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Toonaciliatin K is a natural limonoid purified from the Toona ciliata Roem. var. ciliata (Meliaceae). This study is to reveal
the inflammatory suppression effect of toonaciliatin K and further the intrinsic mechanism. Firstly, anti-inflammatory effect of
toonaciliatin K was evaluated in lipopolysaccharide- (LPS-) induced RAW264.7 cells. RT-PCR results indicated that the mRNA
expressions of TNF-𝛼, IL-6, and IL-1𝛽 were downregulated by toonaciliatin K. The toonaciliatin K inhibited TNF-𝛼, IL-6, and IL-
1𝛽 levels stimulated by LPS. Furthermore, LPS elicited the excess iNOS andCOX-2mRNAand protein production and toonaciliatin
K attenuated the excess production. Western blot assay demonstrated that MAPK and NF-𝜅B signaling pathways play critical roles
in the toonaciliatin K’s anti-inflammatory activity. Secondly, toonaciliatin K inhibited carrageenan-induced paw edema in rats.
Thirdly, toonaciliatin K alleviated the paw swelling and improved arthritis clinical scores in the adjuvant arthritis rats. Toonaciliatin
K decreased the proinflammatory cytokines levels and Mankin scores in adjuvant arthritis rats. The HE staining, safranin O-fast
green, and toluidine blue staining results demonstrated that toonaciliatin K alleviated the histological changes of paw, for example,
pannus formation, focal loss of cartilage, bone erosion, and presence of extra-articular inflammation. Hence, toonaciliatin K is a
promising agent for treatment of arthritis.

1. Introduction

Rheumatoid arthritis (RA) is a frequent joints disease which
affects elderly people the most [1]. High morbidity and
severity have led to an acute decline in quality of life
worldwide. The arthritis is an inflammation-related disease
[2]. The main feature of arthritis, especially RA, is synovial
joint inflammation and cartilage destruction [3]. Many cyto-
kines play crucial roles in the pathogenesis of inflamma-
tory arthritis such as tumor necrosis factor alpha (TNF-𝛼),
interleukin-6 (IL-6), and interleukin-1𝛽 (IL-1𝛽) [4].The strat-
egy of arthritis treatment commonly focuses on the inflam-
mation regulation and made many contributions [5]. How-
ever, current arthritis therapy remains limited and unsatisfac-
tory. The long-term abuse of nonsteroidal anti-inflammatory

drug, which accounts for the main treatment of arthritis,
resulted in numerous side effects, for example, cardiovascular
disease, gastrointestinal disorder, and renal irritations [6].
Plant therapy, as one of the old and widely treatment systems,
focused on the prevention and cure of disease in long
history, especially in moderate disorders and chronic and
recurrent infections [7]. New compound isolation, screening,
and transformation with definite chemical structure from
natural plants were proved as a shortcut to find effective anti-
inflammatory drugs in the past years [8].

Limonoids were main part of secondary metabolites in
citrus fruit and juice since the first identification as the bitter
substance of citrus seeds in 1841 [9]. The kingdom of natural
limonoids mainly presented in Meliaceae and Rutaceae and
also frequently presented in Cneoraceae and Harrisonia sp.
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of Simaroubaceae [10]. The limonoids were used as antibac-
terial, antifungal, and antimalarial in juice industry in the
past [11]. Nowadays, phytochemical studies have revealed
that limonin and limonoids exerted pharmacology ability of
anticancer [12, 13], antiobesity [14], anti-inflammatory [15],
and hepatoprotective [16].The limonoids genus hasmade sig-
nificant progress for the chemoprevention of cancer, low back
pain, and wounds [17]. Some limonoids, named toonacilian-
ins A–I, were found inToona ciliata, a plant species cultivated
worldwide [18]. Two norlimonoids (toonacilianins K and L)
with similar structure were isolated from the Toona ciliata
Roem. var. ciliata (Meliaceae) by Liu and his team [19]. In
Liu’s report, the cytotoxicity of isolated limonoids was tested
on A549 and HL-60 cells also.The 5a, 6b, and 8a-trihydroxy-
28-norisotoonafolin exhibited themost sensitive cytotoxicity,
while toonaciliatin F exerted weak cytotoxicity against the
above two carcinoma cell lines. However, the toonaciliatin
K did not exhibit apparently cytotoxicity in Liu’s report. In
our research, we examined the anti-inflammatory ability of
toonaciliatin K on lipopolysaccharide- (LPS-) treatedmurine
macrophages RAW264.7 cells, carrageenan-induced paw
edema, and adjuvant induced-arthritis rats. The underlying
mechanism of toonaciliatin K’s anti-inflammatory ability was
also investigated.

2. Material and Methods

2.1. Reagent, Agent, Cell Culture, and Animals. Toonacil-
iatin K standard preparation (purity > 98%) was pro-
vided from National Institute for the Control of Pharma-
ceutical and Biological Products (Beijing, China). Protein
and RNA extraction kit and dimethyl sulfoxide (DMSO)
were purchased from Beyotime Institute of Biotechnology
(Beyotime, Haimeng, China). The 3-(4,5-dimethylthiazol-
2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT), LPS,
dexamethasone (DEX), carrageenan, indomethacin (IND),
and Freund’s complete adjuvant (FCA) were purchased
from Sigma-Aldrich (St. Louis, USA). The enzyme-linked
immune-sorbent assay (ELISA) kits were gained from R&D
(R&D Systems,Minneapolis,MN). Antibodies were acquired
from Cell Signaling Technology (CST, Beverly, USA).

RAW264.7, HEK293, and L02 cells were purchased from
the Cell Bank of Chinese Academy of Sciences (Shanghai,
China). Cells were maintained in a humidified atmosphere
of 5% CO

2
at 37∘C with commercial Dulbecco’s modified

eagle’s medium (DMEM) containing 10% fetal bovine serum
(FBS) (Gibco, Carlsbad, USA). Toonaciliatin K was dissolved
in DMSO with final concentration less than 1% for cell study.

Current animal study was strictly conducted following
Declaration of Helsinki and the Guide for Care and Use of
Laboratory and approved by the Institutional Animal Care
and Use Committee of Fudan University (Grant number
2016K1036). Sprague-Dawley (SD) rats at 150–170 g with all
males from Slac Animal Corporation were kept in animal
facility of Shanghai Key Laboratory of Clinical Geriatric
Medicine with a temperature of 25 ± 3∘C, humidity of 40
± 5%, and also a 12 h light and 12 h dark cycle environment
with abundant diet and water. Toonaciliatin K was dissolved
in sterilized 5% DMSO/saline for rat study. A total of 228

rats were used in this experiment. 120 rats were used in acute
toxic study (60 males and 60 females). 40 rats were used in
carrageenan-induced paw edema experiment (all males). 48
rats were used in acute toxic study adjuvant arthritis experi-
ment (all males).

2.2. Cell Research

2.2.1. MTT Assay. Cytotoxicity of toonaciliatin K on
RAW264.7 cells was measured via MTT assay as described
[20]. Concisely, RAW264.7 cells were cultured in 96-well
plates and induced by toonaciliatin K (0 to 250𝜇M) for 24 h.
Cell viability under toonaciliatin K exposure was calculated
using our previousmethod [20]. In addition to human tumor
cells, human embryonic kidney (HEK293) cells and human
hepatic (L02) cells were employed to explore toonaciliatin
K’s cytotoxicity under the same dose range and expose time
on human normal cells [21].

2.2.2. Study Design and Toonaciliatin K Concentrations. Cell
study followed previous literature with minor changes [22].
Cells were divided into six groups: (1) the saline group with-
out LPS and toonaciliatin K (control), (2) LPS group without
toonaciliatin K coexposure (LPS), (3) LPS-induced group
with DEX coexposure (0.5 𝜇g/mL) (positive, DEX) as previ-
ous report [22], (4) LPS group with toonaciliatin K coexpo-
sure (7𝜇M), (5) LPS group with toonaciliatin K coexposure
(14 𝜇M), and (6) LPS group with toonaciliatin K coexposure
(28𝜇M). After 12 h LPS and toonaciliatin K coexposure, cells
and supernatants were collected for consequent examination.

2.2.3. ELISA Assay. After LPS stimulation and toonaciliatin
K incubation, cultured medium in each well was collected
and centrifuged at 1000𝑔 for 10min at 4∘C as soon as possible.
The inflammatory cytokines levels of TNF-𝛼, IL-6, IL-1𝛽, and
the nitric oxide (NO) levels were measured with ELISA kits
following the manufacture instructions separately.

2.2.4. Real-Time PCR. After LPS stimulation and toonacil-
iatin K incubation, RNA in RAW264.7 cell was extracted
using Trizol, and cDNAwas conducted with a SuperScript III
First-Strand Synthesis System (Invitrogen Life Technologies).
For amplification, qPCR reaction solutions were composed of
50 ng of cDNA, 200𝜇Mof each primer, and SYBR�Premix Ex
Taq� (1x) in a volume of 20𝜇L with 30 cycles of 10 s at 95∘C,
10 s at 60∘C, and 30 s at 72∘C. The primer sequences and the
probe-sequence were indicated in Table 1.

2.2.5. Western Blotting. To analyze the effect of toonaciliatin
K on underlying inflammatory-related signaling pathway,
western blotting was used following the previous method
[23]. The primary antibodies were used for determination of
protein in RAW264.7 cells. The Histone-H3 was conducted
for the control of nuclear protein and 𝛽-actin was conducted
for the control of total protein.

2.3. Animal Research

2.3.1. Acute Toxicity. The acute toxicity study was performed
in rats according to theOECD guidelines (TG-420) [24]. Rats



BioMed Research International 3

Table 1: Real-time PCR primer sequences used in mRNA levels assay in research in vitro.

Gene Primer sequence

iNOS Forward: 5-GCA GAA TGT GAC CAT CAT GG-3

Reverse: 5-ACA ACC TTG GTG TTG AAG GC-3

COX-2 Forward: 5-CAG GAA ATC CTT GCT GTT CC-3

Reverse: 5-TGG GCA AAG AAT AAC ATC-3

TNF-𝛼 Forward: 5-TAC TGA ACT TCG GGG TGA TTG GTC C-3

Reverse: 5-CAG CCT TGT CCC TTG AAG AGA ACC-3

IL-6 Forward: 5-CCG GAG AGG AGA CTT CAC AG-3

Reverse: 5-GGA AAT TGG GGT AGG AAG GA-3

IL-1𝛽 Forward: 5-CCC TGC AGC TGG AGA GTG TGG-3

Reverse: 5-TGT GCT CTG CTT GAG AGG TGCT-3

GAPDH Forward: 5-ACC ACA GTC CAT GCC ATC AC-3

Reverse: 5-CAC CAC CCT GTT GCT GTA GCC-3

were allocated into test group and vehicle group randomly
with half male and female. For test group, the toonaciliatin
K was dissolved in the 5% DMOS/saline and injected into
rats via tail vein. Ten rats with half male and female were
used for test of each injection dose. Meanwhile, another
group of 10 rats with half male and female was set as vehicle
group. The same volume of 5% DMOS/saline was injected
into vehicle group.These signs such as change or pause in the
respiratory rhythm, convulsions, areflexia, analgesia, vomit-
ing, uncontrolled urination, uncontrolled defecation, and
death were recorded as toxicity signs [25]. The acute toxicity
assay was initiated from 1mg/kg to probe safety dose range of
toonaciliatin K (i.v.) as in previous literature [26]. The dose
range was set as 1, 20, 50, 100, 200, 300, 400, and 500mg/kg.
If there were no signs of toxicity or no diminished activity in
total of 72 h, then this dose was recorded as safe dose. After
that, the following dose was tested. If there were any signs of
toxicity or no diminished activity, then this dosewas recorded
as themaximum tolerance dose of toonaciliatin K and further
dose will not be proceeded.

2.3.2. The Carrageenan-Induced Paw Edema. Furthermore,
according to previous report [27], carrageenan-triggered paw
edema assay was performed to explore the anti-inflammatory
activity of toonaciliatinK. Rats were allocated into five groups
randomly (𝑛 = 8): vehicle group, 3 test groups, and positive
group. Test group was injected with toonaciliatin K via tail
vein at three dosages (8.3, 16.5, or 33mg/kg). DEX (5mg/kg)
was injected into positive while the same volume saline into
vehicle [26]. 4 h later, carrageenan (0.1ml; 1% w/v in saline)
was injected into subplantar of right hind paw of rats in all
groups. Paw edema volume was measured using plethysmo-
meter at five desired points (0, 1, 2, 3, 4, and 5 h after injection)
and recorded as volumes of (desired group/control group) ∗
100% following previous procedure [28].

2.3.3. The Adjuvant Arthritis. In this animal experiment, rats
were randomized and enrolled into six groups (𝑛 = 8):
control group vehicle group, three toonaciliatin K (8.3, 16.5,
and 33mg/kg) groups, and positive group. Naı̈ve rats were

used as control. Adjuvant arthritis model was established
by FCA injection according to previous report [29] in all
groups except control group. Seven days after injection of
FCA, toonaciliatinKwas injected via tail vein at three dosages
(8.3, 16.5, or 33mg/kg) every three days during dosing period.
The course of toonaciliatin K administration lasted 27 days.
Meanwhile, 5% DMSO/saline was injected via tail vein as
vehicle. Animals in positive group were orally treated with
IND (once daily treated at 20mg/kg) [30]. The animals in
control groups received neither FCA nor DMSO.

2.3.4. Hind Paw Swelling and Arthritis Clinical Scores. Hind
paw swelling rate was analyzed after the establishment of
adjuvant arthritis model following the reported method [29].
The hind paw volumes were recorded using plethysmometer
each 3 days from the first toonaciliatin K administration day.
Increasing of paw swelling (%) was measured according to
the formula: (increasedmultiples of right hind paw volume)−
(basic hind paw volume)/(basic hind paw volume). Arthritis
clinical scores were analyzed each 3 days following previous
literature [31].

2.3.5. ELISA Assay in Serum. Briefly, adjuvant arthritis rats
were sacrificed after last toonaciliatin K administration. Rat
blood was collected in blood collection tubes, centrifuged
at 4000 rpm/min for 10min at 4∘C. After that, supernatant
of blood was stored in −80∘C until examination. Proinflam-
matory cytokines levels about TNF-𝛼, IL-1𝛽, and IL-6 in rat
serum were measured using ELISA kits separately.

2.3.6. Rats Paw Histological Examination and Scores. After
execution, the right paws were dissected from adjuvant
arthritis rats kept intact for histological examination and
the soft tissues of paw were isolated carefully. Paw tissues
were fixed immediately and decalcified for 1.5 month. Then
the tissue specimens were dehydrated, embedded in paraffin,
and cut into 5 𝜇m sections. The paw sections were stained
using hematoxylin-eosin (HE) and safranin O-fast green for
histological assay. The arthritis histological scores regard-
ing HE staining were analyzed by individual double-blind
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pathologist: 0 (normal), 1 (mild swelling), 2 (moderate swel-
ling), 3 (severe swelling), and 4 (excess swelling with joint
rigidity) [32]. Degree of arthritis histological change regard-
ing safranin O-fast green staining was analyzed by individual
double-blind pathologist using Mankin scoring system as
Zhong’s literature [33]. Furthermore, paw sections were
stainedwith toluidine blue stain solutions (1%) for the evalua-
tion of sulfated glycosaminoglycan (CAG) synthesis as Salva-
tore’s literature [34]. Evaluation was performed based on the
staining intensity. All images were captured with microscope
(D5100, Nikon, Tokyo, Japan).

2.4. Analysis of Data. Triplicate experiments were obtained
by independent samples unless otherwise mentioned. The
results were made as means ± standard deviation (SD) and
determined using one-way ANOVA followed with Bonfer-
roni test. All analyses were conducted using software with
significance at <0.05 (SPSS19.0, Chicago, IL).

3. Results

3.1. Cell Results

3.1.1. The Cytotoxicity. Exposure of toonaciliatin K at
0–250 𝜇M for 24 h did not exert impact on the cell viability
of RAW264.7 (Figure 1(b)). What is more, toonaciliatin K
exerted significantly low cytotoxicity on 2 types of human
normal cells (HEK 293: kidney cell line; L02: liver cell line)
at 0–250 𝜇M for 24 h exposure (Figure 1(b)). MTT results
implied that toonaciliatin K is safe on human normal cells,
although some similar compounds exerted weak cytotoxicity
activity on carcinoma cells in previous report.

3.1.2. Effect of Toonaciliatin K on Proinflammatory mRNA
Expression, Proinflammatory Cytokines Levels, and NO Levels
in LPS-Stimulated RAW264.7 Cells. To evaluate the effect
of toonaciliatin K on the expression of proinflammatory
cytokines, the levels of TNF-𝛼, IL-6, and IL-1𝛽 were assessed
by RT-PCR.The levels of TNF-𝛼, IL-6, and IL-1𝛽maintained
low levels in unstimulated RAW264.7 cells (Figure 1(d)). LPS
exposure resulted in the significant upregulation of TNF-𝛼,
IL-6, and IL-1𝛽mRNAexpression (Figure 1(c)). Furthermore,
the cytokines levels about TNF-𝛼, IL-6, and IL-1𝛽 were
increased after LPS stimulation (Figure 1(d)). However, the
coexposure treatment of toonaciliatin K at 7, 14, and 28𝜇M
for 12 h inhibited the increase of mRNA expression of TNF-
𝛼, IL-6, and IL-1𝛽. The proinflammatory cytokines levels of
TNF-𝛼, IL-6, and IL-1𝛽were also inhibited by toonaciliatin K
in a concentration-dependent manner.

To further investigate the effect of toonaciliatin K on
NO production, the mRNA and protein levels of inducible
nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-
2) were determined and quantified. Compared with nor-
mal cells, LPS exposure successfully induced the mRNA
expression of iNOS and COX-2 (Figure 1(e)). As shown in
Figure 1(e), toonaciliatin K attenuated the increase of the
mRNA expression of iNOS and COX-2. Western blot results
indicated that toonaciliatin K inhibited iNOS and COX-2
protein expression in a dose-dependent manner (Figures 1(f)

and 1(g)). ELISA results demonstrated that toonaciliatin K
inhibited the NO production in a concentration-dependent
manner (Figure 1(h)).

3.1.3. Effect of ToonaciliatinK on Inflammatory-Related Signal-
ing Pathways. Themitogen-activated protein kinase (MAPK)
and nuclear factor-kappa B (NF-𝜅B) signaling pathway
are usually inflammatory-involved pathways [35]. Mean-
while, the phosphoinositide 3-kinase (PI3K)/AKT signaling
pathway often takes part in the inflammatory activity in
LPS-induced RAW264.7 cells [36]. In the LPS-stimulated
RAW264.7 cells, LPS triggered the activation of NF-𝜅B
and phosphorylation of P38, extracellular regulated protein
kinases (ERK), c-Jun N-terminal kinase (JNK), and AKT in
RAW264.7 cells. The toonaciliatin K treatment leaded to the
attenuation inNF-𝜅B expression levels (Figure 2(a)) and ERK
and p38 phosphorylation (Figure 2(b)). However, the phos-
phorylation JNK and total JNKwere not affected by toonacil-
iatin K treatment with three concentrations (Figure 2(b)). In
addition, toonaciliatin K treatment with three concentrations
exhibited no inhibitory effect on the LPS-induced increase of
the phosphorylation level of AKT (Figure 2(c)).

3.2. Animal Results

3.2.1. Evaluation of Toxicology and Safety. In the acute toxic
test, the toxic signs such as vomiting, tachypnea, and dimin-
ished activity occurred in rats when the dose of toonaciliatin
K reached 300mg/kg (i.v.). Then 300mg/kg was recorded as
maximum tolerance dose. However, the toonaciliatin K was
injected using three dosages (8.3, 16.5, and 33mg/kg) in the
carrageenan-induced paw edema and adjuvant arthritis rats.
Therefore, the toonaciliatin K (i.v.) dose range used in further
animal experiments, which is nearly 2–10 percent of maxi-
mum tolerance dose (tested dose of 8.3mg/kg, 16.5mg/kg,
and 33mg/kg versusmaximum tolerance dose of 300mg/kg),
was relatively safe.

3.2.2. Anti-Inflammatory Ability of Toonaciliatin K on Car-
rageenan-Induced Paw Edema in Rats. The carrageenan
induced a significant paw edema in the vehicle group. As
shown in Figure 3(a) toonaciliatin K administration (i.v.)
inhibited the paw edema in carrageenan-induced paw edema
in a dose-dependent manner.

3.2.3. Inhibition Ability of Toonaciliatin K on Adjuvant Arthri-
tis Rats. The FCA elicited marked paw swelling and resulted
in significant increase in the arthritis clinical scores of rats
in the vehicle group. However, toonaciliatin K alleviated the
paw swelling (Figure 3(b)) and possessed a downregulation
trend in the arthritis clinical scores in adjuvant arthritis rats
(Figure 3(c)) in a dose-dependentmanner.The proinflamma-
tory cytokines of TNF-𝛼, IL-6, and IL-1𝛽 in serumof adjuvant
arthritis rats increased in the vehicle group. Toonaciliatin K
administration attenuated the proinflammatory cytokines in
a dose-dependent manner (Figure 3(d)).

3.2.4. Effect of Toonaciliatin K onHistological Changes of Adju-
vant Arthritis Rats. HE and safranin O-fast green staining
demonstrated the impact of toonaciliatin K on histological
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Figure 1: Continued.
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Figure 1: The chemical structure, safety, and anti-inflammatory activities of toonaciliatin K on RAW264.7 cells. (a) The chemical structure
of toonaciliatin K. (b) The MTT assay using toonaciliatin K at 24 h exposure on RAW264.7, HEK293, and L02 cells. For consequent assay,
the RAW264.7 cells were treated with toonaciliatin K exposure (7, 14, or 28𝜇M) combined with LPS (10 ng/mL) for 12 h. The dexamethasone
(Dex, 0.5 𝜇g/mL) was used as positive. There were no LPS and toonaciliatin K in control group. (c) The mRNA expression levels of TNF-𝛼,
IL-6, and IL-1𝛽. (d) The cytokines levels of TNF-𝛼, IL-6, and IL-1𝛽. (e) The mRNA levels of iNOS and COX-2. (f) The representative protein
levels of iNOS and COX-2. (g) The quantification of protein levels of iNOS and COX-2. (h) The NO production levels. Statistical differences
in different concentrations were considered significant at the levels of ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, or ∗∗∗𝑃 < 0.001. The statistical differences
among LPS group and control group were considered significant at the levels of ###𝑃 < 0.001.

changes, for example, synovial proliferation, inflammatory
infiltrates, angiogenesis, edema, pannus formation, granu-
loma, focal loss of cartilage, bone erosion, and presence of
extra-articular inflammation. HE staining results indicated
that toonaciliatin K injection possessed a decreased trend in
the bone histological score (Figures 4(a) and 4(b)). Mean-
while, safranin O-fast green staining results demonstrated
that toonaciliatinK attenuated the cartilage damage in the test
group (Figure 4(c)).Mankin’s score consists of 4 aspects based
on safranin O-fast green staining results: structure changes,
cellular changes, safranin staining, and tidemark. Full thick-
ness cartilage was found in control, while FCA induced
apparently defects in the model. Toonaciliatin K injection
decreased total Mankin’s scores in a dose-dependent man-
ner (Figure 4(d)). Moreover, representative histochemistry
images showed intense toluidine blue staining in control
group. However, toluidine blue staining about cartilage was
remarkably decreased in the vehicle group compared with
control group, which hinted the decline of proteoglycans and
GAG content in the adjuvant arthritis. Intact cartilage surface
was relieved by toonaciliatin K in a dose-dependent manner
(Figure 4(e)).

4. Discussion

RA is well-known chronic inflammatory disorder which can
damage human joint such as hand and feet with the char-
acteristics of bone destruction, synovium inflammation, and
cartilage damage.The persistent and chronic inflammation in
the synovial membrane plays critical roles in the pathological
basis of RA. Accumulating reports suggested that limonoids

exhibited widely anti-inflammatory effect in LPS-induced
RAW264.7 cells [37], carrageenan-induced acute paw edema
[38], and D-galactosamine-induced liver injury [16]. How-
ever, the reports of antirheumatoid arthritis effect limonoids
were still few until now. This study was to explore the anti-
inflammatory effect of a type of limonoids, toonaciliatin K,
in LPS-induced RAW 264.7 cell. The underlying mechanism
was investigated. Furthermore, the anti-inflammatory effect
of toonaciliatin K was evaluated on the carrageenan-induced
edema. Finally, the antiarthritis effect of toonaciliatin K is
investigated.

LPS-stimulated RAW 264.7 cell is commonly employed
as anti-inflammatory screening model [39]. After LPS stim-
ulation, macrophages produced excess response mediators
such as prostaglandins, TNF-𝛼, and IL-6.These inflammatory
mediators can elicit the growth anddissemination of invading
pathogens. Moreover, excess inflammatory mediators can
result in microcirculatory dysfunction, septic shock, and
inflammation. In this study, toonaciliatin K exhibited anti-
inflammatory effect in LPS-induced RAW264.7 cells by
inhibition of inflammatory mediators.

Moreover, carrageenan-induced edema is a representative
acute inflammatory animal model used to investigate the
anti-inflammatory effect of candidate drug.The acute inflam-
mation in body can be divided into 2 phases. The primary
acute phase (0–2 h) is a production process of histamine,
kinins, and serotonin. The secondary subacute phase is a
release process of bradykinin, leukotrienes, and prostagland-
ins [40]. Herein, there was only one statistical difference in
the high dose group compared with vehicle group in the
paw edema from 0 h to 2 h after carrageenan injection. This
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Figure 2: The signaling pathways involved in the anti-inflammatory activities of toonaciliatin K in vitro. The RAW264.7 cells were induced
with toonaciliatin K exposure (7, 14, or 28𝜇M) combined with LPS (10 ng/mL) for 12 h.The dexamethasone (Dex, 0.5𝜇g/mL) was conducted
as positive. The control group received no LPS and toonaciliatin K. (a) The NF-𝜅B signaling pathway activity and its quantification. (b) The
MAPK signaling pathway activity and its quantification. (c) The AKT signaling pathway activity and its quantification. Statistical differences
in different concentrations were considered significant at the levels of ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, or ∗∗∗𝑃 < 0.001. The statistical differences
among LPS group and control group were considered significant at the levels of ###𝑃 < 0.001.
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Figure 3:The antiedema effect of toonaciliatin K in carrageenan-induced paw edema SD rats. Rats were pretreated with toonaciliatin K (8.3,
16.5, or 33mg/kg, iv) for 4 h. The DEX (5mg/kg, p.o) was administrated for 24 h as positive group. The same volume of 5% DMSO/saline
was injected into vehicle. (a) Effect of toonaciliatin K pretreatment on carrageenan-induced rats paw edema. Furthermore, the antiadjuvant
arthritis effect of toonaciliatin K in rats was tested. Toonaciliatin Kwas injected using tail vein at the dosage of 8.3, 16.5, or 33mg/kg each three
days in total of 27 days of administration.The same volume 5%DMSO/saline was injected into vehicle.The IND (20mg/kg) was administered
orally once a day as positive. There was no intervention to control group. (b) The paw swelling increased in each group after toonaciliatin
K administration. (c) The arthritis clinical scores in each group after toonaciliatin K treatment. (d) The expression level of proinflammatory
cytokines in each group after toonaciliatin K treatment. Statistical differences in different concentrations were considered significant at the
levels of ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, or ∗∗∗𝑃 < 0.001.The statistical differences among vehicle group and control group were considered significant
at the levels of ###𝑃 < 0.001.

result indicated that toonaciliatin K inhibited the paw edema
weakly in the first 2 h. However, 3 h later, toonaciliatin K
with 3 doses inhibited the paw edema significantly. These
results indicated that the toonaciliatin K mainly inhibited
the secondary subacute phase in the carrageenan-induced
edema.

The adjuvant arthritis in rat is a commonly used model
with similar histology and immunology characteristic of

human [41]. FCA injection elicited the excess proinflamma-
tory cytokines production, paw swelling, and joint function
loss in the adjuvant arthritis. The internal structures of
joint such as cartilage, bone, and synovium are gradually
damaged in the chronic adjuvant arthritis. Besides the effect
of toonaciliatin K on macrophages, the effect of toonaciliatin
K for cartilage was investigated using an adjuvant arthritis
model elicited by FCA injection. Toonaciliatin K alleviated
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Figure 4:The antiadjuvant arthritis effect of toonaciliatin K on SD rats. Toonaciliatin K was injected using tail vein at the dosage of 8.3, 16.5,
or 33mg/kg each three days in total of 27 days of administration. The same volume 5% DMSO/saline was injected into vehicle. The IND
(20mg/kg) was administered orally once a day as positive. There was no intervention to control group. After 27 days, rats were sacrificed. (a)
HE staining of cartilage; scale bar = 300 𝜇m. (b) The arthritis histological scores regarding HE staining. (c) Safranin O-fast green staining of
cartilage; scale bar = 300 𝜇m. (d)TheMankin scores regarding safranin O-fast green staining. (e)The toluidine blue staining of paw sections;
scale bar = 300 𝜇m. Statistical differences in different concentrations were considered significant at the levels of ∗𝑃 < 0.05 or ∗∗∗𝑃 < 0.001.
The statistical differences among vehicle group and control group were considered significant at the levels of ###𝑃 < 0.001.

the histological changes of cartilage, which demonstrated the
satisfied antiadjuvant arthritis effects of toonaciliatin K.

Many cytokines derived from macrophages, for exam-
ple, TNF-𝛼, IL-6, and IL-1𝛽. The cytokines play key roles
in the pathologic process of RA. Excess proinflammatory
cytokines can provide a positive bride between fibroblast-
and macrophage-like synoviocytes in RA [42]. Inhibition
of inflammatory cytokines is the most common molecular
target in RA’s treatment. In this study, FCA injection resulted
in the excess production of proinflammatory cytokines in
adjuvant arthritis. However, the toonaciliatin K administra-
tion reduced the proinflammatory cytokines levels.

The iNOS is a critical enzyme in the regulation of inflam-
matory processes. The NO is a vasodilator which can block

the adhesion of neutrophils to the vascular endothelium [43].
Usually, NO is maintained in a relatively low level. However,
excess NO is produced after the activation of iNOS in cells
and infiltrating leucocytes when inflammation is elicited in
body tissue. The COX-2 is another important enzyme in the
mediation of inflammatory processes [44]. Excess COX-2
leads to the production of PGE2 which can mediate the pain.
In this study, toonaciliatinK suppressed the iNOS andCOX-2
expression.

Many signaling pathways could regulate anti-inflam-
matory cellular response such as NF-𝜅B, AKT, and MAPK
[45]. Accumulating report revealed that MAPK routes play
important roles in production of COX-2 and iNOS mRNA
and protein expression [35, 46]. After phosphorylation of
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MAPK pathways triggered by LPS, numerous cellular medi-
ators were emerged for consequent inflammation response
[47]. Meanwhile, the NF-𝜅B signaling pathway is also
involved in the mediating of iNOS and COX-2 expression.
Blocking of NF-𝜅B signaling pathway inhibited the syntheses
of iNOS and COX-2. In addition, multiple proteins in the
NF-𝜅B signaling pathway take part in the host defense
response against harmful pathogen [48].TheNF-𝜅B signaling
pathwaymediates the proinflammatory cytokines production
such as TNF-𝛼, IL-6, and IL-1𝛽. Downregulation of NF-𝜅B
and MAPK could inhibit the inflammatory activity so they
become themolecular target of numerous antiarthritis drugs.
The AKT signaling pathway is commonly associated with
some inflammatory disease via combination or individual
regulation with MAPK or NF-𝜅B signaling pathway [49, 50].
However, the AKT signaling pathway is activated in LPS-
stimulated RAW264.7 cells but not affectedwith toonaciliatin
K. In this study, the NF-𝜅B and MAPK signaling pathways
contributed combined regulation to the anti-inflammatory
effect of toonaciliatin K.

Taken together, our assay manifested anti-inflammatory
activity of toonaciliatin K in LPS-induced RAW264.7 cells in
vitro and antiadjuvant arthritis effect in vivo. Toonaciliatin
K’s actions on RAW264.7 cells were regulated with MAPK
and NF-𝜅B signaling pathways. This study supplied the
pharmacology basis of toonaciliatin K as a promising agent
for RA therapy.
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