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Abstract: Asthma is a heterogeneous lung disease with variable phenotypes (clinical presentations)
and distinctive endotypes (mechanisms). Over the last decade, considerable efforts have been
made to dissect the cellular and molecular mechanisms of asthma. Aberrant T helper type 2 (Th2)
inflammation is the most important pathological process for asthma, which is mediated by Th2
cytokines, such as interleukin (IL)-5, IL-4, and IL-13. Approximately 50% of mild-to-moderate
asthma and a large portion of severe asthma is induced by Th2-dependent inflammation. Th2-low
asthma can be mediated by non-Th2 cytokines, including IL-17 and tumor necrosis factor-α. There
is emerging evidence to demonstrate that inflammation-independent processes also contribute to
asthma pathogenesis. Protein kinases, adapter protein, microRNAs, ORMDL3, and gasdermin B are
newly identified molecules that drive asthma progression, independent of inflammation. Eosinophils,
IgE, fractional exhaled nitric oxide, and periostin are practical biomarkers for Th2-high asthma.
Sputum neutrophils are easily used to diagnose Th2-low asthma. Despite progress, more studies are
needed to delineate complex endotypes of asthma and to identify new and practical biomarkers for
better diagnosis, classification, and treatment.
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Asthma is a heterogeneous lung disease that affects more than 300 million people
worldwide [1]. Asthma is characterized by variable airflow obstruction and airway hy-
perresponsiveness (AHR), leading to episodic and reversible bronchoconstriction, because
of an exaggerated airway-narrowing response to many environmental triggers, such as
allergens. Traditionally, the illness is classified into two groups: extrinsic and intrinsic
asthma. Extrinsic asthma is also known as allergic asthma, which is caused by allergens
and mainly attributed to aberrant T helper type 2 (Th2) inflammation. Intrinsic asthma is
triggered by various factors, such as aspirin, pulmonary infection, exercise, cold, stress,
obesity, etc.

Recently, based on the status of Th2 inflammation, the disease has been classified
into two groups: Th2-high and Th2-low asthma. Th2-high asthma is characterized by
eosinophilic airway inflammation, which is associated with increased blood eosinophil
counts or elevations of fractional exhaled nitric oxide (FeNo), whereas Th2-low asthma in-
cludes neutrophilic asthma and paucigranulocytic asthma. The coexistence of eosinophilic
and neutrophilic airway inflammation is considered mixed granulocytic asthma [1,2]. The
pathological mechanisms of asthma are complex, varying in different phenotypes caused
by different environmental triggers, ages, obesity, genetic factors, etc. In addition to airway
inflammation, there is emerging evidence to suggest that inflammation-independent pro-
cesses also contribute to asthma pathogenesis. Furthermore, biomarkers of a disease are
traceable substances that are useful for diagnosis, classification, and treatment. This review
is focused on the pathogenesis and biomarkers of asthma induced by allergens, infection,
and pollutants.
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1. Pathological Mechanisms of Asthma

Although asthma is classified into Th2-high and Th2-low asthma, the disease can be
induced by mixed airway inflammation. Patients may have Th2-high asthma in the early
stage and have Th2-low asthma in a later stage or vice versa; or Th2-high asthma and
Th2-low asthma occur concurrently. Because of the complexity of asthma, we discuss the
mechanisms of Th2-high asthma, Th2-low asthma, and other mechanisms separately.

1.1. Mechanisms of Th2-High Asthma

Th2 cells are a distinct lineage of CD4+ effector T cells that secrete interleukin (IL)-4,
IL-5, IL-13, and IL-9. Approximately 50% of mild-to-moderate asthma and a large portion of
severe asthma is induced by Th2-dependent inflammation [1,2]. Since Th2-high asthma has
been reviewed in detail elsewhere [2–4], we summarize the key points for the mechanisms
of Th-2 high asthma.

Th2 inflammation has two major phases: 1. Sensitization: When allergens enter the
low airways, antigen-presenting cells process and present the allergens to Th2 cells, which
secret Th2 cytokines, including IL-5, IL-4, and IL-13. IL-4 and IL-13 activate B cells, which
produce IgE and bind to FcεRI of mast cells. 2. Challenge: When the same allergens
enter the airways, they bind to IgE, which induces mast cells to release mediators, such as
leukotrienes (LTs), histamine, and ILs. In addition, allergens act on cholinergic nerves to
release acetylcholine. These mediators and neurotransmitters irritate airway smooth muscle
and induce bronchoconstriction [1–3]. In addition, IL-5 facilitates eosinophil production,
maturation, and recruitment to the lungs [5]. Eosinophils also release mediators, including
major basic protein (MBP), which stimulates mast cells to release histamines and LTs. MBP
also inhibits M2 receptor and promotes acetylcholine release from cholinergic nerves and
induces bronchospasm [6]. Furthermore, IL-13 directly sensitizes airway smooth muscle
contraction, stimulates epithelial cells to secret mucins, and induces fibrosis [7] (Figure 1).

Recent studies demonstrated that the airway epithelium produces cytokines in re-
sponse to injury, infection, and pollutants. These epithelial-derived cytokines include
thymic stromal lymphopoietin (TSLP), IL-25, and IL-33. TSLP, IL-25, and IL-33 activate
type 2 innate lymphoid cells (ILC2), which generate Th2 cytokines, such as IL-5 and IL-13
and induce Th2 lung inflammation [1,2]. Additionally, there is evidence to suggest that
IL-33 may directly affect mast cell activation, airway smooth muscle migration, and asthma
phenotype [8] (Figure 1).

Th9 cells and IL-9 are also involved in Th2 lung inflammation [9]. Th9 cells produce the
cytokines IL-9, IL-10, and IL-21; however, IL-9 is likely to contribute to asthma pathology.
Because of its pleiotropic effects, IL-9 influences a variety of distinct cell types, such as
T cells, B cells, mast cells, and macrophages. IL-9 may promote Th2 inflammation by
activating Th2 cells and by increasing mast cell accumulation [9]. IL-9 may also activate
Arg1+ interstitial macrophages, which secrete the chemokine CCL5. CCL5 then recruits
eosinophils, T cells, and monocytes into the lungs to propagate type 2 inflammation [10]
(Figure 1).

Natural killer T (NKT) cells are a distinct subset of lymphocytes that are abundant
in the lungs as well as lymphoid organs. It was proposed that NKT cells secrete IL-4 and
IL-13 or facilitate Th2 cells to increase production of IL-4 and IL-13 [11]. However, other
studies do not support this notion [12,13].
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Figure 1. Mechanism of Th2-high asthma. When allergens enter the low airways, dendritic cells 
(DCs) present the allergens to Th2 cells, which secrete Th2 cytokines, including interleukin (IL)-5, 
IL-4, and IL-13. IL-4 and IL-13 activate B cells, which produce IgE. IgE subsequently binds to surface 
of mast cells. When the same allergens enter the airways, they interact with IgE, which induces mast 
cells to release mediators, such as leukotrienes (LTs), histamine, and ILs. These mediators irritate 
airway smooth muscle and induce bronchoconstriction. In addition, IL-5 facilitates eosinophil re-
cruitment to the lungs. Eosinophils also release mediators, including major basic protein (MBP), 
which stimulates mast cells to release histamines and LTs. MBP also inhibits M2 receptor and pro-
motes acetylcholine release from cholinergic nerves and induces bronchospasm. Furthermore, IL-
13 directly sensitizes airway smooth muscle contraction, stimulates epithelial cells to secret mucins, 
and induces fibrosis. Th9 cells can secrete IL-9, which activates Th2 cells and promotes mast cell 
accumulation. Lastly, epithelium injury by infection and pollutants induces release of cytokines, 
including thymic stromal lymphopoietin (TSLP), IL-25, and IL-33, which activate type 2 innate lym-
phoid cells (ILC2) and produce Th2 cytokines, such as IL-5 and IL-13. 

Natural killer T (NKT) cells are a distinct subset of lymphocytes that are abundant in 
the lungs as well as lymphoid organs. It was proposed that NKT cells secrete IL-4 and IL-
13 or facilitate Th2 cells to increase production of IL-4 and IL-13 [11]. However, other 
studies do not support this notion [12,13]. 

Regulatory T cells (Tregs) are a specific CD4+ T cell population that act to suppress 
immune response, thereby maintaining homeostasis and self-tolerance. Tregs have been 
classified based on the expression of the transcription factor FOXP3. Tregs may inhibit 
asthma pathogenesis by suppressing the activation/functions of ILC2, mast cells, antigen-
presenting cells, Th1/Th2/Th17 cells, eosinophils, neutrophils, and B cells [14]. 

One of the targets of Th2 cytokines is periostin, a matricellular protein that is a dy-
namically expressed non-structural protein present in the extracellular matrix. Periostin 
expression is upregulated by IL-4 and IL-13 in cultured bronchial epithelial cells and bron-
chial fibroblasts [15] and is one of the most differentially expressed bronchial epithelial 
genes between asthmatic patients and healthy control subjects [16]. The role of periostin 

Figure 1. Mechanism of Th2-high asthma. When allergens enter the low airways, dendritic cells (DCs)
present the allergens to Th2 cells, which secrete Th2 cytokines, including interleukin (IL)-5, IL-4, and
IL-13. IL-4 and IL-13 activate B cells, which produce IgE. IgE subsequently binds to surface of mast
cells. When the same allergens enter the airways, they interact with IgE, which induces mast cells
to release mediators, such as leukotrienes (LTs), histamine, and ILs. These mediators irritate airway
smooth muscle and induce bronchoconstriction. In addition, IL-5 facilitates eosinophil recruitment to
the lungs. Eosinophils also release mediators, including major basic protein (MBP), which stimulates
mast cells to release histamines and LTs. MBP also inhibits M2 receptor and promotes acetylcholine
release from cholinergic nerves and induces bronchospasm. Furthermore, IL-13 directly sensitizes
airway smooth muscle contraction, stimulates epithelial cells to secret mucins, and induces fibrosis.
Th9 cells can secrete IL-9, which activates Th2 cells and promotes mast cell accumulation. Lastly,
epithelium injury by infection and pollutants induces release of cytokines, including thymic stromal
lymphopoietin (TSLP), IL-25, and IL-33, which activate type 2 innate lymphoid cells (ILC2) and
produce Th2 cytokines, such as IL-5 and IL-13.

Regulatory T cells (Tregs) are a specific CD4+ T cell population that act to suppress
immune response, thereby maintaining homeostasis and self-tolerance. Tregs have been
classified based on the expression of the transcription factor FOXP3. Tregs may inhibit
asthma pathogenesis by suppressing the activation/functions of ILC2, mast cells, antigen-
presenting cells, Th1/Th2/Th17 cells, eosinophils, neutrophils, and B cells [14].

One of the targets of Th2 cytokines is periostin, a matricellular protein that is a
dynamically expressed non-structural protein present in the extracellular matrix. Periostin
expression is upregulated by IL-4 and IL-13 in cultured bronchial epithelial cells and
bronchial fibroblasts [15] and is one of the most differentially expressed bronchial epithelial
genes between asthmatic patients and healthy control subjects [16]. The role of periostin
in asthma is still under investigation. There are reports to suggest that periostin supports
adhesion and migration of IL-5-stimulated human eosinophils and Th2 inflammation in
asthma [17]. On the other hand, other studies suggest that periostin plays a protective role,
rather than detrimental role in asthma. Periostin positively regulates TGF-β production,
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which promotes T-regulatory cell differentiation. Differentiated T cells inhibit airway
inflammation and IgE production [18].

1.2. Mechanisms of Th2-Low Asthma
1.2.1. IL-17

IL-17 has been proposed to play an important role in Th2-low asthma [19–21]. Variants
in the IL-17 pathway genes may be related to asthma pathology [22,23]. Higher levels of
IL-17 are found in serum, sputum, and bronchoalveolar lavage fluid (BALF) of patients
with asthma, which is associated with asthma severity [19,20]. There are several cell
types secreting IL-17 cytokines. CD4+ Th17 cells are one of the major sources of IL-17.
Other cellular sources include major histocompatibility complex class I-restricted CD8+

T-cells, Natural killer T cells, mucosal-associated invariant T (MAIT) cells, ILC3 cells, and
B-cells [24].

The role of IL-17 cytokines in asthma is still under investigation. IL-17 cytokines may
stimulate epithelial cells and fibroblasts to release neutrophil chemoattractants CXCL1/5/8
and granulocyte–macrophage colony-stimulating factor, which recruit neutrophils to the
lungs. Furthermore, IL-17A, but not IL-17F, enhances airway smooth muscle contrac-
tion [21], migration [25], and proliferation [26], which facilitates airway hyperresponsive-
ness (AHR) and airway remodeling, key characteristics of asthma. However, it has been
proposed that IL-17 cytokines are important for maintaining the integrity of the epithelium
and IL-17 cytokines may play a protective role against asthma [24] (Figure 2).
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α upregulate Ca2+ signaling in airway smooth muscle and induces AHR. In addition, IFN-γ pro-
motes neutrophil recruitment in the presence of IL-17 cytokines. 
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Figure 2. Mechanism of Th2-low asthma. Th17 cytokines: Bacteria promote Th17 cell differentiation
via antigen-presenting cells (APCs). Variants in the IL-17 pathway genes also contribute to IL-17 up-
regulation. IL-17 can stimulate epithelial cells and fibroblasts to release neutrophil chemoattractants
CXCL1/5/8 which recruit neutrophils to the lungs. Furthermore, IL-17A enhances airway smooth
muscle contraction, migration, and proliferation, which facilitates AHR and airway remodeling, Th1
cytokines: Infection and epithelial injury promote Th1 cell maturation and secrete Th1 cytokines, in-
cluding TNF-α and IFN-γ. TNF-α synergizes with IL-17 cytokines to promote neutrophil recruitment.
Furthermore, TNF-α enhances airway smooth muscle contraction. IFN-γ and TNF-α upregulate
Ca2+ signaling in airway smooth muscle and induces AHR. In addition, IFN-γ promotes neutrophil
recruitment in the presence of IL-17 cytokines.



Cells 2022, 11, 2764 5 of 17

1.2.2. Other Cytokines

It is known that Th1 cells secrete IL-2, interferon-γ (IFN-γ), and lymphotoxin-α and
stimulate Th1 immunity, which is characterized by prominent phagocytic activity. However,
recent studies suggest that some Th1 cytokines may contribute to asthma pathogenesis.
Tumor necrosis factor-α (TNF-α) is a pleiotropic Th1 cytokine, which plays a role in the
pathogenesis of inflammatory diseases, including allergy. Sputum TNF-α is elevated in
neutrophilic and severe asthma [27]. TNF-α is proposed to synergize with IL-17 cytokines
to promote neutrophil recruitment [1,24]. However, TNF-αmay also promote the produc-
tion of Th2 cytokines, such as IL-4, IL-5, and IL-13 [28]. Furthermore, TNF-α enhances
airway smooth muscle contraction, which may contribute to the development of AHR [29]
(Figure 2).

IFN-γ, IL-1β, and TNF-α have been shown to upregulate the expression of CD38
(cluster of differentiation 38), also known as cyclic ADP ribose hydrolase in airway smooth
muscle cells, which may upregulate intracellular Ca2+ signaling and induce AHR. Knockout
(KO) of CD38 reduced AHR in a murine model of asthma [30,31]. In addition, IFN-γ
promotes neutrophil recruitment in the presence of IL-17 cytokines [1,24].

1.3. Emerging Mechanisms of Asthma

Asthma has long been viewed as an inflammatory disease. However, there is accumu-
lating evidence to suggest that inflammation-independent processes are also associated
with asthma progression. For instance, recent studies demonstrate that protein kinases,
adapter proteins, and other molecules contribute to asthma pathogenesis [32–40] (Figure 3).
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Figure 3. Emerging mechanisms of asthma. Asthma has long been viewed as an inflammatory
disease. However, there is accumulating evidence that inflammation-independent processes also
contribute to asthma progression. Genetic variance and epigenetics (e.g., miRs) affect expression of
proteins, including kinases, adapter protein, ORMDL3, Gasdermin B, and matrix metalloproteinases
in lung tissues, which drive asthma progression.

1.3.1. Proteins Kinases

c-Abl (Abelson tyrosine kinase, Abl, ABL1) is a non-receptor tyrosine kinase that partici-
pates in the regulation of smooth muscle contraction, migration, and proliferation [38,41–45].
c-Abl is upregulated in asthmatic human airway smooth muscle (HASM) cells, which is
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regulated by epigenetic factors [46,47]. c-Abl KO or inhibition reduces asthma-like pheno-
types in animal models of asthma [38,45]. Furthermore, c-Abl KO or inhibition diminishes
Th2 cytokines in experimental asthma [38,45]. These results suggest that c-Abl is a Th2-
regulatory protein rather than a Th2-dependent protein. Intriguingly, treatment with the
c-Ab/KIT inhibitor imatinib relieves the symptoms of severe refractory asthma [48].

Polo-like protein kinase 1 (Plk1) is a serine/threonine kinase that plays a role in
modulating smooth muscle contraction [37,49], proliferation [50,51], migration [50], mito-
sis [52,53], and apoptosis [40]. In asthmatic HASM cells, downregulation of miR509 leads
to elevated Plk1 [50]. Smooth muscle conditional KO of Plk1 inhibits asthma progression in
a murine model of asthma [52]. Plk1 may contribute to airway remodeling via promoting
ASM proliferation/migration and inhibiting apoptosis [40,50,52,54]. However, Plk1 does
not affect Th2 inflammation in experimental asthma [52].

p21-activated kinase (PAK) regulates smooth muscle contraction by modulating the
vimentin network and paxillin complexes [54,55]. Furthermore, a PAK inhibitor or PAK KO
protects mice from AHR and airway smooth muscle hyperactivity in vitro [56]. However,
it is unclear whether PAK expression and activity are altered in the lungs or serum of
asthmatics. Another protein kinase glycogen synthase kinase-3β (GSK-3β) is also linked
to asthma pathology. Airway smooth muscle hyperplasia and hypertrophy correlate with
GSK-3β phosphorylation in a mouse model of asthma [57]. GSK3 negatively regulates
smooth muscle gene expression and hypertrophy. Phosphorylation of GSK3 disinhibits
smooth muscle gene expression and promotes ASM hypertrophy and hyperplasia [57,58].

1.3.2. Adapter Protein

Abi1 (Abelson interactor 1) is an adapter protein that regulates cell migration [59,60],
smooth muscle contraction [61], and cell proliferation [39]. The human Abi1 gene is
localized in the Chromosome 10p21 region. Genome-wide association studies (GWAS)
suggest that Chromosome 10p21 is adjacent to a susceptible locus for asthma and related
traits [62,63]. Abi1 is upregulated in asthmatic HASM cells/tissues [39]. Loss-of-function
studies suggest that Abi1 contributes to aberrant HASM cell proliferation and asthma
phenotype in a murine model of asthma [39].

1.3.3. MicroRNAs (miRNAs)

miRNAs are evolutionarily conserved, 18–25 nucleotides, noncoding RNA molecules
that control gene expression by binding to complementary sequences in the 3′ untranslated
regions (3′ UTR) of target mRNAs, which degrade target mRNA and/or repress transla-
tion [64]. The levels of miR-203 are downregulated in human asthmatic ASM cells, which
disinhibits c-Abl expression and promotes asthma development [46,65]. Moreover, the
expression of miR-509 is lower in human asthmatic ASM cells, which is responsible for the
upregulation of Plk1 and asthma progression [47,50]. miR-25 expression is associated with
alterations in ASM cell phenotype, an important process for airway remodeling [66]. miR-
144–3p has been shown to be associated with severe corticosteroid-dependent asthma [67].

1.3.4. Others

ORMDL3 and gasdermin B. GWAS suggest that chromosome 17q21 is linked to
asthma [68,69]. Chromosome 17q21 contains a cluster of genes, including ORMDL3 and
gasdermin B (GSDMB) [69]. ORMDL3 may contribute to asthma progression by modulating
store-operated calcium entry and lymphocyte activation [70], eosinophil trafficking and
activation [71], and sphingolipid homeostasis [72]. Gasdermin B may promote AHR and
airway remodeling, without affecting airway inflammation via remodeling-associated gene
expression [73].

Matrix Metalloproteinases (MMPs) are calcium-dependent zinc-containing endopepti-
dases with more than 20 isoforms. MMPs have been linked to asthma, which is isoform
dependent [74,75]. Single-nucleotide polymorphisms (SNPs) in the gene encoding MMP-12
is associated with FEV1 in children and adults with severe asthma [76]. The SNPs in the
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MMP-12 promoter region increase MMP-12 expression, which may activate macrophages
and promote asthma progression [74]. In addition, mast cell tryptase proteolytically acti-
vates pro-MMP-1 generated by ASM, which subsequently degrade the extracellular matrix
and promote ASM cell growth and airway remodeling [77]. However, MMP-2 appears to
have a protective role in asthma. Mice overexpressing human MMP-2 showed a significant
reduction in AHR, Th2 cytokines, and IgE compared to their wild-type counterparts [75].

2. Biomarkers of Asthma

As mentioned above, biomarkers of a disease are traceable substances that are use-
ful for diagnosis, classification, and treatment. Although the omics technologies (e.g.,
epigenomics, genomics, transcriptomics, proteomics, metabolomics, lipidomics, etc.) and
microbiome have been proposed to serve as biomarkers for asthma [78], they are still in the
early stage of research. In this review, we focus on clinically practical biomarkers collected
from induced sputum, blood, exhaled gases, and bronchoscopic samples.

2.1. Th2-High-Related Biomarkers
2.1.1. Sputum Eosinophils

Eosinophils in induced sputum provide important information on asthma phenotyp-
ing and understanding of asthma pathophysiology [79]. Increased sputum eosinophil levels
(>3%) have been associated with high airway inflammation, frequent asthma exacerbation,
and poor asthma control [80,81].

2.1.2. Blood Total Eosinophil Count (TEC)

TEC has also been considered as a non-invasive biomarker for eosinophilic inflamma-
tion [79,82–84]. The usage of blood eosinophil counts as a diagnostic biomarker for airway
eosinophilia has been evaluated by assessing the relationship between blood and sputum
eosinophil counts [85–88]. TEC increases ≥0.30 × 109/L when Th2 lung inflammation and
asthma exacerbations transpire. If a blood count is <0.15 × 109/L, sputum eosinophilia
may not be found, especially when FeNO is low (<25 ppb) [89]. However, higher TEC is
also seen in patients with atopic dermatitis and other allergic diseases. Thus, the demon-
stration of eosinophilia is not a specific marker of Th2 lower airway inflammation. These
caveats prompt physicians to use FeNO measurement, which is associated with airway
inflammation [90].

2.1.3. Serum IgE

Serum IgE is an immunoglobulin, which induces type 1 hypersensitivity reactions
and anaphylaxis. As described earlier, IgE also plays a key role in the pathogenesis of
allergic asthma. Elevated levels of IgE are correlated with patients with asthma [91]. There
is an association between IgE levels, skin testing, and lung function in asthmatics. Clinical
studies show that asthmatics have an inverse relationship between IgE and FEV1/FVC
ratio [92]. Various clinical trials have used IgE as a biomarker to identify Th2-high asthma.
Omalizumab, a recombinant human anti-IgE antibody that binds to circulating IgE at the
IgE receptor binding site, blocks the activation of the mast cells and basophils. A large
phase III study that recruited over 500 patients with asthma found that IgE levels are
from 30 to 700 IU/mL. Omalizumab treatment was able to reduce exacerbation rates and
improve quality-of-life scores [93]. However, a Cochrane review published in 2014 on the
use of omalizumab questions whether there is a clear threshold level of IgE for optimal
efficacy. The authors note a wide spread in the mean serum IgE levels of patients included
in clinical trials, ranging from 141.5 to 508.1 IU/mL [94].

2.1.4. Nitric Oxide

Nitric oxide is produced by airway epithelial cells as a result of IL-13-induced up-
regulation of nitric oxide synthase in the airway epithelium and is, therefore, a more
specific marker of Th2 airway inflammation [95–97]. FeNO is a reproducible, easily mea-
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surable biomarker, indicative of AHR and a good predictor of inhaled corticosteroid (ICS)
response [98–100]. FENO values between 25 ppb and 50 ppb (20–35 ppb in children)
should be interpreted cautiously and with reference to clinical context. FENO greater than
50 ppb (>35 ppb in children) can be used to indicate that eosinophilic inflammation and,
in symptomatic patients, responsiveness to corticosteroids are likely. However, FeNO
may be affected by several confounders, including demographics, smoking, diet, nasal
polyps, and atopic status [99,101–104]. Although most patients with raised FeNO respond
to corticosteroids, some patients are resistant to corticosteroid treatment. Their FeNO is not
suppressed and they have high Th2 cytokines and chemokines in sputum [90]. That said,
FeNO level is a useful indication for Th2-high asthma and helps to use appropriate doses
of inhaled ICS [105].

2.1.5. Periostin

Periostin is upregulated by recombinant IL-4 and IL-13 in cultured bronchial epithelial
cells and bronchial fibroblasts [15,16,106]. Periostin is proposed as a surrogate marker of
Th2 inflammation. Serum periostin levels are significantly higher in asthmatic patients
with eosinophilic airway inflammation. A logistic regression model, including sex, age,
IgE levels, blood eosinophil numbers, body mass index, FeNo levels, and serum periostin
levels, in 59 patients with severe asthma, showed that the serum periostin level was the
best predictor of airway eosinophilia [107].

2.1.6. Cytokines

Levels of IL-4, IL-5, and IL-13 in sputum and BALF are higher in asthmatics. TSLP,
IL-33, and IL-25 in epithelium are elevated in asthmatic patients [106]. These cytokines are
the gold standard to verify Th2-high asthma for clinical research. However, it may not be
feasible for routine practice because of high costs.

These Th2-high biomarkers are being used to choose adequate biologic therapy and
monitor the patients’ response to asthma treatment. For instance, higher levels in FeNO,
blood eosinophils, and serum periostin (Th2-high asthma) are indications for use of the
IgE antibody Omalizumab. Omalizumab treatment reduces asthma exacerbation rates
and improves quality of life for this group of patients [93]. Lebrikizumab is an IgG4
humanized monoclonal antibody that specifically binds to IL-13 and blocks its function.
Lebrikizumab administration was able to improve lung function. Patients with higher
pretreatment levels of serum periostin had greater improvement in lung function with
lebrikizumab [108]. Despite ICS therapy and an additional controller, some patients still
had uncontrolled asthma. Lebrikizumab administration reduced exacerbation rate by 60%
compared with a placebo in periostin-high patients and by 5% in periostin-low patients.
However, lebrikizumab administration did not lead to clinically meaningful placebo-
corrected improvements in asthma symptoms or quality of life [109].

2.2. Th2-Low-Related Biomarkers
2.2.1. Sputum Neutrophils

Th2-low asthma includes late-onset asthma in middle-aged females, obesity-associated
asthma, smoking-associated asthma, infection-associated asthma, and ozone-associated
asthma [110,111]. Another common feature seen in Th2-low asthma is poor response to
inhaled and oral corticosteroids [112,113]. Using induced sputum coupled with cytology,
patients with Th2-low asthma are classed as paucigranulocytic and neutrophilic. In healthy
subjects, neutrophils and macrophages are the major leukocytes in the induced sputum
(median neutrophil percentage 37%). Cigarette smoking, ozone, infection, and endotoxin all
increase sputum neutrophil counts. In asthma patients, sputum neutrophil count increased
to 40–76% [111].
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2.2.2. IL-17

As described earlier, IL-17 promotes neutrophilic inflammation in asthmatics. IL-17
levels in induced sputum, BALF, and bronchial biopsies have been found to be increased in
severe asthma [19,20]. Due to technical challenge and costs, measurement of sputum IL-17
has not been widely used to characterize asthma phenotype.

2.2.3. Other Potential Biomarkers

TNF-α and IFN-γ contribute to the progression of Th2-low asthma [1]. IL-6 and
C-reactive protein have been linked to severe asthma [111]. More studies are required to
assess whether these potential biomarkers are practical in clinical settings.

2.3. Biomarkers Indicative of Airway Remodeling
2.3.1. Bronchoscopy

Airway remodeling is characterized by airway smooth muscle thickening, epithelial
metaplasia, mucus hypersecretion, and basement membrane fibrosis with deposition of
abnormal extracellular matrix [2,34,39,114,115]. Remodeling is seen in adults with chronic
asthma and in childhood asthma as a result of chronic airway inflammation [114,116,117].
Considerable efforts have been made to identify potential biomarkers for structural changes
in asthmatics; however, there is limited success. Bronchial biopsies are the gold standard
to assess remodeling but are considered an invasive procedure. A study performed mor-
phometric analysis on bronchial biopsy specimens before and after anti-IgE (Omalizumab)
treatment to investigate changes in airway remodeling after 12 months of treatment [115].
This study showed reduced reticular basement thickening in some patients. Gal-3 is a
regulatory molecule acting at various stages from acute to chronic inflammation and tis-
sue fibrogenesis. Gal-3 can be considered a reliable biomarker to predict the extent of
airway remodeling in severe asthma patients treated with omalizumab. In this study,
Gal-3 was the most stable biomarker associated with the prediction of airway remodel-
ing [118]. Additionally, because Gal-3 is a matrix protein, it is feasible to detect it in serum
or urine [119].

2.3.2. YKL-40

YKL-40 is a chitinase-like protein that is associated with airway remodeling. In a
study, YKL-40 levels in serum were increased in children with severe and therapy-resistant
asthma compared to healthy children. Furthermore, serum levels of YKL-40 significantly
correlate with bronchial wall thickness measured by high-resolution computerized tomog-
raphy [120].

2.4. Genetic Risk for Asthma Development and Treatment

GWAS have implicated genetic variants in developing asthma. In particular, childhood
asthma is associated with the 17q21 locus alleles. Polymorphisms of 17q21 are associated
with an increased risk of exacerbations in children with asthma, despite ICS use. Single-
nucleotide polymorphism (SNP) rs7216389 frequency was higher in East Asians, African
Americans, and Hispanics, compared to patients of European ancestry [121]. In addition,
the ORMDL3 gene is located at the 17q21 region and plays an important role in asthma
pathogenesis. Asthmatic patients have higher levels of human lung ORMDL3 and ORMDL3
gene SNP rs8076131 [122]. IL-1receptor-like 1 (ST2) promotes asthma development by
mediating the response to IL-33. ST2 SNPs rs13431828, rs1420101, rs1921622, and rs10204137
were related to lower efficacy of ICS in children and adolescents [123].

In addition to genetic risk, many environmental factors are also important risks for
asthma, although most experts do not consider environmental risks to be “biomarkers’
for asthma. Allergens (e.g., house dust mite, pollen), pollutants, bacteria, viruses, and
fungi are well-known environmental risks for asthma [124–126]. Exposure to different
environmental factors may affect different mechanisms and asthma progression. For
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example, IL-17A is a potential mediator to link Candida albicans sensitization and poor
outcomes for asthma [127].

3. Clinical Differences in Th2-High and Th2-Low Asthma
3.1. Phenotypes of Th2-High Asthma

Phenotypes of Th2-high asthma are classified into three groups: early-onset aller-
gic asthma, late-onset eosinophilic asthma, and aspirin-exacerbated respiratory disease
(AERD) [128].

3.1.1. Early Onset or “Extrinsic” Allergic Asthma

Early onset or “extrinsic” allergic asthma is the prototype of the asthma phenotype.
The clinical presentation of child-onset allergic asthma ranges from mild to severe and it is
unknown whether severe asthma is the result of evolution from a milder form or instead
arises de novo as a severe type during childhood. This phenotype is different from Th2-
high nonatopic asthma in terms of positive allergy skin tests and increased serum-specific
IgE [129].

3.1.2. Late-Onset Eosinophilic Asthma

Late-onset eosinophilic asthma is a subgroup of Th2-high asthmatics with adult-
onset disease, which has a distinct steroid-resistant eosinophilic phenotype of unknown
molecular mechanism [130]. ICS therapy does not ameliorate airway Th2 inflammation in
approximately half of this subgroup of asthmatics. Typically, these patients are older and
have more severe asthma with persistent airflow obstruction [131]. The majority of these
patients have comorbid chronic rhinosinusitis with nasal polyps, which generally precede
asthma development. This phenotype is generally characterized by prominent blood
and sputum eosinophilia, refractory to inhaled/oral corticosteroid treatment. Some of
these patients have sputum neutrophilia in addition to eosinophilia, implicating Th2/Th17
inflammation [132]. This phenotype generally also has high FeNO and normal or elevated
serum total IgE.

3.1.3. AERD

AERD is a subset of the late-onset phenotype, characterized by asthma, chronic
rhinosinusitis with nasal polyps, and cyclooxygenase (COX)-1 inhibitor-induced respiratory
reactions [128]. The mechanisms of this phenotype involve dysregulated arachidonic acid
(AA) and leukotriene (LT) production. COX1/2 utilizes AA to synthesize PGE2, which is
anti-inflammatory. In contrast, 5-lipooxygenase (5-LO) uses AA to synthesize LTs, which
induce airway spam. Aspirin and other nonsteroidal anti-inflammatory drugs inhibit
COX1/2, which shifts the balance to the 5-LO pathway and generates more LTs [128].

3.2. Phenotypes of Th2-Low Asthma

Based on clinical characteristics, Th2-low asthma phenotypes have been classified into
obesity-associated asthma, smoking-associated asthma, and very-late-onset asthma [128].

3.2.1. Obesity-Associated Asthma

In general, obesity-associated asthma occurs in non-atopic and middle-aged women
with severe symptoms, despite a moderately preserved lung function. This phenotype is
not associated with eosinophilic lung inflammation. Obesity switches CD4 cells toward
Th1 differentiation, which is associated with steroid refractory asthma [133]. Additionally,
Th17 pathways, ILC3 that expresses both IL-17 and IL-22, and IL-6 have been associated
with obesity-related asthma [128,134]. Consequently, IL-17, IL-22, and IL-6, rather than Th2
cytokines, may be clinically relevant in obese patients with severe asthma.
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3.2.2. Smoking-Associated Asthma

The mechanisms underlying this phenotype involve oxidative stress, which induces
epigenetic modifications and causes neutrophil and macrophage activation [135]. Smok-
ing also enhances the risk of sensitization to allergens and increases total IgE. Recently,
patients with smoking history and consequent airflow obstruction but also having over-
lapping features of asthma (bronchodilator reversibility, eosinophilia, and atopy) have
been described as having “Asthma-COPD overlap syndrome (ACOS)”. The most recently
published consensus of ACOS included six criteria, three of which are major (persistent
airflow limitation, tobacco smoking, and previous asthma or reversibility > 400 mL FEV1)
and three minor (history of atopy or rhinitis, significant bronchodilator reversibility, and
peripheral eosinophilia). Although all COPD patients have not responded to the new
biologic agents, the ACOS subset may actually benefit.

3.2.3. Very-Late-Onset Asthma

The age cutoff for the diagnosis of late-onset asthma is usually defined as
>50–65 years [136,137]. The aging lung is associated with the loss of elastic recoil and
immunosenescence, which may lead to decreased lung function. While mechanisms have
not been fully understood, some studies suggest that older asthmatics have increased
sputum neutrophilia, secondary to Th1 and Th17 inflammation [138,139].

4. Asthma-Associated Comorbidities

Asthma is often associated with a variety of comorbidities. Common reported asthma
comorbidities include rhinitis, gastroesophageal reflux disease, nasal polyps, obstructive
sleep apnea, hormonal disorders, vocal cord dysfunction, obesity, and psychopatholo-
gies [140–142]. These conditions may complicate the diagnosis and management of asthma
or just coexist with asthma without obvious influence on this disease. These comorbidi-
ties could share a common pathophysiological mechanism with asthma or have different
pathological processes. Future studies are required to understand how these comorbidities
may interact with asthma.

5. Conclusions

Asthma is a heterogeneous lung disease with variable phenotypes and distinctive
endotypes. In Th2-high asthma, IL-4 and IL-13 activate B cells, which produce IgE and
sensitize mast cells. IL-5 promotes eosinophil recruitment to the lungs. In Th2-low asthma,
IL-17 and TNF-α promote the recruitment of neutrophils to the lungs. Protein kinases,
adapter protein, miRs, ORMDL3, and gasdermin B are newly identified molecules that
contribute to asthma pathogenesis, independent of inflammation. Eosinophils, IgE, FeNO,
and periostin are practical biomarkers for Th2-high asthma, whereas neutrophils are easily
used for Th2-low asthma. Because asthma is a heterogeneous disease, more studies are
required to identify new endotypes and new biomarkers to better diagnose and treat
the illness.
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