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Abstract: Organophosphate pesticides (OPPs) exhibit neurodevelopmental toxicity. To evaluate the
effect of prenatal exposure to OPPs in the Japan Environment and Children’s Study, a nationally
representative birth cohort study, 4575 maternal urine samples were analysed for six OPP metabolites,
i.e., dialkylphosphates (DAPs). This study aimed to investigate predictors of urinary DAPs using ma-
chine learning approaches and to assess the cumulative risk based on relative potency factors among
Japanese pregnant women. The median creatinine-normalised urinary concentrations (interquartile
ranges) of dimethylphosphate, dimethylthiophosphate and diethylphosphate, which had a detection
rate of 50% or higher, were 3.53 (1.91–6.78), 4.09 (1.66–10.8) and 3.28 (1.88–5.98) µg/g-creatinine,
respectively. Possible predictors of urinary DAP concentrations were the month of urine sampling,
consumption of apple and maternal body mass index. When fenitrothion was used as an index
chemical for cumulative risk assessment, 0.36% of participants exceeded the lower 95% confidence
limit of the benchmark dose10.

Keywords: organophosphate pesticides; dialkylphosphates; urine; biomarker; pregnant women;
birth cohort; cumulative risk assessment; relative potency factors

1. Introduction

Organophosphate pesticides (OPPs) are irreversible acetylcholinesterase (AChE) in-
hibitors and thus used worldwide as insecticides; however, they also exhibit brain develop-
mental toxicity and neurotoxicity [1,2]. Recently, increasing numbers of epidemiological
studies have demonstrated the impacts of OPPs on neurodevelopment in children [3–5]
and via prenatal exposure [6]. Some studies reported that human exposure to OPPs is
associated with the season; intake of certain food items, such as vegetables (tomato and
sweet pepper), fruits (apple, banana, citrus, kiwi and apricot), beans, bread and drinking
water; and the use of pesticides in workplaces [7–9]. Similar results were obtained from
large-scale birth cohort studies [10,11].

In Japan, the OPPs most frequently used in agricultural and residential areas are
fenitrothion, acephate and diazinon [12]. Their maximum residue limits are higher in Japan
than in European Union countries [13]. Use of OPPs has gradually decreased in Japan [14].
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To evaluate OPP exposure, urinary concentrations of common OPP metabolites, i.e.,
dialkylphosphates (DAPs) including dimethylphosphate (DMP), diethylphosphate (DEP),
dimethylthiophosphate (DMTP), diethylthiophosphate (DETP), dimethylditiophosphate
(DMDTP) and diethyldithiophosphate (DEDTP), are usually used as biomarkers in cohort
studies [15]. OPPs with mono-thio or di-thio moieties have been reported to be metabolised
by three kinds of DAPs, i.e., dialkyl, dialkylthio and dialkyidithio phosphates [16]. Many
OPPs share the mono-thio or di-thio moieties, thus DAPs do not represent any specific
OPPs. Biological half-lives of OPPs and DAPs have been reported to be 12–36 and 2–15.5 h,
respectively [17–19]; thus, DAPs should be considered as biomarkers of short-term expo-
sure. There are no nationally representative biomonitoring data for OPPs in Japan. A few
studies conducted in the last five years showed that metabolites of OPPs were detected in
Japanese women and children [14,20], including pregnant women [21].

The U.S. Environmental Protection Agency (U.S. EPA) developed a method for risk
assessment of chemical mixtures with similar properties (structure) and calculated relative
potency factors (RFPs) for cumulative risk assessment of OPPs using oral benchmark dose
(BMD) values based on a reduction in brain cholinesterase activity [22–24]. The BMD
method applies a mathematical model to the relationship between the incidence of toxicity
(numerical changes such as weight loss or the frequency of onset of toxicity) and the
exposure dose, and, in the most statistically fit model, calculates the lower confidence limits
of the amount of exposure for a dose of the benchmark response (BMR), which detects
the significant effects analysed in the experimental systems as a BMD lower confidence
limit (BMDL). Commonly, 10% onset of toxicity is used for general toxicity as the BMR,
i.e., BMD10. RFP indicates the relative potency of each toxicant, such as BMD10. To our
knowledge, one study has assessed the risk of OPP exposure in pregnant women using
this method [25], while some studies have assessed the risk of OPP exposure using other
methods [26–30].

No previous study has investigated the determinants of urinary OPP metabolites and
the cumulative risk of OPP exposure in Japanese pregnant women. This study aimed to
investigate possible predictors of urinary OPP metabolite concentrations among Japanese
pregnant women and to conduct a cumulative risk assessment for exposure to a mixture of
OPPs [25].

2. Materials and Methods
2.1. Study Participants and Sample Collection

This study was conducted in the framework of the Japan Environment and Children’s
Study (JECS), an ongoing nationally representative birth cohort study whose protocol and
profile were published in detail previously [31,32]. JECS recorded 103,099 pregnancies
from January 2011 to March 2014 in 15 study areas across Japan. The JECS protocol was
reviewed and approved by the Institutional Review Board on Epidemiological Studies of
the Ministry of the Environment on 6th April 2010 (IRB number: 100406001) and by the
Ethics Committees of all participating institutions. Written informed consent was obtained
from all participants. This study used the JECS dataset which includes study data from
pregnancy to 4 years (n = 104,059; jecs-qa-20210401). OPP metabolites were measured in
4575 maternal urine samples during pregnancy. The subjects were the participants of the
Sub-Cohort Study [33] who had urine samples when they were registered. Seventy-eight
women were excluded from the current study because of their withdrawal from the study
and 38 women were excluded due to missing serum creatinine data. A total of 4456 women
were included in this study (Supplementary Figure S1). Detailed information about urine
collection and storage before analysis was presented in the previous publication [34].

2.2. Chemicals and Reagents

All reagents were of high-quality grade unless specified otherwise. Water was brought
to a total organic carbon concentration of ≤15 ppb using a Milli-Q Integral 5 and MT5
system (Merck Millipore, Burlington, MA, USA). Acetonitrile (99.8% purity), ammonium
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acetate and formic acid were purchased from FUJIFILM Wako Pure Chemical Corpora-
tion (Osaka, Japan). A standard solution of O,O-dimethylphosphoric acid potassium salt
(DMP), O,O-diethylphosphoric acid potassium salt (DEP), O,O-dimethylphos phoroth-
ioate potassium salt (DMTP), O,O-diethylphosphorothioate potassium salt (DETP), O,O-
dimethylphosphorodithioate potassium salt (DMDTP) and O,O-diethylphosphorodithioate
potassium salt (DEDTP), as well as an internal standard (IS) solution containing DMP-d6,
DEP-d10, DMTP-d6, DETP-d10, DMDTP-d6 and DEDTP-d10 (98% purity), were purchased
from Cambridge Isotope Laboratories, Inc. (Tewksbury, MA, USA).

2.3. Sample Preparation

Twenty-five microlitres of a centrifuged urine sample and 25 µL of water were added
to an ISOLUTE FILTER+ Plate 96-well plate containing a 25 µm depth filter and 0.2 µm
wettable membrane filter (Biotage, Uppsala, Sweden), together with 10 µL of 125 ng/mL IS
solution, 5 µL of water and 805 µL of acetonitrile. After incubation for 1 h in a refrigerator at
4 ◦C, the plate was centrifuged (4 ◦C, 2200× g for 2 min) and the supernatant was injected
into a high-performance liquid chromatography-tandem mass spectrometer (LC-MS/MS)
(Supplementary Figure S2).

2.4. Instrument Analysis and Calculations

The LC (Nexera X2 system; Shimadzu, Corporation, Kyoto, Japan) and MS/MS
(Triple Quad 6500; AB Sciex Pte. Ltd., Framingham, MA, USA) systems were operated
using electrospray ionization negative mode with multiple reaction monitoring. For the
measurement of DMP and DEP, the analytical column was the Luna HILIC 200 Å, 2.0 mm
I.D. × 100 mm, 5 µm column (Phenomenex, Torrance, CA, USA), the column flow rate
was 0.4 mL/min, while for measurement of other metabolites, a clean-up column was
used, i.e., Scherzo SM-C18, 2.0 mm I.D. × 100 mm, 3 µm column (Imtakt Corp., Kyoto,
Japan) followed by an analytical column, Luna HILIC 200 Å, 2.0 mm I.D. × 100 mm, 5 µm
column (Phenomenex). The column flow rate was 0.3 mL/min. A column-switching
technique was used for DMTP, DETP, DMDTP and DEDTP measurement (Supplementary
Figure S3). The column temperature was kept at 40 ◦C for both measurements. The typical
routine operating conditions and data acquisition settings are shown in Supplementary
Tables S1–S3. The following precursor ion (m/z)/product ion (m/z) combinations were used
for the detection of DMP, DMTP, DMDTP, DEP, DETP and DEDTP: 125.0/63.0, 141.0/96.0,
157.0/142.0, 153.0/125.0, 169.0, 95.0 and 185.0/111.0, respectively (Table S2). Parameters
of MS/MS were optimised using reference standard solutions, e.g., −4500 V for ionspray
voltage, 500 ◦C for heating gas temperature and 11 for collision gas pressure (Table S3).
The calibration range is documented in Supplementary Table S4. All samples outside the
calibration range were re-analysed after further dilution.

A commercially available urine sample collected from a female donor (BioIVT, West-
bury, NY, USA) was received as a reference standard solution to make a quality control
(QC) sample of 20 ng/mL DAP concentrations. The QC sample was analysed in five
replicates in each analytical sequence. The lowest concentration minimum reporting level
(LCMRL) was calculated according to the U.S. EPA’s instructions [35]. The minimum
reporting level (MRL) was set at the lowest concentration of the calibration curve point
that observed ≤ ±5% precision (0.997 ng/mL) or the LCMRL, whichever was higher.

2.5. QC

Repeatability and intermediate precision were determined based on ISO 5725:1994
and 27148:2010, with standard solution (10 ng/mL including 50 ng/mL IS solution) mea-
surements (n = 235–375 for each DAP). QC for day-to-day analysis was determined using a
Shewhart control chart (X-R control chart) according to ISO 7870. A urine sample of the
German External Quality Assessment Scheme (G-EQUAS) 61 was measured using this
method for external validation. The urinary creatinine concentration was analysed using
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an enzymatic assay at a contract laboratory. Duplicate measurements were performed in
every 50 samples.

2.6. Data Collection

Participants were asked to complete two questionnaires, one during the first trimester
(12–16 weeks of gestation; M-T1) and the other during the second or third trimester
(22–28 weeks of gestation; M-T2). Smoking status was scored on the M-T1 questionnaire as
“Never,” “Previously did, but quit before realising current pregnancy,” “Previously did, but
quit after realising current pregnancy” or “Currently smoking.” Annual household income
was reported as <2 million Japanese yen (~18,181 USD; 1 USD ' 110 yen), 2 to <4 million
yen (~36,363 USD), 4 to <6 million yen (~54,545 USD), 6 to <8 million yen (~72,727 USD), 8 to
<10 million yen (~90,909 USD), 10 to <12 million yen (~109,090 USD), 12 to <15 million yen
(~136,363 USD), 15 to <20 million yen (~181,818 USD) and ≥20 million yen. Education was
defined as≤ 12 years or≥ 13 years as reported on the M-T2 questionnaire. Consumption of
foods was estimated using a food frequency questionnaire on the M-T1 questionnaire [36].
The frequency of insecticide, herbicide and pesticide use was scored on the M-T1 and M-T2
questionnaires [37] as no use, 1–3 times a month, 1–6 times a week and every day. The M-T2
questionnaire asked for additional information, i.e., use of a moth repellent for clothes
in the closet (never, yes, sometimes and yes, continuously); smoke insecticide indoors
(no/yes); and a mosquito coil or electric mosquito repellent mat, a liquid insecticide for
maggot and mosquito larva and an herbicide or a gardening pesticide in a garden, balcony
or farm (no use, less than once a month, 1–3 times a month, once a week, a few times a week
and every day). Maternal age at urine sampling, body mass index (BMI) and gestational
age were determined from individual medical record transcripts, maternal consent form
and prenatal care records. Median (interquartile range) of maternal age and BMI were
32 (28–35) years old and 20.7 (19.1–22.5) kg/m2 (Supplementary Table S5). eGFR was
calculated using the following Formula (1) [38]:

194× serum cot inine concentration−1.094 ×maternal age−0.287 × 0.739 (1)

2.7. Data Analysis

Urinary DAP concentrations normalised relative to creatinine concentrations were
log10-transformed for statistical analysis. Descriptive statistics of DAP concentrations were
calculated using the Kaplan-Meier method in the NADA package (version 1.6-1.1) without
substituting data below the MRL [39]. DEDTP was only detected in two participants
and was thus excluded from further analysis. DAP concentrations below the MRL were
imputed using the quantile regression approach for the left-censored missing (QRILC)
method within the Gibbs sampler based on the left-censored missing value imputation
approach [40]. Missing data for the variables collected by the questionnaires were imputed
using the multiple imputation by chained equations (MICE) method with 15 imputations
and 10 iterations. The maximum proportion of incomplete cases was 12%; thus the number
of imputations was set to 15 according to the previously published instruction [41]. Majority
voting was performed to combine the 15 imputed datasets.

Four machine learning approaches, namely, multivariate linear regression analysis,
random forest regression (RFR), gradient boosting machine (GBM) and neural network
analysis, in the h2o package (version 3.32.0.1) of R version 4.0.3, were used to investigate
the predictors of OPP exposure [42–44]. The parameters for the final models automatically
calculated using the h2o package are represented in Supplementary Table S6. For these
analyses, the molar sum of DAP (DMP + DMTP + DMDTP + DEP + DETP), dimethyl DAP
(DMs: DMP + DMTP + DMDTP) and diethyl DAP (DEs: DEP + DETP) concentrations
(µmol/g-creatinine) were calculated. Dwelling information (Table S6) was also included in
these models. From the final dataset, 90% of data was randomly selected to build models
and the remaining 10% of data was used to validate the models. The process was repeated
ten times (10-fold cross-validation).
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2.8. Cumulative Risk Assessment

The cumulative dose equivalent was calculated to assess the risk of exposure to OPPs
referring to the U.S. EPA’s guidelines [25]. The chemical mixture approach was conducted
using the following Formulas (2)–(5):

µMolDM =

(
CDMP

MWDMP
+

CDMTP

MWDMTP
+

CDMDTP

MWDMDTP

)
_
(

Crref
Crconc

)
(2)

µMolDE =

(
CDEP

MWDEP
+

CDETP

MWDETP

)
_
(

Crref
Crconc

)
(3)

RPFi =
Relevent dose reference
Relevent dose chemical i

(4)

Dcum =
µMolDM ∑8

i=1 PiMWiRPFi

BW
+

µMolDE ∑8
i=1 PiMWiRPFi

BM
(5)

where Dcum is the cumulative dose equivalent (µg/kg/day), µMolDM and µMolDE are the
total micromoles of DMs and DEs, respectively, excreted over a period of 24 h, Crref represents
mean daily urinary creatinine excretion of Japanese pregnant women (1050 µg/day) [45],
Crconc is the urinary creatinine concentration (mg/L), Ci (i = DMP, DMTP, DMDTP, DEP or DETP) is the
urinary concentration of each OPP metabolite, Pi is the weighted-average proportion of the
estimate of OPP release in Japan from 2011 to 2014 (fenitrothion, methidathion, malathion,
trichlorfon, dimethoate and pirimiphosmethyl for DMs and diazinon and chlorpyrifos for
DEs; Supplementary Table S7) [12], which was calculated using sum of the amount of OPP
release in each year multiplying by the ratio of participants sampled in each year, MWi is
the molecular weight of each OPP, RFP is the RPF of the OPP (i.e., the ratio of the BMDL10
of chemical i to the BMDL10 of the reference chemical, i.e., fenitrothion [24]) and BW is the
body weight of the participant (kg). Inhibition of brain cholinesterase activity in rats was
used as the BMR [46]. The RFPs were calculated using BMDL10 of each OPP relative to the
NOAEL of fenitrothion [47] (Table S7). A margin of exposure (MOE) of 100 was applied to
account for animal-to-human extrapolation.

3. Results
3.1. Method Performance

The ten-point calibration curve had a coefficient of determination (R2) higher than
0.990. The reproducibility for DMP, DMTP, DMDTP, DEP, DETP and DEDTP was 5.1%,
9.1%, 8.0%, 3.7%, 9.6% and 7.8%, respectively. The intermediate precision for DMP, DMTP,
DMDTP, DEP, DETP and DEDTP was 4.6%, 6.1%, 5.8%, 4.1%, 6.1% and 5.8%, respectively.
The mean concentrations of DMP, DMTP, DMDTP, DEP, DETP and DEDTP in G-EQUAS
61 (sample A/sample B) were 3.42/108, 4.74/63.1, 2.11/8.30, 11.6/34.1, 17.5/63.8 and
0.270/1.82 ng/mL, respectively, which were all within the corresponding tolerance ranges.
Agreements of duplicate measurements were 0.0–29.0%, 0.0–29.0%, 0.5–21.1%, 0.2–28.0%
and 0.6–27.4% for DMP, DMTP, DMDTP, DEP and DETP, respectively.

3.2. Concentrations of DAPs in Maternal Urine Samples

The proportions of samples in which the concentrations of DMP, DMTP, DMDTP,
DEP, DETP and DEDTP exceeded the MRLs were 80.8%, 80.0%, 16.1%, 80.2%, 22.9%
and 0.02%, respectively (Table 1). The creatinine-normalised median concentrations (in-
terquartile range—IQR) of DMP, DMTP and DEP were 3.53 (1.91–6.78), 4.09 (1.66–10.8) and
3.28 (1.88–5.98) µg/g-creatinine, respectively (Table 1). Meanwhile, the specific gravity-
normalised median concentrations of DMP, DMTP and DEP were 3.22 (1.69–6.00), 3.66
(1.53–9.66) and 3.00 (1.68–5.32) ng/mL, respectively (Supplementary Table S8).
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Table 1. Urinary DAP concentrations (n = 4575).

Statistics
Crude (ng/mL) Creatinine-Normalised (µg/g-Creatinine)

DMP DMTP DMDTP DEP DETP DEDTP c DMP DMTP DMDTP DEP DETP DEDTP

DR (%) 80.8 80.0 16.1 81.2 22.9 0.02 80.8 80.0 16.1 81.2 22.9 0.02
Mean 5.69 11.3 - 5.12 - - 5.79 11.8 - 5.32 - -

SD 10.4 45.6 - 8.97 - - 8.07 31.5 - 9.54 - -
Min <MRL a <MRL a <MRL a <MRL a <MRL b - <MRL -
25th 1.33 1.32 - 1.32 - - 1.91 1.66 - 1.88 - -
50th 2.93 3.29 - 2.78 - - 3.53 4.09 - 3.28 - -
75th 6.16 9.38 - 5.47 - - 6.78 10.8 - 5.98 - -
95th 18.6 40.2 2.94 16.1 4.50 - 17.8 44.5 3.22 15.3 5.15 -
Max 385 1640 95.4 213 319 34.9 226 891 50.4 380 681 126

a 0.997 ng/mL in urine samples, b 1.2 or 1.3 ng/mL in urine samples, c only one sample had a DEDTP concentration above the MRL. Mean
and SD were calculated after imputation. DMP, dimethylphosphate; DMTP, dimethylthiophosphate; DMDTP, dimethyldithiophosphate;
DEP, diethylphosphate; DETP, diethylthiophosphate; DEDTP, diethyldithiophosphate; DR, detection rate; MRL, minimum reporting level.

3.3. Predictors of DAPs in Maternal Urine Samples

RFR and GBM models presented the highest ten-fold cross-validation coefficients
of determination (R2); however, the R2 values were <0.15 for all four models (Figure 1,
Supplementary Figures S4 and S5).
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Figure 1. Ten-fold cross-validation of the multiple linear regression, random forest regression, gradient boosting machine
and neural network models for urinary DAP concentrations. The blue dotted lines represent the regression lines of the
ordinary least square model between predicted and observed concentrations. The red dotted lines have a slope of 1. R2,
coefficient of determinant; RMSE, root mean square error.
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The month of urine sampling, consumption of apple and maternal BMI were important
factors for predicting urinary DAP concentrations (Supplementary Figure S6), similar to
the results for DMs and DEs. Consumption of tomato was also of high importance for the
prediction of DMs and DEs (Supplementary Figures S7 and S8).

3.4. Cumulative Risk Assessment

Table 2 summarises the estimated cumulative OPP dose equivalents. The median
(range) estimated cumulative dose equivalents of DAPs, DMs and DEs were 0.45 (0.011–48.7),
0.40 (0.0042–47.8) and 0.035 (0.0011–5.50) µg/kg/day, respectively. Among 4456 partici-
pants, 16 (0.34%) study participants’ dose failed to attain an MOE of 100 relative to the
BMDL10 of the reference chemical (fenitrothion, 13.0 µg/kg weight/day).

Table 2. Estimated cumulative OPP dose equivalents (µg/kg/day, n = 4456).

Statistics DAPs DMs DEs

Mean 0.88 0.82 0.058
SD 1.72 1.69 0.13
GM 0.47 0.42 0.036
GSD 2.82 2.98 2.52
Min 0.011 0.0042 0.0011
25th 0.23 0.20 0.019
50th 0.45 0.40 0.035
75th 0.92 0.84 0.063
95th 2.90 2.78 0.17
Max 48.7 47.8 5.50

>BMDL10/100 a —n, (%) 16 (0.36) 16 (0.36) 0 (0)
a The reference chemical (fenitrothion) = 13.0 µg/kg weight/day. BMDL10, lower 95% confidence limit of the
benchmark dose10; SD, standard deviation; GM, geometric mean; GSD, geometric standard deviation; DAPs,
dialkylphosphates (DMP + DMTP + DMDTP + DEP + DETP); DMs, dimethylphosphate metabolites (DMP +
DMTP + DMDTP); DEs, diethylphosphate metabolites (DEP + DETP).

4. Discussion

This study found that urinary DAP concentrations of pregnant women were lower
than in previous studies [3,6,48–52]. The month of urine sampling, consumption of apple
and maternal BMI were the main predictors of urinary OPP metabolites, similar to previous
studies [10,11]. However, the model performance was poor according to cross-validation,
indicating that further information should be collected to investigate predictors of urinary
DAP concentrations. We estimated that 1.8% of participants exceeded the BMDL10 of the
reference chemical from estimation of the cumulative dose equivalents of OPPs.

4.1. Concentrations of DAPs in Maternal Urine Samples

To the best of our knowledge, this is the first study to investigate urinary DAP
concentrations of Japanese pregnant women on this scale. Urinary DAP concentrations
were comparable with those in another Japanese study [21] and in previous studies from
other countries [3,6,48–52]. In this study, strict QC measures were employed such as
reproducibility, repeatability (intermediate precision), blank test, linearity of the calibration
curves, duplicated measurements, recovery of IS samples, target ion/qualifier ion ratio and
external QC. This made our reporting limits of some DAPs a magnitude higher than in the
previous studies in general. The repeatability of the MRL concentrations was less than 3%
relative standard deviation (RSD). Duplicate measurement precision was 0.0–29.0% RSD.
This indicates that the overall uncertainty of our measurements was ≤30%.

4.2. Predictors of DAPs in Maternal Urine Samples

We investigated the predictors using a conventional multiple linear regression model
and three machine learning models. All the models performed poorly according to the
ten-fold cross-validation (Figure 1, Figures S4 and S5). This indicates that information
collected in JECS was insufficient to predict urinary DAP concentrations. For example,
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DAPs can be formed naturally in food items [53,54], which was not considered in this study.
Some previous studies of pregnant women reported that OPP exposure is associated with
the season, maternal BMI and intake of certain food items, such as vegetables, fruits, beans
and bread [10,11]. However, these studies did not present the results of cross-validation
or good-of-fitness of the models. Although the models had low R2 values in this study,
the month of urine sampling, consumption of apple and maternal BMI were of high
importance (Figure S6–S8), similar to the previous studies [10,11]. We do not know the
mechanism underlying the relationship between urinary DAP concentrations and maternal
BMI; however, the relationship of urinary DAP concentrations with the month of urine
sampling and consumption of apple might be related to the use of OPPs on apples. In Japan,
OPPs are one of the pesticides used for fruits including apples and are mainly sprayed
from May to September [55].

4.3. Cumulative Risk Assessment

In this study, 0.36% of participants had doses that exceeded the BMDL10/MOE (DAP,
median (IQR); 15.5 (14.3–21.0) µg/kg/day), which was two orders of magnitude lower than
in a previous study of pregnant women living in an agricultural community [25]. However,
it cannot be compared simply because the OPPs included in the current study differ from
those included in the previous study. According to Castorina et al. (2003) [25], cumulative
dose estimates vary depending on selection of the reference chemical. The reference
chemical used in this study was fenitrothion, which has the maximum release in Japan.
JECS is a nationally representative cohort; thus, the results of this study can be extrapolated
to all pregnant Japanese women. The major adverse effect used to determine BMDL10
for OPPs was AChE inhibition in red blood cells or the brain. However, OPPs can be
developmental neurotoxicants [1,2]. These effects should be evaluated in the JECS cohort.

4.4. Limitations

There are some limitations of this study. The urinary DAP concentrations were
measured in spot urine samples. Urinary metabolites of OPPs, i.e., DAPs, have short half-
lives ranging from 2 to 15.5 h [17,18]. One study on Japanese pregnant women reported
intra-class correlation coefficients (ICCs) to be 0.42–0.55 [21], while studies conducted in
other countries provided −0.01–0.52 [51,56–58]. According to the rule of thumb, an ICC
of 0.4 is categorised as “moderate” [59]. Our data may result in some misclassifications
of OPP exposure; thus, the data should be used with caution. One of the reasons why
our models performed poorly in predicting urinary DAP concentrations could be missing
information about some food items that could carry OPPs and direct (e.g., occupational)
or indirect (e.g., vicinity to farmlands) OPP use. In addition, the intake of DAPs derived
from degradation of OPPs in food stuff was not taken into account, which might lead to
the overestimation of DAP exposure.

In terms of cumulative risk assessment, there are the following uncertainties: (1) the
individual volumes of 24 h urine were estimated using the reference creatinine excretion
relative to participants’ urine creatinine concentrations, (2) the proportions of OPP emission
were used to calculate cumulative daily intake instead of personal OPP use of individual
participants, (3) only half the OPPs used in Japan are metabolised into DAPs and thus were
included in the risk assessment and (4) it was assumed that 100% of OPPs taken up were
metabolised into DAPs and this might have resulted in underestimation of OPP exposure.

5. Conclusions

Median urinary concentrations of DMP, DMTP and DEP were 3.53, 4.09 and 3.28 µg/g-
creatinine, respectively, which were comparable with those in previous studies of pregnant
women. Even though the variables selected using machine learning models were similar to
those reported in previous studies, the prediction models performed poorly. This indicates
that a further study is needed to include more information about the intake of foods that
likely contain OPPs or DAPs and investigate other unknown factors. Daily intake of
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OPPs exceeded the BMDL10 of the reference chemical in 0.36% of participants based on
cumulative risk assessment. Considering that this study is nationally representative and
OPP exposure may have been overestimated in this study, Japanese pregnant women are
not at risk by the cumulative OPP exposure.
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Abbreviations

AChE acetylcholinesterase
BMD benchmark dose
BMD10 10% onset of toxicity is used for general toxicity as the BMR
BMDL BMD lower confidence limit
BMI body mass index
BMR bench-mark response
DAPs dialkylphosphates
DEDTP diethyldithiophosphate
DEP diethylphosphate
DEs diethyl DAP (DEP + DETP)
DETP diethylthiophosphate
DMDTP dimethyldithio-phosphate
DMP dimethylphosphate
DMs dimethyl DAP (DMP + DMTP + DMDTP)
DMTP dimethylthiophosphate
DR detection rate
G-EQUAS German External Quality Assessment Scheme
GBM gradient boosting machine
IQR interquartile range
LC-MS/MS liquid chromatography-tandem mass spectrometer
LCMRL lowest concentration minimum reporting level
MICE multiple imputation by chained equations
MOE margin of exposure
MRL minimum reporting level
MW molecular weight
NOAEL no observed adverse effect level
OPPs organophosphate pesticides
QC quality control
QRLIC quantile regression approach for left-censored missing
RFPs elative potency factors
RFR random forest regression
RSD relative standard deviation.
SD standard deviation
U.S. EPA The U.S. Environmental Protection Agency
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