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Abstract: Peptide nucleic acids (PNAs) can bind duplex DNA in a sequence-targeted manner, forming
a triplex structure capable of inducing DNA repair and producing specific genome modifications.
Since the first description of PNA-mediated gene editing in cell free extracts, PNAs have been used to
successfully correct human disease-causing mutations in cell culture and in vivo in preclinical mouse
models. Gene correction via PNAs has resulted in clinically-relevant functional protein restoration
and disease improvement, with low off-target genome effects, indicating a strong therapeutic potential
for PNAs in the treatment or cure of genetic disorders. This review discusses the progress that has
been made in developing PNAs as an effective, targeted agent for gene editing, with an emphasis on
recent in vivo, nanoparticle-based strategies.
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1. Introduction

Triple helical nucleic acid structures were first proposed by Linus Pauling prior to the
establishment of the double-helical nature of DNA [1]. Biological formation of triplexes was first
demonstrated four years later by Felsenfeld et al. in 1957 [2], and in the 60 years since then, substantial
progress has been made in the application of triplex forming oligonucleotides (TFOs) as therapeutic
molecules. Although both DNA and RNA can form triple-helix structures, one class of synthetic TFOs,
peptide nucleic acids (PNAs), is particularly amenable for therapeutic application due to favorable
biochemical and biophysical properties of the molecule. PNAs, which were first synthesized in
1991 by Peter E. Nielsen and colleagues [3], are synthetic DNA analogs in which the phosphodiester
backbone has been replaced with N-(2-aminoethyl)-glycine units linked by peptide bonds. The charge
neutral backbone allows PNA to bind to DNA or RNA via Watson-Crick hydrogen bonds, with binding
affinities significantly higher than those of negatively-charged DNA oligomers [4]. PNAs are also highly
stable and resistant to cleavage by proteases or nucleases [5]. These favorable biological properties
have spurred many therapeutic applications for PNAs, such as inhibiting transcription, translation,
or the activity of microRNAs, that have been previously reviewed [6]. PNAs have also recently been
described as microRNA target protectors [7]. Further, the ability of PNAs to form triplexes with
genomic DNA (gDNA) in a site-directed manner has also been harnessed as a strategy to achieve
targeted gene editing at endogenous loci. PNAs are capable of binding with cognate DNA either
along the major groove of dsDNA by Hoogsteen-base pairing at homopurine/pyrimidine stretches or
binding directly by Watson-Crick base pairing after DNA duplex strand invasion [4]. Triplex formation
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creates an altered helical structure that is recognized by endogenous DNA repair factors that can
induce recombination of a single-stranded donor DNA encoding a desired modification at a nearby
genomic location (Figure 1) [8–11]. The ability of PNAs to induce recombination comes directly from
their ability to tightly bind at their cognate sites, as they do not possess any direct nuclease activity,
a feature that greatly increases the safety profile of PNAs.

Molecules 2018, 23, x FOR PEER REVIEW  2 of 15 

 

by endogenous DNA repair factors that can induce recombination of a single-stranded donor DNA 
encoding a desired modification at a nearby genomic location (Figure 1) [8–11]. The ability of PNAs 
to induce recombination comes directly from their ability to tightly bind at their cognate sites, as they 
do not possess any direct nuclease activity, a feature that greatly increases the safety profile of PNAs. 

 

Figure 1. Genome modification using peptide nucleic acids. Reprinted with permission from the Yale 
Journal of Biology and Medicine [6]. 

The earliest PNAs used for gene editing were designed to be dimeric, or “bis-PNAs”, in which 
two PNA strands of identical length are connected by a flexible linker [10]. Bis-PNAs bind by Watson-
Crick and Hoogsteen base pairing along a single strand of homopurine DNA, forming a 
PNA/DNA/PNA triplex, while displacing the second strand of duplex DNA (Figure 2) [10,12–15]. 
Other PNA designs, such as pseudo-complementary PNAs (pcPNAs) have also been used to 
successfully achieve gene editing [16]. The most promising gene editing results, to date, have been 
achieved using a tail-clamp PNA (tcPNA) design in which the Watson-Crick binding domain is 
extended beyond the length of the Hoogsteen binding domain [17–22]. The so-called “tail” of a tcPNA 
protracts past the homopurine recognition site into mixed sequence DNA, which forms a stretch of 
duplex DNA in addition to the PNA/DNA/PNA triplex formed at the homopurine DNA target. The 
longer target site leads to enhanced binding specificity as well as a longer stretch of helical distortion. 
The success of tcPNAs has been further amplified with the introduction of chemical modifications, 
such as “miniPEG” substitutions on the PNA backbone [22]. 

 

Figure 2. Examples of triplex structures used for PNA-mediated gene editing. 

Figure 1. Genome modification using peptide nucleic acids. Reprinted with permission from the Yale
Journal of Biology and Medicine [6].

The earliest PNAs used for gene editing were designed to be dimeric, or “bis-PNAs”, in which two
PNA strands of identical length are connected by a flexible linker [10]. Bis-PNAs bind by Watson-Crick
and Hoogsteen base pairing along a single strand of homopurine DNA, forming a PNA/DNA/PNA
triplex, while displacing the second strand of duplex DNA (Figure 2) [10,12–15]. Other PNA designs,
such as pseudo-complementary PNAs (pcPNAs) have also been used to successfully achieve gene
editing [16]. The most promising gene editing results, to date, have been achieved using a tail-clamp
PNA (tcPNA) design in which the Watson-Crick binding domain is extended beyond the length of the
Hoogsteen binding domain [17–22]. The so-called “tail” of a tcPNA protracts past the homopurine
recognition site into mixed sequence DNA, which forms a stretch of duplex DNA in addition to
the PNA/DNA/PNA triplex formed at the homopurine DNA target. The longer target site leads to
enhanced binding specificity as well as a longer stretch of helical distortion. The success of tcPNAs
has been further amplified with the introduction of chemical modifications, such as “miniPEG”
substitutions on the PNA backbone [22].
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The potential of these molecules to function as a therapeutic for systemic, human disease was
realized though a fortuitous collaboration between the labs of Dr. Peter M. Glazer and Dr. W. Mark
Saltzman of Yale University that demonstrated non-toxic and effective delivery of PNA and donor DNA
using biodegradable nanoparticles [23]. This review discusses the advance of PNAs as a gene editing
tool, as well as the development of biodegradable delivery systems primed for in vivo applications.

2. In Vitro Gene Editing

PNA induced gene correction was first demonstrated in the lab of Dr. Peter Glazer in 2002 by
Rogers et al. using a bis-PNA and donor DNA in human cell-free extracts [10]. The authors showed
that both a bis-PNA conjugated to a short donor DNA fragment and unconjugated bis-PNA and donor
DNA are capable of mediating site-specific donor recombination in a supFG1 reporter plasmid, with the
unlinked reagents leading to a higher correction frequency. The plasmid contains an inactivating G
to C mutation at position 144 in a supFG1 reporter gene. Since supFG1 encodes an amber suppressor
tRNA, functional gene correction can be detected by plasmid transformation into bacteria containing
an amber stop codon in the lacZ gene, with consequent β-galactosidase activity measured using
a chromogenic substrate. Using this assay, gene correction by unlinked bis-PNA and donor DNA
occurred at a frequency of 0.08% (Table 1). The donor DNA by itself was slightly active, leading to a
low level of mutation reversion, results that are consistent with the ability of short DNA fragments to
mediate recombination [24,25]. The effect of PNA and donor DNA treatment was over five-fold higher
than the donor DNA alone, indicating the capacity of PNA to stimulate recombination between the
target and donor DNA [10]. Though promising, these results were achieved in human cell-free extract,
a system that circumvents the need for simultaneous intranuclear colocalization of the two molecules
that would be necessary to achieve gene repair intracellularly.

In 2008, Chin et al. first studied intracellular PNA-mediated gene repair by co-transfecting
bis-PNA and donor DNA into Chinese hamster ovary (CHO) cells containing a β-thalassemia causing
human β-globin splice-site mutation [12]. In this reporter cell line, a single copy of GFP gene is
interrupted by the second intron of the human β-globin gene containing a G to A splice site mutation
(GFP/IVS2-1G→A). This mutation abrogates the normal donor splice site while activating a cryptic
splice site, resulting in a GFP mRNA that retains an additional 47 nucleotides and produces no GFP
protein expression. Thus, this system can be used as measure of gene editing, since correction of the
splice-site mutation would result in GFP expression. The co-transfection by electroporation of bis-PNA
and donor DNA to S-phase synchronized CHO-GFP/IVS2–1G→A cells restored GFP expression in
0.2% of cells. Mutation correction was found to be dependent on cell cycle, with lower correction
frequencies measured in asynchronous cells. The highest GFP expression was achieved with a PNA
that bound to a homopurine sequence within the β-globin gene that was 193 base pairs from the
mutation site. Lower levels of recombination were also measured using PNAs that were designed to
bind to four additional homopurine sites ranging from 34 to 829 base pairs from the mutation of interest.
GFP expression was observed using PNAs that targeted both the coding and noncoding DNA
strand. This study used a donor DNA that corresponded to the coding strand, but PNA-mediated
gene correction has also been observed with a donor DNA that corresponds to the noncoding
strand [17–19,23]. Enhanced gene correction frequencies of >0.4% were detected when bis-PNA/donor
DNA transfected cells were treated with chloroquine (Table 1), a lysomotropic agent that was previously
reported to enhance PNA transfection into cells [26,27]. The enhancement measured after lysosomal
disruption is attributed to the release of trapped nucleic acids, suggesting that the bioavailability
of intracellular PNA and DNA is a critical factor contributing to correction efficiency. This work
also demonstrated the persistence of PNA-mediated genomic correction—sequencing of sorted
GFP-fluorescent cells that were maintained in culture for one month revealed the expected single base
pair change at the genomic level [12].

In addition to targeted gene correction in the GFP-reporter construct, the authors demonstrated
the efficacy of PNA-mediated gene modification in K562 cells, mouse bone marrow cells containing the
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human β-globin locus, and primary CD34+ progenitor cells. PNA-modified CD34+ cells were capable
of differentiating into erythroid and myeloid lineages, in which the β-globin modification was still
detectable [12]. These results in primary human cells support the feasibility of a transplantation based
approach, using ex vivo PNA-mediated gene correction of mobilized peripheral blood progenitor cells
in individuals with hematologic disorders.

In the previously described studies, PNA-mediated gene modification was achieved by designing
bis-PNAs that bind to homopurine/homopyrimidine tracts, forming a PNA/DNA/PNA triplex
(Figure 2). This strategy is limited by the requirement for a polypurine sequence in the target gene to
enable triplex formation. To overcome this limitation, Lohse et al. designed pseudo-complementary
PNAs (pcPNAs) that were capable of binding mixed purine-pyrimidine sequences to form two
PNA/DNA duplexes (Figure 2) [28]. The pseudo-complementarity of pcPNAs is achieved with
2,6-diaminopurine and 2-thiouracil substitutions for adenines and thymines, respectively, in the
PNA strands, rendering the two strands complementary, but incapable of binding each other due to
steric hindrance. The base substitutions, however, do not prevent pcPNA binding to corresponding
DNA sequences, rendering a pair of pcPNAs capable of prying open duplex DNA via formation of
double-duplex invasion complexes. This PNA binding strategy has also been used for site-specific
gene editing in the aforementioned CHO-GFP/IVS2–1G→A cells. Co-transfection of a pair of pcPNAs
targeting the β-globin intron 2 and a 51-mer donor DNA yielded correction of the splice-site mutation
at a frequency of 0.01% [12]. The activity of the pcPNA was enhanced by modulating chromatin/DNA
interactions with the histone deacetylase (HDAC) inhibitor, vorinostat (suberanilohydroxamic acid
[SAHA]), to a frequency of 0.17%. A combination of S-phase synchronization and vorinostat treatment
lead to the highest pcPNA and donor DNA modification frequency of 0.78% (Table 1) [16].

PNA and donor DNAs have also been used to modify additional, disease relevant genomic
loci in vitro. Individuals with a naturally occurring 32 bp deletion in CCR5, a chemokine receptor
required for intracellular HIV-1 entry, have been shown to be resistant to HIV-1 infection. In 2011,
Schleifman et al. co-transfected PNA targeting the CCR5 locus with a 60 nucleotide antisense donor
DNA designed to introduce a stop codon, mimicking the delta32 mutation into THP-1 cells, a human
acute monocytic leukemia line that expresses CCR5 [17]. PNA/DNA treatment resulted in 2.46%
targeted CCR5 modification, which was shown to confer resistance to infection with R5-tropic HIV-1.
In this study, “tail-clamp” PNA (tcPNA), a PNA with a Watson-Crick binding domain that extends
beyond the homopurine sequence, was found to induce gene modification at a frequency higher than
the 0.54% modification achieved with a conventional bis-PNA design, in which the Watson-Crick and
Hoogsteen domains have equal length. The improved activity of tcPNA may be attributed to both
increased PNA/DNA binding affinity and greater distortion of the underlying duplex target, leading
to enhanced induction of DNA repair and recombination. As shown before, the induced genomic
modification persisted as cells were continually passaged in culture for at least 98 days. Additionally,
five corrected clones maintained in culture retained the targeted modification for 13 months, indicating
the heritability of the modified allele [17].

To demonstrate the clinical applicability of this approach, Schleifman et al. additionally used
tcPNA and donor DNA to modify CCR5 in primary human CD34+ hematopoietic stem cells (HSCs),
achieving editing frequencies of 2.8% (Table 1). PNA-modified CD34+ HSCs were next injected
into immune-deficient NOD-scid IL2rγnull mice. Flow cytometry was used to confirm the presence
of engrafted human HSCs four months after transplant and the presence of the targeted CCR5
modification was confirmed using gDNA obtained from the spleen of engrafted mice. In a recent
report, an HIV-1-positive patient with acute myeloid leukemia had no detectable viral load after
transplantation with allogenic stem cells that were homozygous for the CCR5-delta32 mutation [29,30].
There is also evidence that individuals who are heterozygous for the mutation have a significantly
reduced disease progression rate [31]. Thus, this work, in which CCR5 is modified ex vivo with tcPNA
and donor DNA, provides the basis for a therapeutic strategy in which transplantation of modified
HSCs could offer a renewable source of virus-resistant immune cells.
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In addition to mutation correction (β-globin) and gene disruption (CCR5), PNAs have also been
used to create heritable nucleic acid changes that induce targeted gene expression. Hemoglobinopathies
such as the β-thalassemias and sickle cell disease are caused by mutations that disrupt the normal
function of the β-globin gene. The severity of these disorders can be diminished by a benign condition
called hereditary persistence of fetal hemoglobin (HPFH), in which functional γ-globin—a globin
subunit that is normally silenced—is expressed in adults. The majority of HPFH cases arise from
mutations or deletions in the γ-globin promoter. Two mutations in the Aγ-globin gene promoter,
−117 G→A and −175 T→C, are known to alter transcription factor binding, leading to decreased
silencing of γ-globin expression. In 2013, Chin et al. used bis-PNA and a 100-nucleotide donor DNA
to create the −117 mutation, as well as to introduce a hypoxia-responsive element (HRE) in CD34+

hematopoietic progenitor cells at a frequency of 1.63% (Table 1). The promoter modifications led to
an increase in γ-globin expression that could be regulated by oxygen tension [32]. Although it is
possible to correct single-base, disease-causing mutations, there are over 200 known mutations that
lead to β-thalassemia. Correction of each mutation would require the design of mutation-specific
reagents. Elevated fetal hemoglobin (HbF), however, reduces the severity of β-thalassemia and sickle
cell disease, regardless of the causal mutation [33,34]. Thus, PNA-induced gene modification that
reactivates γ-globin expression could be a treatment approach for all hemoglobinopathies.

Table 1. PNA and donor DNA-mediated gene editing.

Drug Delivery System Reagent Study Design (Model, Target Gene) Efficiency (Assay) Year, Ref.

N/A bis-PNA and donor
DNA

human cell free extract
(pSupFG1/G144C)

0.08% (β-galactosidase
assay) 2002, [10]

electroporation or
nucleofection

bis-PNA and donor
DNA with

chloroquine

cell culture (Chinese hamster ovary
cells containing a human β-globin

splice-site mutation,
CHO-GFP/IVS2–1G→A and human

CD34+ progenitor cells)

0.4%—CHO cells (FACS) 2008, [12]

electroporation pcPNA and donor
DNA with SAHA

cell culture (Chinese hamster ovary
cells containing a human β-globin

splice-site mutation,
CHO-GFP/IVS2–1G→A)

0.78% (FACS) 2009, [16]

PLGA NPs bis-PNA and donor
DNA

cell culture (human CD34+ cells,
β-globin)

0.91% (limiting dilution,
allele specific PCR) 2011, [23]

electroporation tcPNA and donor
DNA

cell culture (THP-1 and human CD34+

cells, CCR5)
2.8% (limiting dilution,

allele specific PCR) 2011, [17]

electroporation bis-PNA and donor
DNA

cell culture (human CD34+ cells,
γ-globin)

1.63% (allele specific
qPCR) 2013, [32]

PLGA NPs
tcPNA and donor
DNA or bis-PNA
and donor DNA

in vivo (humanized NOD-scid
IL2rγnull mice, CCR5 and β-globin) 0.43% (deep sequencing) 2013, [18]

PLGA NPs tcPNA and donor
DNA

ex vivo (human PBMCs engrafted
into NOD-scid IL2rγnull mice, CCR5) 0.97% (deep sequencing) 2013, [19]

PLGA NPs and PLGA/PBAE
NPs, IV delivery

γPNA and donor
DNA

in vivo (β-globin/eGFP transgenic
mouse) 0.1% (deep sequencing) 2014, [35]

PLGA/PBAE/MPG NPs,
intranasal delivery

tcPNA and donor
DNA

in vivo (β-globin/eGFP transgenic
mouse, intranasal delivery) 0.4% (FACS) 2015, [20]

PLGA/PBAE/MPG NPs,
intranasal delivery

tcPNA and donor
DNA

in vivo (F508del mice, CFTR,
intranasal delivery) 5.7% (deep sequencing) 2015, [21]

PLGA NPs, IV delivery γtcPNA and donor
DNA with SCF

in vivo (IVS2-654 thalassemic mice,
β-globin) 3.4% (deep sequencing) 2016, [22]

3. Nanoparticle-Mediated PNA Delivery

For disorders affecting the hematologic system, ex vivo manipulation of target cell populations
offers a viable treatment strategy, but for genetic disorders where ex vivo manipulation of target cell
populations is challenging, such as cystic fibrosis or spinal muscular atrophy, the ability to directly
modify cells in vivo is highly desirable. PNAs, however, do not cross the cellular membrane [36],
so special intracellular delivery methods are required. Techniques for PNA delivery, such as
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electroporation, nucleofection, microinjection, conjugation to cell penetrating peptides, and conjugation
to lipophilic moieties have all been successfully employed [26,37–42], but come with serious
disadvantages. These approaches can be technically challenging, toxic to cells, rely on covalent
modification of the PNA, decrease the activity of the PNA, or are inapplicable for use in vivo.
Donor DNA must also be co-delivered with PNA for efficient gene modification, which further
complicates the delivery of these agents. In 2011, collaboration between the labs of Dr. Peter M. Glazer
and Dr. W. Mark Saltzman bore a novel approach: the use of biodegradable, polymeric nanoparticles
(NPs) for PNA and donor DNA delivery [23]. McNeer et al. demonstrated that nanoparticles
formulated from poly(lactic-co-glycolic acid) (PLGA)—a polymer that has been approved by the
FDA in a variety of drug delivery applications—could be used for non-toxic and efficient delivery
of PNA and donor DNA to primary human CD34+ progenitor cells, a cell type that is relatively
more challenging to transfect than reporter cell lines [43]. PNA and donor DNA are encapsulated in
NPs using a double emulsion solvent evaporation technique (Figure 3). PNA/DNA PLGA NPs are
spheres with an average diameter of 150–250 nm and they carry a negative surface charge. Treatment
of progenitor cells with bis-PNA and donor DNA NPs targeting the β-globin locus led to levels
of site-specific gene modification up to 1% in a single treatment, without detectable loss in cell
viability (Table 1). In contrast, nucleofected CD34+ cells were modified 60-fold less than the NP
treated cells, with less than 10% cell viability. Treatment with donor DNA only NPs or with the donor
DNA and PNA loaded into independent preparations of NPs also yielded genome modification.
The highest levels of modification, however, were found when the PNA and DNA were co-loaded
into the NPs. Genomic modification was also found to be dose dependent, with the highest levels
of modification corresponding to the highest doses of NPs. PNA/DNA NP treatment did not affect
the differentiation capacity of CD34+ cells into erythroid and neutrophil populations and as shown
previously, differentiated cells maintained gene modifications [23].
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Figure 3. Fabrication of PNA/DNA polymeric nanoparticles using a double-emulsion solvent
evaporation technique. Modified and reprinted with permission from the Yale Journal of Biology
and Medicine [6].

McNeer et al. further demonstrated the generalizability of this approach by using PNA/DNA
NPs to introduce a 6 bp mutation into the CCR5 gene in human hematopoietic progenitor cells [19,23].
Schelifman et al. also used PNA/DNA NPs to modify CCR5 in human peripheral blood mononuclear
cells (PBMCs) at a 0.97% modification frequency (Table 1). The PNA-NP treated cells were engrafted
into immunodeficient NOD-scid IL2rγnull mice where the specific CCR5 mutation was detected
four weeks post-transplantation in splenic lymphocytes. After infection with R5-tropic HIV-1,
the humanized mice with engrafted CCR5-NP treated PBMCs showed significantly higher levels
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of CD4+ T-cells and reduced viral loads compared with control mice engrafted with mock-treated
PBMCs. In addition to pre-clinical efficacy, this work also examined the uptake and toxicity of NPs in
PBMCs. The authors found that 24 h after the delivery of NPs encapsulating a fluorescent dye, nearly
100% of the PBMCs were associated with NPs, with the majority of the NPs localized intracellularly.
In addition, NP treatment at the doses studied did not significantly affect cell viability nor induce the
inflammatory cytokines TNF-α and IL-6 [19]. The ability to use PNA/DNA NPs to efficiently modify
multiple disease-relevant sites in primary human progenitor cells in a non-toxic fashion strengthened
the therapeutic potential for PNA-mediated gene editing and opened the door for future studies that
explore the delivery of PNA and DNA oligomers in vivo.

4. In Vivo Gene Editing Using PNA-Nanoparticles

Polymeric nanoparticles containing PNA and donor DNA were first delivered in vivo via
intravenous injection to modify the CCR5 and β-globin genes in human hematopoietic stem cell
engrafted NOD-scid IL2rγnull mice [18]. PLGA nanoparticles were either unmodified or coated with
a cell penetrating peptide derived from HIV-1 transactivating protein (TAT) or from the Drosophila
antennapedia peptide (AP). Both TAT- and AP-modified PLGA NPs were found to increase donor
DNA recombination when compared to unmodified particles in CD34+ cell in vitro. After intravenous
treatment with unmodified or TAT-NPs loaded with PNA and donor DNA that targeted CCR5 in
mice engrafted with human hematopoietic cells, gene modification was detected in the bone marrow,
spleen, thymus, small intestine, and lung [18]. This may indicate that PLGA NPs are distributed
widely throughout the mouse before being taken up in human cells, allowing for gene modification.
The use of NPs provided a significant advantage in vivo—only a low level of gene modification was
detected when the mice were treated with naked PNA and donor DNA [18]. This result is consistent
with previous studies in which naked oligos are rapidly cleared after intravenous injection [44].
Interestingly, unlike the in vitro results, the benefit of using TAT coated NPs over unmodified NPs was
not conferred in vivo. Deep sequencing revealed 0.43% modification in the whole spleen (Table 1),
but sequencing of individual colonies derived from human hematopoietic progenitors harvested from
treated spleens, indicated that the modification of specific cell types, i.e., myeloid colony-forming cells,
may be much higher (14–19%) [18].

As seen in vitro [23], intravenous PNA/DNA NP treatment did not affect the ability of
mononuclear cells harvested from the bone marrow and spleen of treated mice to differentiate into
myeloid and erythroid lineages. Serial transplant also confirmed that intravenous PNA/DNA NP
treatment was capable of modifying HSCs in situ—when the bone marrow of PNA/DNA NP treated
mice was transplanted into untreated mice, the targeted CCR5 modification was detected in the bone
marrow of the recipient mouse 10 weeks after transplantation. Additionally, the authors successfully
showed the versatility of this approach by using intravenous PNA/DNA NP delivery to modify the
human β-globin gene in the mice reconstituted with human hematopoietic cells and in an eGFP reporter
mouse model. The work described above is the first demonstration of direct in vivo site-specific
gene editing in human cells in a chimeric mouse and provides evidence that PNA-NPs can modify
hematopoietic progenitor cells in vivo [18].

The next in vivo studies with PNA-NPs were focused on improving the design of the reagents
used: both the design of the PNA and the polymer used for nanoparticle fabrication. The lab of Dr.
Danith Ly of Carnegie Mellon designed a next generation PNA that contained diethylene glycol or
“miniPEG” substitutions at the γ-position on the PNA backbone (γPNA). This gamma substitution
increases PNA solubility and creates a chiral PNA that adopts a right-handed helical motif, a property
that enhances binding affinity for the DNA target [5,45]. Next generation γPNAs can also invade
mixed-sequence B-DNA, the most common form of double helical DNA, without homopurine sequence
restrictions through Watson-Crick base pairing [46]. In 2014, Bahal et al. used a single-stranded γPNA
co-encapsulated with a donor DNA in NPs to correct a disease causing β-thalassemia mutation both
ex vivo and in vivo in a β-globin/eGFP reporter mouse. In this mouse, a mutation in nucleotide 654
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of human β-globin intron 2 that creates an aberrant splice site is inserted within an eGFP transgene.
The mutation causes retention of the intron, which abrogates eGFP fluorescence. Correction of the
654-mutation (T→C) restores proper splicing and allows for eGFP fluorescence, a phenotypic measure
of gene editing. Relative to NPs containing an unmodified PNA, γPNA led to a four-fold increase in
gene editing in β-globin/eGFP bone marrow cells ex vivo and in vivo [35].

The authors also investigated the use of NPs that contained a blend of a cationic polymer,
poly(beta-amino ester) (PBAE) and PLGA. The cationic properties of this polymer allow for more
efficient condensation of negatively charged oligonucleotides than PLGA. In addition, the tertiary
amines present on the surface of PBAE NPs may buffer the low endosomal pH and allow for enhanced
endosomal escape [47,48]. The Saltzman lab had previously shown that PBAE/PLGA blended NPs
exhibited improved cellular uptake and plasmid transfection in cystic fibrosis bronchial epithelial
cells (CFBEs) relative to PLGA NPs [49]. When used for gene editing, PBAE/PLGA NPs containing
γPNA and donor DNA led to significantly higher gene editing frequencies in the β-globin/eGFP bone
marrow cells than the frequency obtained with PLGA NPs [35].

Fields et al. further evaluated the in vivo potential of PBAE/PLGA blended NPs for gene editing
in the lung [20]. Using an intranasal drug delivery route, blended PBAE/PLGA NPs showed increased
cellular uptake and gene editing in the lung of the β-globin/eGFP mouse relative to PLGA NPs.
Addition of a cell penetrating peptide, MPG, to the surface of the PBAE/PLGA NPs resulted in a
substantial increase in NP uptake in gene editing in the total lung [20]. MPG, a synthetic peptide
derived from the hydrophobic domain of the HIV gp41 fusion sequence and a hydrophilic domain from
the nuclear localization sequence of the SV40 T-antigen [50], has previously been shown to improve the
membrane permeability and nuclear trafficking of nucleic acids [51]. Enhanced PBAE/PLGA/MPG
NP uptake and editing was also measured in alveolar macrophages and alveolar epithelial cells—two
cell populations of interest for cystic fibrosis gene therapy.

In 2015, McNeer and Anandalingam et al. used tcPNA/DNA PBAE/PLGA/MPG NPs to
correct the most prevalent cystic fibrosis transmembrane conductance regulator (CFTR) mutation,
F508del [21]. Lack of CFTR function, a cAMP-dependent chloride channel, results in multi-organ
disease, with the majority of symptoms affecting the respiratory system. The blended and surface
modified NPs corrected 9.2% of CFTR mutations in human CFBE cells, which resulted in significant
chloride efflux, indicating restored CFTR function. This NP formulation, containing mouse specific
tcPNA and donor DNA, was then delivered intranasally to homozygous F508del mice. This treatment
was well tolerated and intranasal NP delivery did not result in increases in inflammatory cytokines
measured in bronchoalveolar lavage fluid, nor affect the histology of the lungs, which highlights the
low immunogenicity of this approach. After four treatments, mouse CFTR correction in the nasal
epithelium was assayed by measuring the nasal potential difference (NPD), a non-invasive method to
detect chloride transport in vivo. Intranasal PBAE/PLGA/MPG NP treatment resulted in a significant
decrease in the NPD, consistent with that of wild-type mice. Deep sequencing revealed 5.7% CFTR
correction in the nasal epithelium and 1.2% in the lungs of NP treated mice (Table 1). Studies have
indicated that as few as 6–10% of cells need to be corrected to reach normal levels of chloride ion
transport in culture [52]. As designed, this system has the potential to achieve gene editing at clinically
relevant levels.

PNA-NPs have also been used to produce functional disease improvement after intravenous
delivery in a mouse model of human β-thalassemia. In this model, the two (cis) murine β-globin genes
are replaced with a single copy of the human β-globin gene containing a β-thalassemia-associated
splice site mutation in intron 2 at position 654. The mice produce reduced amounts of mouse
β-globin chains and no human β-globin, resulting in β-thalassemia marked by microcytic anemia
and splenomegaly. In 2016, Bahal et al. treated mice with β-thalassemia with PLGA NPs loaded with
γtcPNA and donor DNA. The γPNA previously used for in vivo gene editing was a single-stranded
PNA that does not form a triplex, but forms a PNA/DNA duplex and a displaced DNA strand [35].
Although this γPNA did provoke gene modification, it was previously shown that tcPNA, that forms a
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PNA/DNA/PNA triplex, is more efficient at invading dsDNA and does so with greater specificity [19].
Thus, this in vivo study aimed to make use of the favorable properties of both tail-clamp and
γ-substitutions by using a γtcPNA. The authors found that γtcPNA/DNA NP treatment led to over
2-fold higher gene correction in bone marrow cells treated ex vivo than NPs that contained unmodified
tcPNA and donor DNA. Intravenous delivery of the γtcPNA/DNA NPs after pretreatment with stem
cell factor (SCF), the ligand for the c-Kit pathway, yielded levels of gene editing over 6% in sorted
bone marrow HSCs (Lin- Sca1+ cKit+ CD150+ CD135-) in the β-thalassemia mouse. NP treatment
ameliorated the disease phenotype, with elevation of hemoglobin levels into the normal range, reduced
reticulocytosis, and reversal of splenomegaly. The elevation of hemoglobin was sustained throughout
the duration of the study, up to 140 days post-treatment. Additionally, intravenous NP treatment
did not lead to elevations in any inflammatory cytokines nor cause double stranded gDNA breaks,
a measure of genotoxicity. These results, in which phenotypic disease improvement is achieved in vivo
via non-toxic γtcPNA/DNA NP treatment, provide motivation for further development of PNA-NP
mediated gene editing as a systemic treatment for human genetic disorders.

5. Gene Editing without a Donor DNA

Another approach to PNA-mediated gene editing that does not make use of donor DNA has
been reported by Dr. Carmen Bertoni of the University of California, Los Angeles [53,54]. In her work
on Duchenne muscular dystrophy (DMD), a disorder that is characterized by a complete absence of
dystrophin protein, gene editing is achieved using single-stranded PNAs (ssPNAs) that bind over the
genetic mutation of interest (Figure 2). The PNAs are either completely complementary or homologous
to the coding strand of the target sequence, except for a single base mismatch aimed at correcting an A
to T transversion in exon 10 of the dystrophin gene, a mutation that generates a cryptic splice at this
position. Kayali et al. transfected ssPNA using LipofectamineTM 2000 into myoblasts derived from the
mdx5cv mouse, a model of DMD [53]. Using quantitative PCR (qPCR) gene editing was estimated at ~3%
for ssPNAs that targeted non-coding strand, with ~7% correction using ssPNAs that targeted coding
strand. No correction was observed using control ssPNAs that are exactly the same as the PNAs used
for correction, expect that they contain no mismatched bases and are completely complementary to the
target gene mutation. The authors also reported that direct tibialis anterior injection of naked ssPNAs
in mdx5cv mice resulted in dystrophin-positive fibers, as determined by dystrophin immunostaining,
two weeks after treatment. qPCR analysis of gDNA isolated from treated muscles was used to
estimate an in vivo correction efficiency of 2.8% for ssPNAs targeting the non-coding strand, and
3.3% for ssPNAs targeting the coding strand. Dystrophin-positive fibers were additionally detected
four months after ssPNA treatment, indicating long-term persistence of the genetic correction [53].
In a follow up study by Bertoni’s group, Nik-Ahd et al. demonstrated that ssPNAs could be used to
correct the dystrophin mutation in muscle satellite cells (SCs), the cells capable of self-renewing and
differentiating into muscle fibers, from the mdx5cv mouse. Up to 2.1% of dystrophin gene correction
was measured with qPCR analysis of gDNA isolated from SCs transfected with ssPNAs ex vivo.
ssPNA treated SCs that were engrafted into the tibialias anterior of mdx/nude mice. Treated mice
exhibited dystrophin expression for up to 24 weeks, when compared to mice engrafted with SCs that
had been treated with control ssPNAs, which showed no dystrophin expression. Interestingly, the
number of dystrophin-positive fibers was shown to significantly increase over time, resulting in a
significant improvement in muscle morphology [54]. These results suggest that the PNA is not acting
by stimulating site-specific recombination with a donor DNA, but is actually acting, by itself, as a
source of genetic information to be used by a polymerase. It is yet to be demonstrated if a PNA can be
a substrate for a polymerase, which merits further investigation. Additionally, this strategy may only
be useful for the introduction of a single base-pair change into the genome, as it has been shown that
greater than one mismatch in the PNA sequence can substantially reduce target sequence binding [55].
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6. Off-Target Mutations and Genotoxicity

The generation of unintended, off-target mutations is of great concern with any gene editing
therapy. The off-target mutation frequency associated with PNA-mediated gene editing has been
measured as extremely low to undetectable (Table 2). Genomic changes induced by PNAs are a result of
recombination that occurs at or near the site of triplex formation. Thus, the investigation into off-target
mutations has focused on a targeted approach of sequencing loci partially homologous to the intended
PNA binding site. It is highly improbable that off-target mutagenesis due to PNA binding would occur
at any other genomic location—given the observed decreased binding affinity of PNA for mismatched
or imperfect targets [17,55,56]. For example, Schleifman et al. have previously shown a four-fold
decrease in PNA binding to the target site with a single base mismatch [17]. It is additionally unlikely
that PNAs will cause spurious off-target mutations, provided that triplex structures do not induce
double-strand DNA breaks (evidence discussed below). Consequently, an unbiased, genome-wide
screen for off-target mutations after triplex-mediated gene editing has yet to be performed.

Table 2. On-target efficiency compared to off-target mutation rate.

Gene Reagents Source of gDNA
On-Target

Modification
Frequency

Off-Target
Modification

Frequency
Reference

CCR5 tcPNA/DNA THP-1 cells 2.8% <0.057% [17]

CCR5 tcPNA/DNA PLGA NPs human PBMCs 0.97% 0.004% [19]

CCR5 tcPNA/DNA PLGA NPs humanized NOD-scid
IL2rγnull mouse bone marrow 0.43% 0.004% [18]

CFTR tcPNA/DNA
PBAE/PLGA/MPG NPs CFBE cells 9.2% <0.00001% [21]

CFTR tcPNA/DNA
PBAE/PLGA/MPG NPs mouse nasal epithelium 5.7% <0.0001% [21]

β-globin γtcPNA/DNA PLGA NPs
with SCF total mouse bone marrow cells 3.9% 0.0032% [22]

β-globin γtcPNA/DNA PLGA NPs
with SCF human CD34+ cells 5.02% 0.000012% [22]

Unintended PNA-mediated off-target effects were first assayed in THP-1 cells after transfection
of tcPNA and donor DNA targeting CCR5. The gene with the highest homology to CCR5, the CCR2
gene, was sequenced in treated clones isolated by limiting dilution. Analysis of 1740 clones yielded
no-off target changes, giving an upper limit to the off-target mutation rate of less than 0.057% [17].
Off-target mutations were next measured to be 0.004% in CCR2 and undetectable in an additional
partially homologous loci, CCR4, via deep sequencing after PNA and donor DNA delivery to PBMCs
with polymeric nanoparticles. No evidence of genotoxicity was found after in vivo treatment with
PNA/DNA NPs targeting CCR5—no mutations in CCR2 were found in the 93 clones sequenced and
deep sequencing revealed less than 0.004% off-target CCR2 modification [18]. After treatment with
CFTR targeting tcPNA/DNA NPs in vitro, no mutations were detected after the deep sequencing
of a site partially homologous to the donor DNA and 13 sites partially homologous to the PNA.
Additionally, no off-target mutations were detected after in vivo NP treatment in F508del mice [21].
Lastly, deep sequencing of six-partially homologous sites in gDNA derived from bone marrow cells
after intravenous delivery γtcPNA/DNA NPs targeting the β-globin locus and ex vivo NP delivery
to human CD34+ cells, led to extremely low levels of off-target mutations of 0.0032% and 0.000012%,
respectively [22].

The off-target mutation rates seen with triplex-based gene editing are substantially lower than
those reported after the use of nuclease-based strategies such as zinc-finger nucleases, TALENs,
and CRISPR/Cas9. Nuclease-based strategies rely on the formation of double-strand gDNA breaks
to incite DNA repair. Double-stranded breaks (DSBs) are likely to be repaired by the error-prone
non-homologous end-joining (NHEJ) pathway, rather than by the higher fidelity homology directed
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repair (HDR) pathway. Bahal et al. demonstrated that PNA/DNA NP treatment did not result in
detectable increases in DSBs in two assays for genotoxicity. By comparison, transfection of a Cas9
plasmid into primary fibroblasts resulted in significant formation of γH2AX foci, which are detected
in nuclei by immune fluorescence and are markers of a chromatin modification that occur upon
DSB formation [57]. The number of γH2AX foci per nucleus that were generated after Cas9 plasmid
transfection was comparable to the number of foci formed in cells that were exposed to 5 Gy of ionizing
radiation. The DSBs generated by Cas9 could be partially rescued with co-transfection of a guide RNA
plasmid, but the level of DSBs was still significantly above background [22]. In a second assay for
DSBs, electrophoresis of single lysed cells results in migration of fragmented DNA, which produces
images that resemble comets when observed with fluorescence microscopy. The length of the comet
“tail” corresponds to the number of DSBs in a cell. There was no detectable increase in comet tail
moment of cells treated with PNA/DNA NPs, there was, however, a significant increase in comet
tail moment after Cas9 plasmid transfection, indicating the presence of DSBs [21,22]. Despite the
lower editing achieved with triplex-based gene editing than nuclease-based strategies, the relative
lack of genotoxicity highlights PNAs as attractive therapeutic molecules, especially when considering
translation to in vivo human therapies.

7. Mechanism of PNA Mediated Gene Editing

The ability of triplex-forming PNAs to stimulate recombination with donor DNAs has been
shown to depend, in part, on the nucleotide excision repair (NER) pathway. NER is a versatile DNA
damage-removal pathway that plays a critical role in repairing bulky DNA lesions [9,58]. Xeroderma
pigmentosum group A (XPA) is an important NER factor responsible for recognizing altered DNA
conformations and assembly of repair factors around the lesion [59]. The dependence on NER was
first described in cell free extracts depleted of XPA, in which decreased recombination and repair
were observed [10]. XPA siRNA knockdown in K562 cells also resulted in lower levels of bis-PNA
induced gene modification [12]. The ability of pc-PNAs to stimulate recombination was also found to
be dependent on XPA. In XPA-deficient and XPA-complemented human fibroblast cell lines, pcPNA
and donor DNA were only effective in inducing gene modification at levels above background in
the XPA-complemented line [16]. These findings support a hypothesis in which XPA plays a role
in recognition PNA/DNA complexes that can provoke DNA metabolism to yield recombination.
The mechanism of PNA-induced gene editing is an area of active investigation for the Glazer lab.

8. Measures to Enhance Gene Editing

The activity of PNAs and donor DNAs in gene editing has been enhanced in cells by methods
that modify target site accessibility and improve oligomer delivery, including synchronization of
cells in S-phase, treatment of cells with a histone deacetylase inhibitor, and the use of chloroquine,
an endosome disrupting agent [12,16]. Gene editing was similarly enhanced ex vivo and in vivo with
the use of SCF. In ex vivo treated bone marrow cells, SCF was found to enhance the gene editing
efficiency of γtcPNA/DNA NPs from ~8% (without SCF) to ~15% (with SCF). This increase in editing
is likely due to an increase in DNA repair gene expression. SCF treatment also yielded 5% gene
correction in CD34+ hematopoietic progenitor cells after one treatment with γtcPNA/DNA NPs ex
vivo. These cells were transplanted into NOD-scid IL2rγnull mice, and gene correction of over 3% was
detected eight weeks after transplantation. The effect of SCF on gene editing in the bone marrow
raises the possibility that other cytokines, growth factors, or compounds that mobilize stem cells,
could enhance gene editing in bone marrow and perhaps other tissues. Additionally, the mechanism
by which SCF enhances gene editing may be independent of triplex formation and may also enhance
the editing of nuclease-based techniques. Ultimately, a more comprehensive understanding of the
mechanism of PNA-mediated gene editing will likely reveal key information that can be exploited to
further enhance triplex-induced recombination.
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9. Perspectives and Limits

Many factors affect gene correction frequency, such as the design of the PNA and donor DNA,
the method of delivery of oligomers to the nucleus, the accessibility of the genomic target, and the cell
cycle. These factors make some systems more amenable to editing and complicate the comparison of
editing frequencies reported in other work.

For most studies, NP formulations are first tested in vitro, with the best performing in candidates
used for in vivo studies. Given that in vitro test environments are extremely different than tissue
microenvironments, it is likely that this approach may have limitations with regard to approximating
in vivo efficacy [18].

Triplex formation appears to be safer than nuclease-based editing approaches [22]; the lack of
toxicity and the much lower frequencies of off-target effects may offer the possibility for multiple
treatments to achieve more significant effects.

10. Conclusions

PNAs have emerged as a powerful tool capable of inducing specific genomic changes at targeted
locations. The studies highlighted in this review demonstrate editing of multiple disease-relevant
targets both ex vivo and in vivo via the use of biodegradable, nanoparticle delivery systems. Advances
in PNA design and nanoparticle formulation have led to levels of PNA-NP mediated gene editing
that induce phenotypic correction in preclinical mouse models of β-thalassemia and cystic fibrosis.
These recent successes in mouse models raise the possibility that PNA-NP mediated gene editing may
eventually provide the basis for a new genetic therapy for single-gene hereditary disorders, such as
sickle cell anemia, thalassemia, and cystic fibrosis.
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