecting the final models,

we chose the model that had the lowest AIC (Burnham

and Anderson 2002) and highest AUC values that also

had a significant (P < 0.05) Wald chi-square test statistic

and a nonsignificant (P > 0.05) Hosmer-Lemeshow good-

ness-of-fit test statistic.

Model validation

We evaluated model accuracy using both statistics derived

from an error matrix (Fielding and Bell 1997) and AUC

values. We reported three statistics derived from the error

matrix: presence accuracy, absence accuracy, and average

accuracy (the mean of the presence and absence accuracy

values) (Steen et al. 2008). Binary predictions of “present”

or “absent” are necessary to evaluate model accuracy

using statistics derived from the error matrix. Therefore,

continuous model outputs must be converted into binary

predictions by setting a threshold probability value above

which the species is predicted to be present. For each spe-

cies model, we elected to use the threshold value that

maximized the sum of the presence accuracy and the

absence accuracy (Manel et al. 2001; Jimenez-Valverde

and Lobo 2007). Following terminology from Steen et al.

(2006), we termed this measure “performance.” As model

accuracy statistics derived from an error matrix are

threshold dependent, we also present the AUC values

because they are threshold-independent measures of

model accuracy.

Results

Model selection

Nine variables were included in the final brook trout

model (Table 2, Table S2), which was selected using the

Table 1. Number of presences and absences in the calibration and

validation datasets for each trout species.

Species

Calibration data Validation data

Presences Absences Presences Absences

Brook trout 309 927 133 1947

Rainbow trout 520 1560 222 1014

Brown trout 267 801 114 2134
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backward selection method with a significance level of

P < 0.10 for a variable to remain in the model. Four vari-

ables were included in the final rainbow trout model

(Table 2, Table S3), which was selected using the forward,

backward, and forward–backward selection methods with

a significance level of P < 0.01 for a variable to enter into

or to remain in the model (depending on the selection

method). Seven variables were included in the final brown

trout model (Table 2, Table S4), which was selected using

the forward, backward, and forward–backward selection

methods with a significance level of P < 0.05 for a vari-

able to enter into or to remain in the model (depending

on the selection method). Both the manual stepwise and

best subsets methods produced reasonable models, but

our evaluation criteria ranked them below at least one of

the models produced by the automated selection tech-

niques.

Each of the final models had four significant metrics in

common: Strahler stream order, number of road crossings

(a measure of stream network fragmentation), mean

annual precipitation, and percent forest/urban land cover

(forest and urban land cover were moderately correlated).

We used odds ratios to estimate the effect size of variables

selected in the final models (Nielsen et al. 2008) (Tables

S2, S3, and S4), with the understanding that we can only

interpret the effect of a predictor on the response given

the other predictors in the model. Strahler stream order

had the highest odds ratio in the final models for rainbow

trout and brown trout and the second highest odds ratio

in the final brook trout model. Elevation had the highest

odds ratio in the brook trout model and the second high-

est odds ratio in the brown trout model.

Based on our stream network delineation, there are

over 95,000 km of streams within the study area. Our

models indicate that about 30% (28,000 km) of these

streams can support wild trout (Table S5). According to

our predictions, approximately 27% of the wild trout

streams support allopatric brook trout populations and

another 31% support sympatric populations. Approxi-

mately 60% of the wild trout streams were predicted to

support either allopatric or sympatric populations of rain-

bow trout, and 46% were predicted to support brown

trout.

Model validation

All models provided good levels of discrimination with

AUCs ranging from 0.72 to 0.80 (Table 3). Greater than

70% presence accuracy was achieved for all three models.

Average accuracy and performance values ranged from

64.86% and 129.71 for rainbow trout to 72.19% and

144.37 for brook trout, respectively.

Predicted distribution maps

There are over 400,000 interconfluence stream reaches in

the stream network generated for the study area, and

occurrence for each species was predicted for each of

these stream reaches. We produced a series of 1:50,000

scale distribution maps (see Fig. S2 for a sample) for use

Table 2. Habitat variables used in models for each species.

General influence Habitat variable (effect scale) Model(s)

Fragmentation Number of stream crossings (S) BKT

Number of stream crossings (W) RBT, BNT

Mean road density (N) BKT

Land cover Percent urban land (R) BKT

Percent forest (N) RBT, BNT

Terrain Mean elevation (N) BKT, BNT

Mean slope (N) BKT, BNT

Watershed

position

Strahler stream order BKT, RBT, BNT

Shreve stream order BKT

Climate Mean annual precipitation (W) BKT, RBT, BNT

Surficial geology Percent fine-grained soils (W) BKT, BNT

W, entire upstream watershed; N, entire upstream riparian corridor; S,

local watershed; R, local riparian corridor. Model field indicates which

models incorporated the habitat variables. BKT, brook trout; RBT, rain-

bow trout; BNT, brown trout.

Table 3. Model validation results.

Species

Threshold of occurrence

(0–1)

Presence accuracy

(%)

Absence accuracy

(%)

Average accuracy

(%)

Performance

(presence + absence)

AUC value

(0–1)

Brook trout 0.28 70.7 73.7 72.2 144.4 0.802

Rainbow

trout

0.21 75.7 54.0 64.9 129.7 0.716

Brown

trout

0.25 71.9 67.0 69.5 139.0 0.792

Threshold of occurrence values represent probability values above which the species is predicted to be present. The presence and absence accura-

cies were calculated by applying the validation datasets in a error matrix. Average accuracy represents the average of the presence and absence

accuracies. Performance represents the sum of the presence and absence accuracies. AUC values represent the area under the receiver operating

characteristic curve.
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in resource management efforts that depict our stream

network with occurrence predictions (please contact the

corresponding author for access to these maps).

We also generated generalized distribution maps for

each species that show predicted distributions across the

entire study area and a density surface created from the

predicted probabilities for each stream reach. It appears

that the areas with the highest probability of brook trout

occurrence (Fig. 3) are the highlands in the Great Smoky

Mountains National Park and Nantahala National Forest

in the southwestern portion of the study area and pri-

vately owned lands located at higher elevations in the

northwestern portion of the study area. Areas with the

highest probability of rainbow trout occurrence (Fig. 4)

are the public lands in the southwestern portion of the

study area. Probabilities of occurrence for brown trout

(Fig. 5) were generally low across the study area, with the

exception of a portion of the private lands in the north-

western portion of the study area. The spatial distribution

patterns shown on our predicted probability maps appear

to closely agree visually with patterns found by Flebbe

(1994) in a study of the distributions of brook trout,

rainbow trout, and brown trout and their relation to

latitudinal and elevational gradients in Virginia and North

Carolina.

Discussion

We applied a multiple logistic regression approach to a

GIS to predict the distributions of three salmonids whose

ranges include headwater streams. Overall, about 7 of 10

predictions were accurate for the occurrence models,

which suggests that landscape-scale variables alone can be

applied to predict occurrence of salmonids in our study

area when comprehensive local-scale data are unavailable.

Implications for headwater stream ecology

Headwater streams provide many unique functions across

a landscape and are important terrestrial-aquatic and

headwater-downstream linkages (Meyer et al. 2001, 2007;

Lowe and Likens 2005; Wipfli et al. 2007; Clarke et al.

2008; Storey et al. 2011). Strahler stream order was iden-

tified as the most influential variable in two of the three

final models and the second most influential variable in

the other model, which supports our decision to generate

(A)

(B)

Figure 3. Generalized brook trout distribution

maps showing presence/absence predictions

and probabilities of occurrence across the

study area. Probability surface created by

calculating the density of predicted

probabilities for each stream reach.

Probabilities separated into five classes using

Jenks natural breaks method.
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our own stream network that represents headwater

streams and potential species ranges more consistently

across the study area. When mapping species potential

ranges and predicting species distributions in headwater

systems, it is important to capture the potential species

range as accurately as possible so that potential habitat is

not excluded or underrepresented.

Conservation and management implications

Model results can serve as baseline estimates for wild

trout distributions in the study area and be used as a

planning tool by resource managers to aid in establishing

a diverse management portfolio that aims to maximize

representation, resilience, and redundancy of these

peripheral wild trout populations. Knight et al. (2009)

identified eight “hallmarks of best practice” to promote

delivery of effective conservation planning through inte-

gration of sound design and application of spatial priori-

tization techniques. Our methodology and findings

partially or entirely satisfy the first six hallmarks: (1)

identify who wants the assessment and the products they

need, (2) situate spatial prioritization techniques within a

broader operational model, (3) involve experts and imple-

menters in the spatial prioritization, (4) identify conserva-

tion opportunities not simply conservation priorities, (5)

translate prioritization outputs into planning products for

end-users, and (6) complement planning products with

an implementation strategy.

Most existing conservation lands were not intended

primarily for conservation of aquatic species, and thus we

anticipated finding gaps between predicted species popu-

lations and protected lands. Identifying potential conser-

vation areas with the goal of aquatic species conservation

should be more effective than the more traditional ad hoc

methods (Frissell et al. 1986; Dudgeon et al. 2006), but

deciding where on the landscape to invest conservation

resources can be a challenge for managers. One option is

to focus on headwater catchments because of their con-

nectivity to downstream ecosystems and their contribu-

tion to biodiversity and biological integrity of river

networks (Roth et al. 1996; Meyer et al. 2001).

The modeling approach implemented in this study can

be used to build “what-if” scenarios that evaluate changes

over time in trout distributions or predict future trout

distributions based on environmental change pertinent to

(A)

(B)

Figure 4. Generalized rainbow trout

distribution maps showing presence/absence

predictions and probabilities of occurrence

across the study area. Probability surface

created by calculating the density of predicted

probabilities for each stream reach.

Probabilities separated into five classes using

Jenks natural breaks method.
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the southern Appalachians, such as climate change,

urbanization, and hemlock mortality. Each of our final

models included climate and land cover variables that

could be manipulated to build what-if scenarios. Due to

long-term changes in water temperature and flow result-

ing from climate change, distributions of some salmonids,

including brook trout, are expected to become even more

constrained and fragmented (Haak et al. 2010; Isaak et al.

2010; Wenger et al. 2011) until only fragile populations

remain in small headwater stream thermal refuges (Flebbe

et al. 2006; Haak et al. 2010; Argent and Kimmel 2013;

Whiteley et al. 2013; Trumbo et al. 2014). Roberts et al.

(2009) found that the replacement of hemlock overstory

with hardwood species in the Great Smoky Mountains

National Park will have a negligible effect on long-term

stream conditions, but impacts from the transition period

from hemlock to hardwoods are likely to be significant.

See Appendix S2 for additional potential management

implications of this modeling effort.

Habitat variable selection

All predictor variables used in this study were GIS-derived

landscape-scale variables, some of which were calculated

at multiple scales. The integration of multiscale data capa-

ble of capturing different attributes of species biogeogra-

phy is crucial to developing strong species distribution

models (Hopkins and Burr 2009). In general (see Appen-

dix S3 for details), the final models included the “natural”

metrics of watershed position, terrain, climate, and surfi-

cial geology and the “anthropogenic” metrics of land

cover and fragmentation.

Model limitations and sources of error

There are several types of error inherent in this correlative

modeling approach. The stream lengths presented for our

entire stream network and for the species predicted distri-

butions are sensitive to the application of the

0.024 km2 km drainage area threshold, and thus these

length estimates may be best used for relative compari-

sons of species ranges and potential niche occupation

than for true channel length estimates. When using large

existing datasets for regional studies, data quality, and

resolution are a valid concern. We used the highest reso-

lution dataset we could locate for each landscape metric

we included in our analysis and, given that a few of our

landscape metrics (e.g., climate and soil data) were

(A)

(B)

Figure 5. Generalized brown trout distribution

maps showing presence/absence predictions

and probabilities of occurrence across the

study area. Probability surface created by

calculating the density of predicted

probabilities for each stream reach.

Probabilities separated into five classes using

Jenks natural breaks method.
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obtained from relatively coarse resolution maps, they lack

the desired scale and accuracy that was attained for our

higher resolution stream network.

A disconnect may exist between the spatial scale at

which fish data were collected in the field and the scale at

which our ecological models operate. This disparity of

scales can affect the apparent importance of a habitat var-

iable. The perceived importance of a particular habitat

feature can also be affected and confounded by incorpo-

rating datasets with varying resolution (Lammert and

Allan 1999; Brewer et al. 2007). Annual precipitation was

included in all three of our final models and low-resolu-

tion soil characteristics were included in the models for

brook trout and brown trout, so it is possible that issues

of scale with these datasets contributed to model error

(Steen et al. 2008).

Temporal variation in species distributions was not

included in our models because the fish survey data came

from single samples of individual stream reaches (Wiley

et al. 1997; Steen et al. 2008). The fish data were collected

over a 15-year period by different biologists for varying

purposes, and it was impossible to determine which sam-

ples may have included fish misidentifications or to esti-

mate detection probability for the three trout species.

Species absences can arise either from a genuine lack of

species presence or from the inability to detect a species

at a particular site if it was present (Oakes et al. 2005),

and our random selection of absence sites from the field

survey data possibly included some segments where trout

were present.

There appears to be inadequate representation of larger,

higher order streams in the sampling data, perhaps due

to wadeability constraints. The majority (85%) of the

sampling was carried out in second, third, and fourth

Strahler order streams. The spatial bias in sampling may

reflect an absence of wild trout in higher order streams,

but we were unable to incorporate such absences into our

models without explicit data. Using flawed training data

to build models can reduce model quality, but the errors

in the training data are manifested in model accuracy

measurements so they are reflected in our results (for an

in-depth look at addressing deficiencies in field collection

of training data see Vaughan and Ormerod (2003)).

While our approach does implicitly incorporate ecolog-

ical processes driven by spatial variation in species traits

related to landscape characteristics, mechanistic relation-

ships between species functional traits and their environ-

ment are not explicitly included (Filipe et al. 2013).

However, correlative modeling approaches have practical

advantages over mechanistic methods due to their rela-

tively flexible and simplistic data requirements and their

capacity to incorporate both biotic and abiotic interac-

tions (Kearney et al. 2010).

Research has shown that species interactions between

brook trout, rainbow trout, and brown trout can be very

important drivers of species distributions (Nyman 1970;

Fausch and White 1981; Larson and Moore 1985; Dewald

and Wilzbach 1992; Weaver and Kwak 2013). While some

recent species distribution modeling research (Wenger

et al. 2011) has included biotic interactions directly as

candidate predictors, other research (Wisz et al. 2013) has

suggested that surrogate variables can be used as proxies

to capture spatial turnover or gradients in the distribution

of biotic interactions across the landscape. Although our

models do not include biotic interactions as candidate

predictors, the models include landscape characteristics

like stream order and elevation and there is significant

research that suggests salmonids in the study area gener-

ally follow an elevational gradient.

Conclusion

The purpose of this study was to use GIS-derived land-

scape variables as predictors of occurrence in statistical

models for brook trout, rainbow trout, and brown trout.

Based on the aforementioned sources of error inherent in

this type of modeling, we did not expect model accuracies

to exceed those that we obtained. Our validation results

indicate that all species were modeled with acceptable

error and that using landscape data in a logistic regression

framework is an appropriate method for predicting wild

trout distributions in our study area. The underrepresen-

tation of headwater streams in more commonly used

hydrography datasets is an important consideration that

warrants close examination when forecasting headwater

species distributions and range estimates. Research on

impacts to fish assemblages along upstream–downstream
gradients has projected that headwater streams will suffer

the most from the effects of climate change (Buisson and

Grenouillet 2009). Additionally, it appears that a relative

watershed position metric (e.g., stream order) is an

important surrogate variable (even when elevation is

included) for biotic interactions across the landscape in

areas where headwater species distributions are influenced

by topographical gradients.
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