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Background: Accurately distinguishing between Parkinson disease (PD) and healthy controls (HCs) 
through reliable imaging method is crucial for appropriate therapeutic intervention. However, PD diagnosis 
is hindered by the subjective nature of the evaluation. We aimed to develop an automatic deep-learning 
method that can segment the substantia nigra areas on susceptibility-weighted imaging (SWI) and T2-
weighted imaging (T2WI) and further differentiate patients with PD from HCs using a machine learning 
algorithm.
Methods: Magnetic resonance imaging (MRI) data from 83 patients with PD and 83 age- and sex-matched 
HCs were obtained on the same 3.0-T MRI scanner. A deep learning method with Swin-Unet was developed 
to segment volumes of interest (VOIs) on SWI and then map the VOIs on SWI to the corresponding T2WI; 
features were then extracted from the VOIs on SWI and T2WI. Three machine learning models were 
developed and compared to differentiate those with PD from HCs.
Results: Swin-Unet achieved a better Dice coefficient than did U-Net in SWI segmentation (0.832 vs. 
0.712). Machine learning models outperformed visual analysis (P>0.05), and logistic regression (LR) achieved 
the best performance [area under the curve (AUC) ≥0.819] and the most stable (relative standard deviations 
in AUC ≤0.05). The test results showed that the AUC of the LR model based on SWI segmentation was 0.894 
while that of the LR model based on T2WI segmentation was 0.876. There was no significant difference in 
VOIs based on manual labeling or automatic segmentation across T2WI, SWI, or a combination of the two 
(P>0.05). The AUCs of the LR model based on automatic segmentation were close to those of the model 
based on manual labeling (P>0.05).
Conclusions: Our approach could provide a powerful and useful method for automatically and rapidly 
diagnosing PD in the clinic with only T2WI.
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Introduction

Parkinson disease (PD), the second most common 
neurodegenerative disease, is characterized by neuronal 
loss in the substantia nigra (SN) (1). The prevalence of 
PD increases with age, leading to reduced quality of life 
and increased mortality (2). Therefore, the early and 
accurate diagnosis of PD is essential. However, the clinical 
presentations of PD are heterogeneous, making diagnosis 
challenging. Neuroimaging, particularly susceptibility-
weighted imaging (SWI), has facilitated the estimation of 
SN neuronal loss in PD and thus is considered valuable for 
the diagnosis of this disease (3-5). The “swallow tail” sign, 
the appearance of a healthy nigrosome-1 (N1) on axial T2-
weighted imaging (T2WI) and SWI, has been demonstrated 
to be a useful radiological sign for differentiating patients 
with PD from healthy controls (HCs) (6,7). SWI has been 
shown to be more sensitive than conventional magnetic 
resonance imaging (MRI) sequences in detecting loss 
of the swallow tail sign (8). However, the occurrence 
of the swallow tail sign in HCs is inconsistent, and the 
disappearance of the swallow tail sign can also be found 
in some cognitive disorders (9). The limitations of low 
specificity and low accuracy, especially in routine MRI, have 
hindered the clinical application of the swallow tail sign.

Radiomics is a method for extracting high-throughput data 
to provide a detailed characterization of radiographic images. 
It can capture lesion characteristics such as heterogeneity and 
shape and may—alone or in combination with demographic, 
histologic, genomic, or proteomic data—be used for 
clinical decision-making (10-12). Radiomic features can 
be roughly subdivided into statistical including histogram-
based, texture-based, model-based, transform-based, and 
shape-based. Radiomics is also leveraged in the diagnosis 
of PD (13-15). A previous radiomics analysis indicated that 
radiomics findings based on dopamine transporter single-
photon emission computed tomography (SPECT) can 
serve as a biomarker to track the progression of PD (16). 
However, its complicated sequences and time-consuming 
procedures limit its clinical application. A previous study 
also showed that some SN radiomics features based on 
SWI signal intensity could distinguish patients with PD 
from HCs (14). Although radiomics has good diagnostic 
accuracy for PD, the manual outlining of the SN remains a 

labor-intensive process. Furthermore, the results of manual 
segmentation can vary widely due to interrater differences. 
Deep segmentation networks have shown fast speed and high 
accuracy in automatic image segmentation (17,18). Automated 
detection, segmentation, and classification can free up clinical 
doctors’ time for higher value tasks and reduce errors due 
to fatigue and subjectivity (19). The encoder-decoder-based 
network U-Net is typically employed as a baseline model in 
different medical image segmentation benchmarks by virtue 
of its simple structure and advantages in segmenting subtle  
tissues (20). Notably, a recent study reported that neostriatum 
radiomics signatures based on T2WI achieved good 
diagnostic performance for PD and could potentially serve as 
a basis for the clinical diagnosis of PD (21). However, whether 
SN radiomics features based on T2WI can help to distinguish 
PD from HCs has not yet been established. In addition, the 
efficacy of differentiation models developed using machine 
learning based on SN radiomics remains uncertain.

In this study, we used Swin-Unet (22) to segment the SN on 
SWI and T2WI, thus reducing or eliminating the time needed 
for radiologists to label volumes of interest (VOIs). In Swin-
Unet, some conventional U-Net encoders are replaced with 
a transformer block to extract global image information and 
achieve a better segmentation performance (23). Subsequently, 
we used the radiomics features extracted from the VOI 
segmentation to diagnose PD and compared these 
with those of manual labeling methods. To this end, we 
constructed three classifiers [i.e., support vector machine 
(SVM), logistic regression (LR), and random forest (RF)], 
developed a stable machine learning model to distinguish 
patients with PD from HCs, and then estimated the 
generalizability of the model in a test group. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-24-27/rc).

Methods

Study sample

This retrospective study was approved by the Ethics 
Committee of Nanjing Medical University (No. 2019-664) 
and was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The requirement for written 
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PD participants
(n=149)

Exclusion criteria:
•	Patients had previous acute stroke (n=11)
•	Patients had previous brain surgery (n=7)
•	Lesions in the brainstem in SWI or T2WI (n=10)
•	Without MRI scan (n=23)
•	Obvious artifact in SWI or T2WI (n=15)

Patients retained 
after exclusion

(n=83)

Age- and sex-matched
healthy controls

(n=83)

SN on SWI segmentation (SwinUnet)

Feature extraction and selection

Model construction and comparison

SN on T2WI segmentation

Image preprocessing and SN VOI delineation

Coregistration

Figure 1 Flowchart of the included patients. PD, Parkinson disease; SWI, susceptibility-weighted imaging; T2WI, T2-weighted imaging; 
MRI, magnetic resonance imaging; SN, substantia nigra; VOI, volume of interest.

informed consent was waived by the ethics committee due 
to the nature of the retrospective design. We recruited 
patients with PD from Nanjing First Hospital between 
January 2017 and January 2021 who underwent 3-T brain 
imaging, including an SWI sequence. All patients met 
the UK Parkinson Disease Society Brain Bank clinical 
diagnostic criteria for PD (24) and were further evaluated 
with the Hoehn and Yahr (H&Y) scale (25). Patients with 
PD that had a history of other neurological and psychiatric 
diseases and secondary parkinsonism due to head trauma or 
medication use or that had features of atypical parkinsonism 
syndromes that could have interfered with the results were 
excluded (26). Age- and sex-matched healthy participants 
were used as the control group. All participants underwent 
a thorough interview concerning their medical history and 
a clinical examination following the International Parkinson 
and Movement Disorder Society (MDS) Unified Parkinson 
Disease Rating Scale protocol. HCs were required to have 
no history of any neurological or psychiatric disorders. All 

participants underwent 3-T brain imaging, including an 
SWI sequence. SWI and T2WI images with visible motion 
artifacts on the SN area that could affect feature extraction 
were excluded. Ultimately, a total of 83 patients with PD 
and 83 HCs were reviewed. A flowchart of this study is 
shown in Figure 1. The patients with PD and HCs were 
randomly allocated to training (n=116) and test groups 
(n=50) at a ratio of 7:3.

MRI acquisition and analysis

All participants underwent MRI on a 3.0-T MRI scanner 
(MAGNETOM Prisma, Siemens Healthineers, Erlangen, 
Germany). The MRI protocol included T2WI [repetition 
time (TR), 3,000 ms; echo time (TE), 103 ms; field of view 
(FOV), 220 mm × 220 mm; flip angle (FA), 150°; slice 
thickness, 6 mm] and SWI (TR, 27 ms; TE, 20 ms; FOV, 
220 mm × 220 mm; FA, 15°; slice thickness, 2 mm).

The swallow-tail sign normally appears as a high-signal 
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structure that has a linear, comma-like or wedge-like shape 
and is bordered on both sides by low-signal structures 
(the SN pars compacta and the medial lemniscus). Two 
radiologists (Z.L., 8 years of experience; Y.C.C., 10 years of 
experience), blinded to each participant’s status as a patient 
or control, evaluated the presence or absence of the swallow 
tail sign on axial sections from the SWI or T2WI sequence. 
Bilateral absence, unilateral absence, and faint presence 
of the swallow tail sign were considered negative, while 
bilateral presence was considered positive. In the event of 
a dispute, a resolution was reached through a collaborative 
decision-making process involving the two medical 
professionals mentioned above.

Image preprocessing and VOI delineation

SWI and T2WI were performed for all participants in the 
same scan, so the world coordinates of the corresponding 
pixel dimension in the two sequences were consistent. 
The pixel dimensions of the SW images varied from 
0.429×0.429×0.5 to 0.859×0.859×2.5 mm3, and those 
of the T2W images varied from 0.286×0.286×7.2 to 
0.687×0.687×6.5 mm3. Considering the voxel size variance, 
for each participant, we reshape the SW images voxel size 
to 1×1×β mm3 (where β is the original SWI z-dimension 
voxel size) and then cropped each SWI volume to the 
size of 256×256×N (where N represents the number of 
z-dimensions). The SN areas on SWI (SWIVOI) were 
then delineated manually on transverse slices using 
ITK-SNAP (www.itksnap.org) by one radiologist with  
10 years of experience (L.W.) and then checked by another 
radiologist with 15 years of experience (X.Y.). If the 
initial VOIs were determined to be inaccurate, they were 
subsequently revised and redrawn for further analysis. 
The VOIs were then transformed from SWI into T2WI 
space using the transform matrix, which was calculated by 
matching the voxel coordinates in the SW image and T2W 
image (T2WIVOI). To confirm that the anatomical location 
of T2WIVOI was correct, the same two board-certified 
neuroradiologists checked the location visually using ITK-
SNAP software by superimposing the transformed T2WIVOI 
on the T2W image.

SN segmentation

For swallow-tail sign analysis, SN VOIs should be 
delineated first. However, accurate labeling requires 
considerable manpower, and on T2WI, the SN is relatively 

unclear, resulting in low diagnostic accuracy for patients 
with PD. U-Net has shown great potential in medical 
image segmentation; thus, we used Swin-Unet (22), a 
network based on U-Net with a Swin transformer structure, 
to segment VOIs from SWI scans. The structure of Swin-
Unet is shown in Figure 2, with the input SWI size being 
256×256. Given the advantages of convolution operations 
for the underlying visual feature extraction, the input 
images first underwent SWI feature extraction through 
two consecutive 3×3 convolutional layers, and the output 
feature map was then sent into the Swin transformer blocks. 
In the Swin transformer block, the feature dependencies 
in the feature map were extracted using the self-attention 
mechanism with the following equation: 

( ), ,
T

k

QKAttention Q K V softmax V
C

 
=   

  	

[1]

where kC  is the number of feature channels used to 
normalize the data, Q  is the query matrix, K  is the key 
matrix, and V  is the value matrix. To obtain features at 
different levels, patch partition or patch merging operations 
were introduced between the Swin transformer blocks, and 
then the feature map size was at last reduced four times 
to 16×16. At each map size level, we set the self-attention 
vector dimension to 96, 192, 384, and 768 successively. 
In the decoder part of the Swin-Unet, the reduced-
resolution feature map was returned to the original size of 
the map layer by layer via a 3×3 deconvolution layer, and 
the encoder features were incorporated into the decoder 
features through a skip connection for better segmentation 
results. Finally, the segmentation results were output from 
another 3×3 deconvolution layer. Considering that VOIs 
only account for a very small portion of the overall image 
and most of the rest are background voxels in the SWI 
image, we trained Swin-Unet using weighted cross-entropy 
loss, as shown in the following equation:

( ) ( )
1

log 1 log 1
n

c ci ci ci ci
i

Loss w y x y x
=

= − ⋅ + − ⋅ −  ∑
	

[2]

where cix
 is the i-th pixel prediction probability of the c-th 

class, ciy  is the ground-truth label value of the i-th pixel, 
and cw  is the weight of the c-th class. The weight of VOI 
pixel category 0w  is 1, and that of the background pixel 
category 1w  is 0.1. The input data were first normalized to 
a mean of 0 and a variance of 1. We augmented the training 
dataset five times to prevent overfitting during the training 
period. The augmentation methods included flipping image, 
90° and 270° rotation, and scaling at two random scales 

http://www.itksnap.org
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Figure 2 Schematic diagram of SWI segmentation. Conv, convolution; SWI, susceptibility-weighted imaging.

between 0.8 and 1.2. Thus, we were able to use almost 700-
case SW images for training. The network was trained for 
200 epochs to achieve loss convergence, and the training 
batch size was set to 28. The initial learning rate was set 
to 1e-4 and then decayed by multiplying by 0.98 in each 
epoch. The Swin-Unet network framework was developed 
by PyTorch on our personal computer (Intel Core i9 CPU, 
RTX3090 24 GB GPU, 32 GB RAM). Because the SW 
and T2W images were captured at the same time, the 
corresponding pixels in SWI and T2WI had the identical 
world coordinates. Based on this, we could map the VOIs 
in the SW images to the T2W images with the same world 
coordinates. The detailed steps are as follows: (I) the VOI 
voxel coordinates in the SW images were transformed using 
the affine transformation matrix  SΜ  of the SW images to 
obtain the world coordinates  RASy  as follows:

 RAS iS=Μy x
	

[3]

where ix  represents the voxel coordinates of the VOIs in the 
SW images. (II) The world coordinates of the VOIs in the 

SW images were converted through the inverse operation 
of the affine transformation matrix  TΜ  of the T2W images 
to the voxel coordinates iz  in the T2W images, where 
 1

i T RAS= −z M y , and were then marked in the T2W images. (III) 
Since the sizes of the T2W images were larger than those 
of the SW images, the VOI of the T2W images obtained by 
directly using the coordinate markers were discontinuous 
(Figure 3A); therefore, we used the close operation of the 
morphological function to eliminate VOI discontinuities, as 
shown in the following equation:

( )⋅ = ⊕ I S I S S
	

[4]

where I  is the VOI on the T2W images, and S  is an 
operation core with a size of 5×5. The result of the 
operation is shown in Figure 3B.

Feature extraction and selection

The radiomics features of SWIVOI (manual labeling on SWI), 

SWIseg (segmentation on SWI), T2WIVOI (coregistration 
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SWIVOI on T2WI), and T2WIseg (coregistration SWIseg on 
T2WI) were computed using PyRadiomics version 3.0.1 
software (https://pyradiomics.readthedocs.io/en/latest/), 
which follows the principles of the Image Biomarker 
Standardization Initiative (IBSI). The radiomics features 
included six categories: shape-based [three-dimensional 
(3D)], first-order statistical, gray-level cooccurrence matrix 
(GLCM), gray-level run-length matrix (GLRLM), gray-
level size-zone matrix (GLSZM), and gray-level dependence 
matrix (GLDM). Finally, a total of 1,132 features were 
extracted from each VOI. The mean and standard deviation 
of the features were normalized using the Z score method. 
To filter redundant features and reduce feature dimensions, 
the t-test was used to filter features based on their associated 
P values. Subsequently, the least absolute shrinkage and 
selection operator (LASSO) method, which is suitable for 
high-dimensional data regression, was used to select the 
most useful predictive features.

Model construction

Three machine learning models were built for PD 
diagnosis: SVM (kernel: linear; cost: 0.1; number of support 
vectors: 53), LR (residual deviance: 86; null deviance: 128.6; 
residual deviance: 64.34; Akaike information criterion: 
82.34), and RF (number of trees: 500; number of variables 
tried at each split: 2; out-of-bag estimate of error rate: 

16.84%). Nested cross-validation was carried out to train 
the models with different machine learning methods. Leave 
one group out cross-validation was used for the outer loop, 
and 10-fold cross-validation was used for the inner loop. 
Each model was consequently constructed 100 times, and 
the corresponding 100 area under the curve (AUC) values 
and other metrics were calculated. The relative standard 
deviations (RSDs) were calculated using the following 
equation:

100%AUCRSD
AUC

σ
µ

= ×

	  

[5]

where σAUC is the standard deviation of the 100 AUC 
values, and μAUC is the mean of the 100 AUC values. The 
smaller the RSD%, the more stable the model is. After the 
aforementioned process, a final model with comparable 
performance and stability was chosen and validated with the 
test cohort.

Statistical analysis

All statistical analyses were performed using R statistical 
version 4.0.3 software (The R Foundation for Statistical 
Computing). The Kolmogorov-Smirnov statistical test 
(alpha =0.05) was used to test the normality of continuous 
variables, which are presented as medians with interquartile 
ranges and were assessed with the Student’s t-test and 

BA

Figure 3 Schematic diagram of T2WI segmentation. (A) The T2WI VOI obtained by directly using coordinate markers was discontinuous 
because the T2W images were larger than the SW images. (B) The T2WI VOI was continuous after application the close operation of 
morphological function. T2WI, T2-weighted imaging; VOI, volume of interest; T2W, T2-weighted; SW, susceptibility-weighted.

https://pyradiomics.readthedocs.io/en/latest/


Quantitative Imaging in Medicine and Surgery, Vol 14, No 9 September 2024 6343

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(9):6337-6351 | https://dx.doi.org/10.21037/qims-24-27

Mann-Whitney test. Categorical variables are presented as 
percentages and were assessed with the χ2 test. Analysis of 
variance and the Tukey multiple-comparison test were used 
for multiple comparisons. The interobserver reproducibility 
of imaging analysis was assessed using the intraclass 
correlation coefficient (ICC), with an ICC >0.8 indicating 
good agreement. The intrarater consistency between the 
two VOI segmentations was calculated using the Dice 
coefficient, with a Dice coefficient >0.8 indicating the 
high reproducibility of segmentations. Receiver operating 
characteristic (ROC) curve analysis was performed with the 
“pROC” package in R, and the AUC, sensitivity, specificity, 
and accuracy were used to compare the efficacy of the 
models. The ROC curves of the machine learning models 
were compared using the DeLong test.

Results

Demographics and clinical characteristics

Of the 58 patients with PD in the training group, 21 were 
H&Y stage 1, 21 were H&Y stage 2, and 12 were H&Y stage 
3. Of the 25 patients with PD in the test group, 10 were 
H&Y stage 1, 10 were H&Y stage 2, and 5 were H&Y stage 
3. Of the 83 patients with PD, 40 (48.19%) were male, while 
35 of the 83 (42.17%) HCs were male. The average age of 
the PD group was 65.12±15.35 years, whereas that of the 

HC group was 64.38±14.17 years. There was no significant 
difference in age or sex between the PD group and the HC 
group (P>0.05). The demographic and clinical characteristics 
of the participants are shown in Table 1. The interobserver 
ICC between the two researchers (Z.L. and Y.C.C.) in the 
imaging analysis was 0.85, and the Dice coefficient between 
the two researchers (L.J. and X.Y.) for VOI segmentations 
was 0.97. In the visual analysis, SWISN was able to the PD 
with an accuracy of 0.750 and an ROC-AUC of 0.750, 
while T2WISN diagnosed PD with an accuracy of 0.612 
and an ROC-AUC of 0.612. The AUC of the SWISN was 
significantly higher than that of the T2WISN (P<0.01).

SWI segmentation

In segmenting the SWI scans, the Swin-Unet method, as 
compared with its basis, U-Net, achieved better sensitivity 
(0.869 vs. 0.790), specificity (0.999 vs. 0.831), precision 
(0.838 vs. 0.742), and Dice coefficient (0.832 vs. 0.712)  
(Table 2). Figure 4 presents several SWI segmentation results 
obtained using Swin-Unet and U-Net.

Feature selection

After LASSO screening,  6 features from SWI VOI,  
11 features from SWIseg, 7 features from T2WIVOI,  
12 features from T2WIseg, 7 features from SWIVOI + 
T2WIVOI, and 5 features from SWIseg + T2WIseg were 
selected. The tuning parameters and LASSO coefficients 
associated with PD are shown in Figure S1. The detailed 
features and weight coefficients are shown in Figure 5.

Machine learning model

The performance metrics of the three models are shown 

Table 1 The demographic characteristic of the PD and HC groups

Characteristic
Training group Test group P value (HC-training 

vs. HC-test)
P value (PD-training 

vs. PD-test)HC (n=58) PD (n=58) P value HC (n=25) PD (n=25) P value

Age (years), median (IQR) 63 (45, 75) 65 (47, 75) 0.143a 63 (43, 76) 64 (49, 72) 0.357a 0.382a 0.523a

Gender, male/female 25/33 28/30 0.576b 10/15 12/13 0.569b 0.793b 0.982b

Age of onset (years), 
median (IQR)

NA 57 (38, 71) NA NA 54 (39, 70) NA NA 0.618a

a, two-sample Student’s t-test; b, Chi-square test. PD, Parkinson disease; HC, healthy control; HC-training, healthy controls in the training 
group; HC-test, healthy controls in the test group; PD-training, Parkinson disease patients in the training group; PD-test, Parkinson 
disease patients in the test group; IQR, interquartile range; NA, not applicable. 

Table 2 Evaluation results of SWI segmentation using different 
networks

Network Sensitivity Specificity Precision Dice

U-Net 0.790 0.831 0.742 0.712

Swin-Unet 0.869* 0.999* 0.838* 0.832*

*, the best results. SWI, susceptibility-weighted imaging. 

https://cdn.amegroups.cn/static/public/QIMS-24-27-Supplementary.pdf
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U-Net

HC

PD

Swin-Net

A B C D

E F G H

Figure 4 Visualization of SWI VOI segmentation by U-Net and Swin-Unet. (A-D) A 76-year-old male from the healthy control group. (A) 
Normal swallow-tail sign on both sides (red arrows). (B) The substantia nigra areas on SWI were delineated manually. Effectiveness of (C) 
U-Net and (D) Swin-Unet in SWI VOI segmentation. (E-H) A 74-year-old male with Parkinson disease. Bilateral absence of the swallow-
tail sign (E). The substantia nigra areas on SWI were delineated manually (F). Effectiveness of (G) U-Net and (H) Swin-Unet in SWI VOI 
segmentation. True-positive pixels are denoted in red, false-positive pixels in green and false negative pixels in blue. HC, healthy control; 
PD, Parkinson disease; SWI, susceptibility-weighted imaging; VOI, volume of interest. 

in Table 3. In the training group, the LR models based on 
SWIVOI (AUC: 0.974; accuracy: 0.955), SWIseg (AUC: 0.944; 
accuracy: 0.924), T2WIVOI (AUC: 0.819; accuracy: 0.864), 
T2WIseg (AUC: 0.852; accuracy: 0.864), SWIVOI + T2WIVOI 
(AUC: 0.927; accuracy: 0.935), and SWIseg + T2WIseg (AUC: 
0.917; accuracy: 0.921) had the best diagnostic performance 
for patients with PD. The diagnostic performance of all 
machine learning models was significantly higher than that 
of visual analysis (P<0.05). In addition, assessment of model 
stability with different machine learning methods showed 
that the LR models based on SWIVOI (RSD% of AUC: 
0.04), SWIseg (RSD% of AUC: 0.05), T2WIseg (RSD% of 
AUC: 0.07), SWIVOI + T2WIVOI (RSD% of AUC: 0.05), 
and SWIseg + T2WIseg (RSD% of AUC: 0.04) were the most 
stable (Table 3). After the performance and stability were 
compared, LR was chosen as the final model for validation. 
There were no significant differences among T2WI, SWI, 
and or their combination in either the manually labeled 
VOIs or the segmentation VOI (P>0.05). The AUCs of the 
LR model based on segmentation VOI were close to those 
of the model based on manual labeling (P>0.05). The ROC 
curves of the models in the test group are shown in Figure 6. 

The performance metrics of the model with the test group 
are shown in Table 4. 

Discussion

We developed and evaluated Swin-Unet, a network that 
uses deep learning to segment SN areas on SWI scans from 
patients with PD and HCs and then maps the SWIVOIs onto 
the corresponding T2WI to obtain T2WI SN; furthermore, 
we established an automatic PD diagnosis model using 
machine learning. The proposed segmentation method 
achieved good performance when using SWI scans of the 
SN. In addition, we built three machine learning models 
using radiomics features extracted from manually labeled 
and automatically segmented VOIs for the diagnosis of 
PD. The LR model attained the best performance and the 
greatest stability, both of which were significantly higher 
than those of visual analysis. On the test cohort, the AUCs 
of the LR models based on different sequences (T2WI, 
SWI, or T2WI + SWI) for the segmentation VOIs were all 
close to those for manually labeled VOIs, and there were 
no significant differences between the manually labeled 
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Figure 5 Details of the features associated with PD and the weighting coefficients of different datasets after LASSO screening. SWIVOI, 
features of the manual labeling on SWI; SWIseg, features of the segmentation on SWI; T2WIVOI, features of the manual labeling on T2WI; 
T2WIseg, features of the segmentation on T2WI; SWI, susceptibility-weighted imaging; T2WI, T2-weighted imaging; PD, Parkinson 
disease; LASSO, least absolute shrinkage and selection operator.

and automatically segmented VOIs. Overall, our findings 
suggest that the Swin-Unet network can achieve good 
accuracy in the segmentation of the SN on SWI and T2WI 
and that our approach has high PD diagnostic value when 
only using T2WI, illustrating the potential for an automatic 
and fast PD diagnosis.

Uchida et al. (27,28) demonstrated that cognitive 
impairment in PD is associated with cerebral iron 
burden and striatal iron accumulations are correlated 
with neurophysiological signs in patients with PD. With 
the exception of the striatal iron accumulations, loss of 
dopaminergic neurons in the SN is known to occur in 
clinical parkinsonism (29,30). N1 refers to an area with two 
hypointense tails with a hyperintense middle; its shape can be 
visualized as a “swallow tail” sign on SWI or T2WI (31,32). 
Therefore, previous studies have suggested that the absence 
of the swallow tail sign may have the potential to differentiate 
patients with PD from HCs (33). Radiomic features 
extracted from SWI have also been reported as biomarkers 
for diagnosing PD (14). However, manual segmentation 
on high-resolution images (SWI) is a highly laborious and 

time-consuming process. Additionally, the SN is less clear 
on T2WI than on SWI, a major limitation for clinical 
trials. In this paper, we propose an efficient deep learning 
model (Swin-Unet) for SN segmentation. The Swin-Unet 
model includes an encoder, bottleneck, decoder, and skip 
connections (34). As the self-attention mechanism in the 
transformer block can extract more image information than 
can convolution, the Swin module in Swin-Unet represents 
an improvement in encoding ability over U-Net. Previous 
studies have demonstrated that Swin-Unet is superior to 
traditional U-Net on several medical image datasets (35,36). 
The results of this study showed that Swin-Unet achieved a 
better Dice coefficient than did U-Net in SWI segmentation 
(0.832 vs. 0.712), which is consistent with previous reports 
in the literature. In Swin-Unet, which is an Unet-like pure 
transformer for medical image segmentation, the tokenized 
image patches are fed into the transformer-based U-shaped 
encoder-decoder architecture with skip connections for 
local-global semantic feature learning. Therefore, the Swin-
Unet ensures both high segmentation accuracy as well as 
robustness and generalizability.
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Table 3 The performance metrics of the classifiers using different modal features 

Model Classifier Accuracy Sensitivity Specificity AUC F1 score RSD% in AUC

Visual analysis SWISN 0.750* 0.759* 0.741* 0.750* 0.748* 0.08*

T2WISN 0.612 0.586 0.638 0.612 0.610 0.09

SWIVOI SVM 0.956 0.930 1.000 0.971 0.951 0.05

LR 0.955* 0.943* 0.975* 0.974* 0.952* 0.04*

RF 0.969 0.963 0.975 0.966 0.967 0.06

SWIseg SVM 0.906 0.967 0.843 0.913 0.894 0.08

LR 0.924* 0.933* 0.917* 0.944* 0.909* 0.05*

RF 0.915 0.930 0.900 0.927 0.902 0.06

T2WIVOI SVM 0.849 0.873 0.817 0.820 0.819 0.15

LR 0.864* 0.891* 0.800* 0.819* 0.861* 0.02*

RF 0.851 0.810 0.833 0.781 0.850 0.11

T2WIseg SVM 0.855 0.867 0.843 0.844 0.852 0.09

LR 0.864* 0.813* 0.867* 0.852* 0.859* 0.07*

RF 0.865 0.860 0.867 0.881 0.861 0.10

SWIVOI + T2WIVOI SVM 0.916 0.931 0.900 0.912 0.905 0.13

LR 0.935* 0.933* 0.908* 0.927* 0.925* 0.05*

RF 0.900 0.931 0.916 0.908 0.921 0.09

SWIseg + T2WIseg SVM 0.909 0.913 0.908 0.910 0.901 0.11

LR 0.921* 0.935* 0.910* 0.917* 0.921* 0.04*

RF 0.918 0.912 0.903 0.902 0.901 0.17

*, the best results. AUC, area under the curve; RSD, relative standard deviation; SWISN, substantia nigra on SWI; T2WISN, substantia nigra 
on T2WI; SWIVOI, features of the manual labeling on SWI; SVM, support vector machine; LR, logistic regression; RF, random forest; SWIseg, 
features of the segmentation on SWI; T2WIVOI, features of the manual labeling on T2WI; T2WIseg, features of the segmentation on T2WI; 
SWI, susceptibility-weighted imaging; T2WI, T2-weighted imaging. 

Similar to these previous studies (14,15,37), we also used 
a general radiomics approach to extract features and build 
models for diagnosing PD. Ren et al. (14) demonstrated that 
predictive radiomics features extracted from the SN on SWI 
images could reflect the H&Y stage of PD to some extent. 
In our study, we extracted radiomics features from SN VOIs 
manually drawn on SWI and automatically segmented on 
SWI and T2WI. We found that three radiomics features 
(original_shape_Sphericity, original_shape_Elongation, 
and original_GLCM_Imc2) were closely correlated 
with a PD diagnosis after LASSO screening with high 
weighting coefficients. GLCM expresses the distribution 
of neighboring voxels and can reflect the signal mixing 
degree of the lesions by means of the relative relationship 
between the distribution and the site of the gray level, 

which may be important markers of SN homogeneity. 
Although slice thickness, volume segmentation, and 
resolution differ between T2WI and SWI, these findings 
partly reflect the high accuracy of our segmentation method 
and the preservation of feature information from the SN. 
This may be attributable to the fact that radiomics can 
capture tissue properties such as shape and heterogeneity. 
In contrast to biopsy, which captures only a small portion 
of heterogeneity at only a single anatomic site, radiomics 
captures heterogeneity across the entire lesion volume (12).

Machine learning has been widely applied, for instance 
being used in a variety biomedical studies (38,39), for 
automatically detecting road damage (40), for detecting plant 
diseases (41), and for helping autism-affected children (42).  
In our study, we tested three machine learning models for 
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PD diagnosis: SVM, LR, and RF. Different classification 
models have variable performances in PD diagnosis, and 
in our study, the LR model outperformed the other ML 
methods. Binary LR is a traditional method for estimating 
the probability of a binary response based on one or more 
independent variables, providing not discrete outputs but 
probabilities associated with each observation (43). In 
addition, we found that the LR model was the most stable 
of all models analyzed. Therefore, LR was chosen as the 
final classifier. Notably, 10-fold cross-validation provided a 
more thorough control on classifier accuracy compared to 
commonly applied within-sample regression or leave-one-
out cross-validation. The RSD obtained with the 10-fold 
cross-validation indicated that the classifications were rather 
robust. We validated the model with the test group and 
found that the AUC of the LR model based on SWI was 
slightly high than that of T2WI. One possible reason for 
this is that SWI can provide information on iron deposition 
in the SN (44). The AUCs of the LR model based on VOI 
segmentation on both SWI and T2WI were close to the 
AUC of manually labeled VOIs on SWI, and there were no 
significant differences among the three models. The results 
of our study confirmed that a machine learning model based 
on conventional MRI is capable of automatically diagnosing 
PD and has high generalizability. To our knowledge, 
no reported machine learning study has described the 
establishment of a PD diagnostic model derived from SWI 
and a subsequent comparison with models derived from 
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Figure 6 The receiver operating characteristic curves for 
diagnosing PD using the LR classifier with the test group. The 
AUC of the SWISN was significantly higher than that of the 
T2WISN. There were no significant differences among different 
sequences (T2WI, SWI, and T2WI + SWI) in the manually 
labeled VOIs or the automatically segmented VOIs. TPR, true 
positive rate; FPR, false positive rate; T2WISN, substantia nigra 
on T2WI; AUC, area under curve; SWISN, substantia nigra on 
SWI; SWIVOI, features of the manual labeling on SWI; SWIseg, 
features of the segmentation on SWI; T2WIVOI, features of the 
manual labeling on T2WI; T2WIseg, features of the segmentation 
on T2WI; SWI, susceptibility-weighted imaging; T2WI, T2-
weighted imaging; VOI, volume of interest; PD, Parkinson disease; 
LR, logistic regression. 

Table 4 The performance metrics of the LR classifier using different modal features in the test group 

Model Accuracy Sensitivity Specificity AUC Recall F1 score P value

Visual analysis <0.01

T2WISN 0.651 0.554 0.747 0.651 0.582 0.615

SWISN 0.741 0.663 0.819 0.741 0.713 0.727

Manual labeling >0.05

SWIVOI 0.849 0.831 0.867 0.903 0.806 0.827

T2WIVOI 0.783 0.687 0.880 0.894 0.734 0.758

SWIVOI + T2WIVOI 0.843 0.855 0.831 0.909 0.818 0.830

Segmentation VOI >0.05

SWIseg 0.831 0.807 0.892 0.894 0.806 0.818

T2WIseg 0.801 0.819 0.771 0.876 0.785 0.793

SWIseg + T2WIseg 0.861 0.831 0.892 0.906 0.829 0.845

LR, logistic regression; AUC, area under the curve; T2WISN, substantia nigra on T2WI; SWISN, substantia nigra on SWI; SWIVOI, features of 
the manual labeling on SWI; T2WIVOI, features of the manual labeling on T2WI; VOI, volume of interest; SWIseg, features of the segmentation 
on SWI; T2WIseg, features of the segmentation on T2WI; SWI, susceptibility-weighted imaging; T2WI, T2-weighted imaging. 



Wang et al. An automatic diagnostic model for PD6348

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(9):6337-6351 | https://dx.doi.org/10.21037/qims-24-27

T2WI. Moreover, this is the first machine learning study 
that has investigated the automatic diagnosis of PD by using 
and comparing SWI and T2WI. In addition, quantitative 
susceptibility mapping (QSM), as a noninvasive magnetic 
resonance technique, has been used to quantify local tissue 
susceptibility with high spatial resolution and particularly 
sensitive to the presence of iron (45). Previous studies have 
demonstrated that QSM value is an auxiliary biomarker 
for the early evaluation of cognitive decline in patients 
with PD (46). Machine learning based on QSM may have 
better differentiation performance, which should be further 
explored in the future studies.

Our study had several limitations. First, the patient 
population in the included studies was relatively small. 
However, it should be noted that the current patient 
number was determined based on those of previous studies 
on machine learning techniques for PD neuroimaging 
(21,47,48). In addition, a large sample size is usually 
necessary to avoid overfitting if a deep learning method 
is being used for diagnosis. Therefore, we used radiomics 
and a machine learning algorithm to diagnose PD. In a 
later phase of our research, the sample size will be further 
increased to diagnose PD using a deep learning method, 
the results of which will be compared with the those of this 
study. Second, we employed a single-center cohort design, 
and different external patient populations with different 
MRI scanners from multiple centers are needed to validate 
the diagnostic efficacy of our proposed model. Third, we did 
not manually draw the VOIs on T2WI because the SN was 
unclear, and the SN VOI on T2WI was obtained using only 
the segmentation method. Therefore, the segmentation 
efficacy for T2WI was not obtained. Structural MRI (T1WI 
and T2WI) is usually unremarkable in PD (49), which may 
be because T2WI is acquired using a standard 6-mm slice 
thickness. However, it should be noted that we individually 
checked the SN VOIs after segmentation and excluded 
images with significant errors for segmentation. Future 
work involving the scanning of a specific T2WI sequence 
with a 2-mm slice thickness is needed to further verify the 
diagnostic efficacy. Finally, the proposed algorithm in our 
study depends on several hyperparameters that need to 
be fine-tuned. Additional studies should be performed to 
determine the effect of hyperparameter selection on the 
overall performance.

Conclusions

We developed an automated deep learning model with 

the Swin-Unet network for segmenting SN areas on SWI, 
mapped the SWI segmentation voxels onto T2WI, and 
further diagnosed PD from HCs using a machine learning 
algorithm. We found that the LR model based on automatic 
VOI segmentation of SWI, T2WI and SWI + T2WI 
had a similar performance to that of a model based on 
manually labeled VOIs. The method proposed here may be 
feasible and useful in diagnosing PD using deep learning 
and machine learning techniques based on SWI or T2WI 
and potentially serving as a powerful and valuable tool for 
automatic and rapid PD diagnosis in the clinic. Its use may 
facilitate a more efficient clinical treatment trial design and 
could also guide clinical care via earlier intervention. 
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