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Abstract

Background: Routine influenza vaccine effectiveness (VE) surveillance networks use frequentist methods to
estimate VE. With data from more than a decade of VE surveillance from diverse global populations now available,
using Bayesian methods to explicitly account for this knowledge may be beneficial. This study explores differences
between Bayesian vs. frequentist inference in multiple seasons with varying VE.

Methods: We used data from the United States Influenza Vaccine Effectiveness (US Flu VE) Network. Ambulatory
care patients with acute respiratory illness were enrolled during seasons of varying observed VE based on
traditional frequentist methods. We estimated VE against A(HIN1)pdm in 2015/16, dominated by A(HTN1)pdm;
against A(H3N2) in 2017/18, dominated by A(H3N2); and compared VE for live attenuated influenza vaccine (LAIV)
vs. inactivated influenza vaccine (IIV) among children aged 2-17 years in 2013/14, also dominated by A(H1N1)pdm.
VE was estimated using both frequentist and Bayesian methods using the test-negative design. For the Bayesian
estimates, prior VE distributions were based on data from all published test-negative studies of the same influenza
type/subtype available prior to the season of interest.

Results: Across the three seasons, 16,342 subjects were included in the analyses. For 2015/16, frequentist and
Bayesian VE estimates were essentially identical (41% each). For 2017/18, frequentist and Bayesian estimates of VE
against A(H3N2) viruses were also nearly identical (26% vs. 23%, respectively), even though the presence of
apparent antigenic match could potentially have pulled Bayesian estimates upward. Precision of estimates was
similar between methods in both seasons. Frequentist and Bayesian estimates diverged for children in 2013/14.
Under the frequentist approach, LAIV effectiveness was 62 percentage points lower than IIV, while LAIV was only 27
percentage points lower than IV under the Bayesian approach.
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Conclusion: Bayesian estimates of influenza VE can differ from frequentist estimates to a clinically meaningful
degree when VE diverges substantially from previous seasons.
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Background

Globally, a number of surveillance networks provide an-
nual estimates of influenza vaccine effectiveness (VE)
against laboratory-confirmed influenza disease diagnosed
in ambulatory or inpatient settings [1-5]. These net-
works aim to estimate VE both overall and stratified by
various factors including age, virus subtype/lineage, and
vaccine type. VE is estimated through frequentist statis-
tical methods, wherein event probabilities are treated as
expected frequencies were the study to be repeated
many times in some hypothetical population. One hall-
mark of frequentist methods is the desire to avoid sub-
jectivity on the part of the researcher, such that
information from outside the study is not considered
when estimating parameters and assigning uncertainty
to the estimates [6].

The frequentist paradigm has proven its utility in
many settings and has the benefit of familiarity to di-
verse audiences. However, the influenza research
community now collectively has more than a decade’s
worth of influenza VE estimates drawn from diverse
populations worldwide. These studies inform our ex-
pectations about influenza VE before annual estimates
are computed. The Bayesian statistical paradigm, in
which probabilities are considered to be beliefs about
the likelihood of an outcome, provides a framework
by which information from prior VE studies can be
explicitly incorporated into VE estimates for the
current season [7]. Incorporating data from previous
studies may enable us to more precisely estimate VE
with smaller sample sizes, which would be useful both
for providing early-season VE estimates and for esti-
mating VE among sub-groups.

However, a potential challenge to the Bayesian ap-
proach is that VE can vary in ways that are not ne-
cessarily predictable a priori due to unexpected issues
with vaccine potency, antigenic match, or other fac-
tors such as vaccine coverage and delay/shortage. De-
fining Bayesian priors from previous studies could
potentially lead to incorrect inference in these set-
tings, as these priors could potentially lead to poster-
ior estimates of VE that suggest effectiveness even in
mismatch years. To assess this possibility, we compare
how the use of Bayesian vs. frequentist methods may
affect the inferences we would draw about influenza
VE from surveillance networks.

Methods

Study setting

This study was conducted using data from the United
States Influenza Vaccine Effectiveness (US Flu VE) Net-
work, the details of which have been described previ-
ously [1, 8]. Briefly, US Flu VE Network institutions
enroll patients with acute respiratory illness (cough of <
8days’ duration) from ambulatory care sites. Subjects
provide paired nasal and oropharyngeal swab specimens
(nasal swabs only in subjects aged < 2 years), which are
tested for influenza via real-time reverse transcriptase
polymerase chain reaction (RT-PCR).

The current iteration of the US Flu VE Network has
been in operation since the 2011/12 influenza season. In
this study, we estimated influenza VE during three spe-
cific seasons, chosen to capture some key aspects of het-
erogeneity in influenza VE, based on antigenic match
between vaccine and circulating virus strains and esti-
mated VE from frequentist methods:

e Effectiveness against A(H1N1)pdm viruses during
the 2015/16 influenza season, which was dominated
by A(HIN1)pdm and for which overall VE (across
age groups) was consistent with expectations, given
antigenic similarity between circulating and vaccine
viruses [1, 9];

o Effectiveness against A(H3N2) viruses during the
2017/18 influenza season, which was dominated by
A(H3N2) and for which overall VE was lower than
expected, given antigenic similarity between
circulating and vaccine viruses [10, 11];

o Effectiveness of live attenuated influenza vaccine
(LAIV) against A(HIN1)pdm in children aged 2-17
years during the 2013/14 season, which was
unexpectedly lower than effectiveness of inactivated
influenza vaccines (IIV) that season [12].

Exposure and outcome

Study staff collected subject information, including influ-
enza vaccination history, through interviews at enroll-
ment and extraction from healthcare databases and
other electronic data sources. The exposure of interest
was receipt of seasonal influenza vaccine at least 14 days
prior to illness onset. Vaccine receipt was defined by
electronic immunization records, which included elec-
tronic health records, employee health records, and state
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immunization registries. Subjects vaccinated < 14 days
prior to illness onset were excluded from the study.

The outcome of interest was laboratory-confirmed in-
fluenza infection. Subjects with swabs testing positive for
influenza by RT-PCR were classified as cases, while sub-
jects testing negative were classified as non-cases. Sub-
jects with inconclusive RT-PCR results were excluded.
To avoid bias due to sampling non-cases outside of in-
fluenza season [13], we excluded non-cases who were
enrolled prior to the first or after the last detected influ-
enza case at each site in the 2013/14, 2015/16, or 2017/
18 influenza seasons. We excluded subjects with
laboratory-confirmed influenza A(H3N2) or B infection
in 2013/14 and 2015/16 or with laboratory-confirmed
A(HIN1)pdm or B infection in 2017/18. Note that these
criteria are somewhat simplified from the exclusion cri-
teria in the original studies.

Statistical analysis

Within each study year, we compared the distribution of
influenza vaccination and of study covariates between
cases and non-cases, using proportions for categorical
variables and means/standard deviations for continuous
variables.

We used a test-negative design to create frequentist
estimates of influenza VE (VEg). In this design VEr was
estimated as (1-ORg), where ORg is the vaccination odds
ratio for cases vs. non-cases from a logistic regresion
model, with parameters estimated using maximum likeli-
hood [14]. Consistent with prior US Flu VE Network
studies, models were adjusted for study site, age and date
of illness onset (both using linear tail-restricted cubic
splines), and presence of high-risk medical conditions.
Separate estimates were produced for each season. We
computed 95% confidence intervals (ClIs) for these
estimates.

To create Bayesian estimates of influenza VE (VEg) we
first defined prior distributions for all model parameters.
Prior distributions for baseline prevalence of any influ-
enza infection (i.e. the model intercept) and for associa-
tions between covariates and case/non-case status were
generated from all previous seasons’ data from the US
Flu VE Network. For example, prior distributions for the
association between age group and influenza odds in the
2015/16 season were generated from the age/influenza
odds during the 2011/12 through 2014/15 seasons.

To create the prior distribution for the vaccination
odds ratio, we first reviewed the literature to identify
published estimates of influenza VE. We restricted the
previous studies to peer-reviewed publications using RT-
PCR-confirmed endpoints, and only end-of-season, fully
adjusted VE estimates were included (Supplemental Ap-
pendix). For each of the three scenarios of interest, we
selected all VE estimates from seasons before the
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relevant influenza season from subjects of the same age
range and against the same virus sub-type. For example,
the prior distribution of VE against A(H3N2) in 2017/18
was informed by estimates of VE against A(H3N2)
among persons of any age (=6 months) from Northern
Hemisphere 2016/17 or Southern Hemisphere 2017 and
earlier. These published VE estimates and associated
standard errors were converted to Normally distributed
regression coefficients [as log (1-VE)]. Finally, we created
prior distributions by stochastically sampling values from
these coefficient distributions, weighted by study sample
size. We did not attempt to create separate priors for
IIV vs. LAIV for the 2013/14 LAIV vs. IIV comparions,
since as of 2013/14 there was little reason to expect
lower VE for LAIV.

After creating the priors, VEg was estimated as 1-ORg,
where ORgp is the posterior odds ratio from a generalized
linear model using a binomial distribution and logistic
link, adjusted for the same covariates as the frequentist
estimates. Posterior values were estimated using Gibbs
sampling with 1000 burn-in iterations and 10,000 sam-
pling iterations [15, 16]. We assessed convergence of the
Markov chains by confirming stationarity of trace plots
and lack of auto-correlation between sampled values.
We computed 95% Bayesian credible intervals (BCIs) for
these estimates. We also estimated parameters assuming
a noninformative (i.e. uniform) prior.

In addition to estimating VEr and VEg using end-of-
season data, we assessed the impact of sample size on
the precision of VE estimates. For this analysis, we esti-
mated VE in the 2015/16 and 2017/18 seasons at pro-
gressively increasing enrollment sizes, starting with the
first 25 cases enrolled, then the first 50 cases enrolled,
and proceding in increments of 25 until the full sample
size was reached. Similarly, we estimated VE based on
total enrollment using increments of 100. Analyses were
performed using SAS version 9.4 (SAS Institute Inc.,
Cary NC) and R version 3.6.1 (The R Foundation for
Statistical Computing, Vienna Austria).

Results
The US Flu VE Network had 18,084 enrollees for the
relevant seasons and age groups (1621 children aged 2—
17 years in 2013/14; 7563 enrollees of all ages in 2015/
16; 8900 enrollees of all ages in 2017/18). Of these, 2290
were excluded (87 for inconclusive RT-PCR results; 174
non-cases enrolled before the first or after the last case;
126 vaccinated < 14 days before illness onset; 44 infected
with A(H3N2) or B in 2013/14, 552 infected with
A(H3N2) or B in 2015/16, and 1307 infected with
A(HIN1)pdm or B in 2017/18), leaving 15,794 subjects
for analysis (Table 1).

In the 2015/16 influenza season, 6824 US Flu VE Net-
work enrollees were eligible, of whom 3300 (48%) were
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Table 1 Characteristics of eligible United States influenza vaccine effectiveness enrollees in each study year

Variable Category 2013/14 A(H1IN1)pdm 2015/16 any influenza 2017/18 A(H3N2)
Total 1542 7372 7428
Site Ml 245 (16%) 1076 (15%) 1257 (17%)
PA 262 (17%) 1820 (25%) 1188 (16%)
X 297 (19%) 1395 (19%) 1738 (23%)
WA 256 (17%) 1825 (25%) 1418 (19%)
Wi 482 (31%) 1256 (17%) 1827 (25%)
Age group < 5years 512 (33%) 1148 (16%) 1193 (16%)
5-8years 433 (28%) 631 (9%) 560 (8%)
9-17 years 597 (39%) 898 (12%) 920 (12%)
18-49 years excl® 2567 (35%) 2510 (34%)
50-64 years excl 1245 (17%) 1252 (17%)
265 years excl 883 (12%) 993 (13%)
High Risk 348 (23%) 3004 (41%) 3536 (48%)
Vaccinated Any vaccine 689 (45%) 3479 (47%) 3759 (51%)
LAIV® 172 (25%) 164 (5%) 0 (0%)
Influenza AHINT)pdm 212 (14%) 778 (11%) excl
A(H3N2) excl 79 (1%) 1774 (24%)
B excl 473 (6%) excl

%Excl excluded by design
PLAIV live attenuated influenza vaccine

vaccinated and 771 (11%) had laboratory-confirmed in-
fluenza A(HIN1)pdm infection (Table 1). After adjusting
for covariates, point estimates for VEr and VEg against
any influenza infection were virtually identical (Fig. 1).
VEE was 41% (95% CI, 31 to 50%), compared to VEg of
41% (95% BCI, 31 to 50%).

In the 2017/18 influenza season, 7428 US Flu VE Net-
work enrollees met the eligibility critiera, of whom 3759
(51%) were vaccinated and 1774 (24%) had laboratory-
confirmed infection with influenza A(H3N2). After
adjusting for covariates, point estimates for VEg and VEg
were similar (Fig. 1). VEg was 26% (95% CI, 17 to 34%),
compared to VEg of 23% (95% BCI, 13 to 30%).

In the 2013/14 influenza season, 1542 US Flu Network
enrollees aged 2—17 years met the eligibiity criteria. Of
these, 172 (25%) had been vaccinated with LAIV and
517 (33%) with IIV, while 212 (14%) were infected with
laboratory-confirmed influenza A(H1IN1)pdm. Estimates
of LAIV effectiveness were highly divergent between the
frequentist and Bayesian approaches (Fig. 1), with VEg of
6% (95% CI, — 54 to 42%) compared to VEg of 25% (95%
BCI, -5 to 45%). Estimates of IIV effectiveness also dif-
fered between the two approaches, with VEg being
higher than VEg (68% vs. 52%). Under the frequentist
approach, LAIV effectiveness was 62 percentage points
lower than IIV, while under the Bayesian approach,
LAIV effectiveness was 27 percentage points lower than
Iv.

In all three analyses, Bayesian estimates with noninfor-
mative priors were nearly identical to the frequentist es-
timates. VE point estimates differed by no more than
one percentage point, and credible interval widths were
not more than one percentage point different from fre-
quentist confidence intervals.

In 2015/16 and 2017/18, frequentist VEp estimates
were naturally less precise than Bayesian VEg estimates
early in the season (Fig. 2 for VE by cases enrolled, Sup-
plemental Figure for VE by total enrollment). VEg esti-
mates were also more prone to rapid fluctuations. In
both 2015/16 and 2017/18, VE estimates by both
methods stabilized near their final value after approxi-
mately 250 cases had been enrolled. By that point, the
width of the frequentist confidence interval was approxi-
mately equal to the width of the Bayesian credible
interval.

Discussion

The decision to use a frequentist vs. a Bayesian approach
to estimating population parameters is ultimately a the-
oretical judgment about statistical inference and the na-
ture of probability. Frequentist statistics treat
probabilities as long-run frequencies, while Bayesian sta-
tistitics treat them as degrees of belief [6, 17]. As such,
decisions about which approach to use in influenza vac-
cine surveillance should depend on the inferential goals
of the study and, to a degree, be independent of
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Fig. 1 Point estimates and 95% confidence or Bayesian credible intervals for influenza vaccine effectiveness (VE) for any influenza vaccine in
2015/16 and 2017/18 and for live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV) among children in 2013/14. Bayesian
prior indicates estimated VE prior to collecting each season’s data, based on studies from prior seasons against the specified influenza subtype;
Bayesian posterior indicates updated VE estimates after collecting the study data; Frequentist indicates estimated VE based solely on the study
data without prior season information

expected findings or the precision of estimates. Notwith-
standing, the results of this study are instructive in sev-
eral ways.

First, previous influenza VE studies have generated
widely varying point estimates with varying degrees of
precision [18, 19]. This heterogeneity is the result both
of random sampling and of true variation in VE across
seasons and populations. A consequence of this hetero-
geneity is that Bayesian prior distributions for VE are
“weak,” in the sense of not being strongly constrained to
a narrow range of values. VE estimates in excess of 80%,
or lower than 0% are unlikely based on prior knowledge,
but there is little precision within that range. As a result,
Bayesian VE estimates in this study required a compara-
tively large sample size (at least 250 cases enrolled) to
stabilize near the final end-of-season values. While fre-
quentist VE estimates were highly unstable at small sam-
ple sizes, the frequentist estimates stabilized at
approximately the same sample size as the Bayesian esti-
mates, with confidence intervals of comparable width to
the Bayesian credible intervals. Some authors have
expressed the hope that use of Bayesian statistics in
pharmacoepidemiology may allow for rigorous inference
at smaller sample sizes than frequentist statistics [20].
Our study suggests this is unlikely to be possible for in-
fluenza VE surveillance.

Second, in the original US Flu VE Network study in
2013/14 (using a frequentist approach), Gaglani et al. es-
timated IIV VE in children aged 2—17 years of 60% com-
pared to 17% for LAIV [12]. This 43 percentage-point
difference in effectiveness, which occurred immediately
after quadrivalent LAIV replaced trivalent LAIV [21],
precipitated discussions about the potential for LAIV-
specific vaccine failure. When this finding was repeated
in the 2015/16 season [1], also dominated by
A(HIN1)pdm, the ACIP removed their recommendation
for use of LAIV [22]. In the present analysis (with
slightly simplified exclusion criteria and analyses) the
frequentist estimates were similar to the findings of
Gaglani et al., with a 62 percentage point difference in
VE between the vaccine types. In contrast, the Bayesian
VE estimates were much more similar for IIV and LAIV,
only differing by 27 percentage points. It is, of course,
impossible to know what would have happened had a
Bayesian framework been used in 2013/14 or 2015/16.
The smaller relative difference in VEg may have led to
the findings being explained away as a result of chance,
rather than a prompt to greater vigilance regarding
LAIV in children. But it also bears mentioning that the
Bayesian estimate of 25% VE (-5 to 45%) for LAIV is
close to estimates from a meta-analysis of three US stud-
ies during 2013/14 (including Gaglani et al), which
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Fig. 2 Estimated influenza vaccine effectiveness (VE) by Bayesian and frequentist methods at increasing sample size; a 2015/16 influenza season
against AH1N1) pdm viruses, b 2017/18 influenza season against A(H3N2) viruses
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found a consolidated VE for LAIV of 19% (95% CI, — 18
to 44%) against A(HIN1)pdm [23]. In a situation where
the data are quite different from what is expected based
on prior knowledge, particularly if sample sizes are
small, varying the Bayesian analysis with priors that give
more weight to the data can help reveal the impact of
prior assumptions on final estimates [7].

In this study, we defined Bayesian priors from observa-
tional test-negative studies of influenza VE. Other
sources of data are possible, including randomized clin-
ical trials (RCTs). RCT data are likely less subject to bias
than observational data, but have important limitations
as sources of prior data. Recent placebo-controlled RCT's
of tri- or quadrivalent influenza vaccines are uncommon
in countries with routine influenza vaccination pro-
grams, and generally predate the emergence of influenza
A(HIN1)pdm in 2009. Thus, we do not have RCT data
for comparable populations to the test-negative study
populations. In addition, observational test-negative
studies are much more common than RCTs and provide
more estimates across different sub-groups defined by
demographics or infecting virus. However, use of obser-
vational data may lead to systematic biases in the Bayes-
ian priors if the test-negative studies themselves are
systematically biased.

The biggest limitation of this study is conceptual. The
true interest is assessing how inference about VE might
differ between frequentist and Bayesian approachs for
selected seasons. This is not fully possible, because the
study is retrospective and frequentist VE estimates have
already been disseminated, shaping our inference about
VE. Nonetheless, comparing the two approaches does
give some idea about when and why frequentist and
Bayesian estimates are likely to be substantively different.
A second limitation is the relatively few examples of
truly unexpected variation in VE to use as test cases for
the two methods of inference. Since the founding of the
current iteration of the US Flu VE Network in 2011/12,
the only situations where VE has been meaningfully
lower than expectation are the low effectiveness of LAIV
against A(HIN1)pdm and the low 2017/18 VE against
A(H3N2) despite apparently good antigenic match.
While the rarity of unexpectedly poor vaccine perform-
ance is good for public health, it does limit our ability to
characterize the potentially misleading impact of prior
knowledge in Bayesian VE estimation. Thirdly, we devel-
oped Bayesian prior distributions in this study using pre-
viously published VE estimates, stratified where possible
by age group and virus type/subtype. Additional stratifi-
cation could potentially improve the prior distributions,
particularly stratifying by genetic or antigenic similarity
between vaccine and circulating viruses. As more sea-
sons of influenza VE data accumulate, our ability to
more precisely define prior estimates may improve.
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Finally, models of VE estimates used to construct prior
distributions were adjusted for varying sets of potential
confounders and not necessarily the same set used in
the study data. This may reduce the comparability of the
priors to the study data.

Conclusions

In this study, we have shown some of the potential im-
pacts of Bayesian vs. frequentist reasoning in the context
of influenza vaccine effectiveness surveillance. If the in-
ferential goal is to identify potential vaccine failures,
priors based on previous influenza VE studies may ob-
scure vaccine failure in Bayesian analyses. For this goal,
frequentist analyses or Bayesian analyses with “unin-
formative” priors may be more appropriate. If the goal is
to estimate VE in small subgroups when overall VE
seems consistent with expectations, Bayesian methods
with informative priors may be useful. Future work may
better identify situations in which informative priors aid
in public health decision-making.
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