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ABSTRACT
Since next generation sequencing facilitated high-throughput and cost-efficient genomics analyses, the human gut metagenome has become an
emerging frontier to explore toward precision nutrition. Significant progress has been made in identifying gut microbial features associated with a
wide spectrum of human disease. However, other than a few microbiome-disease relations, there is a dearth of confirmed causal inferences,
particularly in generally healthy populations. The relatively high unexplained variability in microbiome compositions in this group warrants caution
in applying this complex biomarker toward precision nutrition, because our understanding of what constitutes a healthy microbiome is still
rudimentary. Although gut microbiota harbor integrated environmental and host-specific information with the potential to facilitate personalized
nutritional and lifestyle advice, these data cannot yet be confidently interpreted toward precise recommendations. Thus, nutritional advice for
generally healthy individuals based on personal microbiome composition analysis might not yet be appropriate unless accompanied by
established blood and physiological biomarkers. Curr Dev Nutr 2021;5:nzab107.
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Introduction

No longer in its infancy, gut microbiome research is producing insight-
ful results ripe for evaluation toward application to precision nutrition.
However, the factors that contribute to a healthy (or unhealthy) state
of the intestinal microbiota are dauntingly complex: an interplay of ge-
netic, environmental, clinical, and stochastic inputs can result in 2 seem-
ingly healthy individuals’ microbiomes having almost nothing in com-
mon from a taxonomic standpoint (1). Although we now have at our
disposal a plethora of microbiome-disease association data, there is a
need to establish cause-and-effect relations via large-scale longitudinal
studies where the initial healthy human microbiome state is functionally
characterized and subsequently challenged with interventions whose ef-
fects on host microbiota and physiology can then be interrogated for
molecular mechanisms. While evaluating whether our current under-
standing of the microbiome affords us the ability to make microbiome
composition–based dietary and lifestyle recommendations, it is worth-
while considering some of the confounding factors that play a role in the
variation of the microbiome between individuals. These confounders
can significantly impact the utility of microbiome characterization to-
ward iterative health optimization at the level of the generally healthy
individual.

Although this field has progressed exponentially toward more gran-
ular datasets, replication of bacterial species-level associations with host
phenotypes is scarce, with the most promising reports correlating these
associations with easily measured blood biomarkers or phenotypes.
Thus, current gut microbial signatures could be just another, albeit
highly elaborate, proxy for causal mechanisms behind health states yet
to be discovered (Figure 1). Because each individual’s microbiome is
unique, it follows that no 2 persons process the same foods identically
and/or derive the same benefit, ultimately making microbiome analysis
a possible ideal embodiment of approaches to precision nutrition. How-
ever, based on publicly available human microbiome research, we are far
from understanding this complex biomarker and thus it is premature for
use as an independent nutrition personalization tool.

Contributors to Microbiome Variation

The term “dysbiosis” is used liberally in the context of microbiome-
pathology associations. However, aside from its simplistic definition as
a “microbial imbalance,” little is known about the functional aspects
of what constitutes an imbalance in the gut microbiome at the level of
an individual. Because essentially all references to dysbiosis stem from
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FIGURE 1 Microbiome composition analysis in generally healthy individuals. In the generally healthy individual, microbiome composition
analysis alone currently offers limited actionable health insight that cannot be readily obtained via more traditional means such as blood
chemistry and lipids, activity trackers, and basic biometrics. These validated metrics of physiological and metabolic health allow for
optimization via established reference ranges that correlate with healthy states, whereas individual-level optimal microbiome features have
yet to be elucidated. Often considered to be a marker of health, high α-diversity within the gut microbiome can be qualitatively
approximated via traditional measures. However, as this field of research progresses toward the ability to establish optimal microbiome
composition baselines at the individual level, metagenomic analysis holds dramatic potential for the practice of precision nutrition. FUT2,
fucosyltransferase 2; IBD, irritable bowel disease; LCT, lactase.

taxonomic interpretations, there is little mechanistic understanding (2).
Before we can confidently label an individual’s gut microbiota as in dys-
biosis, we need to understand the definition of “eubiosis,” yet another
ill-defined (and highly individualized) state corresponding to a well-
balanced gut ecosystem. Characterizing an individual’s eubiotic state is
essential to precision nutrition approaches, particularly in a generally
healthy cohort. However, most reports to date have not identified a mi-
crobiome core within a population, where individual microbiome di-
versities tend to fit on a continuum rather than clustering into discrete
groups (3). Multiple factors contribute to this variation, and although
the scope of this perspective is not inclusive of all the possible contribut-
ing personal features to the variability in microbiome compositions, we
consider those that might play significant roles.

Host Genetics and Geographical Location

Individual host genetics contribute a relatively minor portion of the
variation within a person’s microbiome, with lifestyle factors such as

long-term diet substantially outweighing the contribution of any single
nucleotide polymorphism (SNP) (4). Xu et al. (5) calculated the heri-
tability of α-diversity to be in a modest range of 3.5–10.3%; when they
performed a genome-wide association study (GWAS) for enterotypes,
no statistically significant signals were found. These results reflect a
consensus that genetics’ impact on a person’s microbiome composi-
tion is outweighed by lifestyle, geographical, and/or cultural factors (6).
However, this does not mean that host genetic variation is not a fac-
tor to consider when analyzing generally healthy individuals’ micro-
biomes on the species level. For example, borrowing from the litera-
ture of microbiome-disease correlations where the data are plentiful,
Mendelian randomization (MR) studies show that genetic predisposi-
tions to certain conditions such as chronic kidney disease have causal ef-
fects on specific bacterial species abundance (5). Such findings demon-
strate the potential of leveraging large GWAS datasets such as the UK
Biobank toward understanding similar host genome-microbiota dy-
namics in the generally healthy population. For example, the results of
some MR efforts indicate a significant impact of gut microbiome species
on healthspan-related blood phenotypes such as lymphocyte count,
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eosinophil count, apoA-I, HDL, total cholesterol, BMI, resting heart
rate, and blood pressure (7–9). On the other hand, an established SNP in
the LCT (lactase) gene associated with lactase persistence positively cor-
relates with Bifidobacterium abundance, including a large meta-analysis
of >18,000 individuals from diverse populations (10). This particu-
lar host-microbiome dynamic appears to be a symbiotic compensatory
mechanism to facilitate lactose digestion in those who do not produce
sufficiently active lactase enzyme (11). Kurilshikov et al. (10) also re-
ported a persistent SNP-microbiome association between FUT2 (fuco-
sylated mucus glycan secretor/non-secretor) variant and Ruminococcus
torques genus group. Thus, certain host genetic variations that corre-
late with the enrichment of particular gut bacterial species can explain
host health state phenotypes (such as HDL or BMI); conversely, different
subsets of SNPs that associate with particular host predispositions (such
as lactose intolerance) can impact the composition of the microbiome.
Exploration of such dynamics is in its infancy in generally healthy peo-
ple and, though the effect sizes are likely to be small relative to the afore-
mentioned nongenomic factors, they could ultimately add more gran-
ular insight at the level of individualized interventions. Such detailed
analysis could only be useful when the more salient microbiome influ-
encing factors, such as geographical location, are first accounted for.

After examining hundreds of health status phenotypes in >7000 in-
dividuals from 14 regions within the Guangdong province of southern
China, He et al. (12) found that host location explained the bulk of the
microbiota variation. Geographical location was found to explain ∼5
times the variation in the microbiomes relative to the next largest factor,
occupation (12). This finding suggests that, in addition to the already
challenging task of identifying dysbiosis on the individual level, defin-
ing a baseline eubiotic state for an individual would have to account for
the region where they live. Thus far, there appears to have been no such
effort in the generally healthy populations. However, an approximation
of healthy reference ranges within a subset of bacterial taxa yielded CIs
that spanned orders of magnitude (13), perhaps in part because no ad-
justment for geographical location was possible. Although likely still rel-
evant when diagnosing clinical conditions, such wide reference ranges
might not yet enable precision approaches to lifestyle interventions un-
til adjusted for geographical region and some of the other confounding
factors discussed below.

Effect of Medication

Reports reveal that there is likely a measurable impact of prescrip-
tion drugs, over-the-counter medications, and dietary supplements on
species-level microbiota, yet the effects of most of these products re-
main unexplored. Vila et al. (14) reported >150 associations between
individual taxa and 17 categories of drugs, with proton pump inhibitors,
laxatives, metformin, and vitamin D supplements showing the most as-
sociations. Whereas some medications can impact the microbiota di-
rectly, for example, as demonstrated for metformin (15), others (such
as laxatives) can do so by modifying transit time, which has been cited
as one of the strongest explanatory factors for microbiome composition
(16). The in vivo picture can be quite dynamic because individuals can
modify their behavior based on medication intake; for example, an indi-
vidual might alter their diet due to nausea or other untoward side effects
of the medication or having lower quality of sleep. Thus, precision nutri-

tion approaches to optimize an individual’s microbiome should account
for intake of medications and dietary supplements at baseline, because
shifts in bacterial species induced by these agents could preclude accu-
rate precision nutrition recommendations if they are based on reference
populations following different regimens.

Long-Term Diet Strongly Influences Microbiome
Composition

As described in several comprehensive reviews, a plethora of evidence
suggests that among the strongest contributors to interindividual host
microbiome variation are long-term dietary habits (17–19). The stan-
dard Western diet, low in fiber and high in processed ingredients and
saturated fat, has been reported to lead to less diverse gut microbiomes
and metabolite outputs that appear detrimental to host health. Dietary-
induced microbiota composition shifts such as those resulting from a
Western diet intervention can lead to exposure to bacterial components
toxic to the host (e.g., endotoxins), and result in gut barrier disruption
and metabolic endotoxemia (20). In contrast, certain dietary patterns
rich in fiber and polyphenols have been shown to have protective ef-
fects against the adverse effects of the standard Western diet, in part
mediated by an increased production of SCFAs such as butyrate. Some
dietary fibers are fermented by bacterial enzymes into SCFAs, which, in
addition to supplying enterocytes with energy, act as metabolic signal-
ing molecules and histone deacetylase inhibitors, resulting in immune
system modulation, as well as influencing transcription and regulation
of appetite (18, 19). Additionally, consumption of protein sources rich
in l-carnitine and/or choline leads to the production of trimethylamine
(TMA) by the microbiome, which, when oxidized to trimethylamine N-
oxide in the liver, is associated with an increased risk of cardiovascular
disease (18).

Baseline Microbiome Features and Metabolic Capacity

In the generally healthy population, perhaps the most pertinent applica-
tion of microbiome analysis is in predicting individual responses to nu-
tritional and lifestyle interventions. If an individual’s baseline metabolic
capability is known, it might be possible to tailor dietary fiber recom-
mendations, for example, because the same carbohydrates might not
benefit all, depending on their baseline microbiome signatures (11). Re-
ports on the effect of probiotic supplementation on the gut microbiome
suggest generally beneficial outcomes, although data also suggest a strat-
ification of responders compared with nonresponders to such interven-
tions by baseline microbiome composition and possibly host genetics,
as demonstrated with lean donor fecal transplants to individuals with
metabolic syndrome (21). Suez et al. (22) further demonstrated that pro-
biotic supplements can delay the re-establishment of a homeostatic gut
environment after a course of antibiotics. Our understanding of which
microbiome signatures correlate with responsiveness to specific foods is
rudimentary. Ultimately, deep knowledge of and multiomics modeling
of the metabolic pathways inherent to a particular microbiome signa-
ture could allow for tailoring precise dietary interventions that modu-
late targeted metabolites associated with host health (23). For example,
if a TMA-overproducing host microbiome signature is identified, one
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could minimize sources of carnitine and choline for the individual. On
the other hand, another individual might harbor microbes that produce
a marked postprandial glucose (PPG) response to starchy carbohydrates
while minimizing TMA production. In this case, one might be able to
recommend a diet higher in animal protein and lower in starchy carbo-
hydrates.

Specific examples are now available of baseline microbiota-driven
dynamics; for example, Korpela et al. (24) reported on particular Fir-
micutes species, Eubacterium ruminantium and Clostridium felsineum,
that correlate with responder compared with nonresponder status.
These investigators found that whereas some individuals benefitted
from a particular dietary intervention, others showed no or even ad-
verse responses, each explained by their baseline microbiomes (24).
Similar findings from the Weitzman Institute in Israel have linked
gut microbial signatures to postprandial glucose responses (PPGRs),
where microbiome features strongly correlate with blood sugar re-
sponses to foods (25). Other results revealed that white bread can
be advantageous to some over traditional rye wheat bread based
on personalized microbiome signatures (26). This research is begin-
ning to validate the adage that “one man’s cure is another man’s
poison.” Nonetheless, replication of these findings is warranted in
larger populations to enable personalized recommendations in diverse
groups.

To validate the microbiome-PPG algorithm described above,
Mendes-Soares et al. (27) implemented the same methods reported by
Zeevi et al. (25) in 327 free-living American Midwesterners followed for
PPGRs to foods. Although the data were qualitatively replicated, with
the microbiome contribution predicting PPRGs at r = 0.62, the model
underperformed relative to that in the Israeli population, suggesting
that further research is needed before we can confidently use micro-
biome biomarkers as accurate predictors of PPGRs across populations
(28). In an independent cohort of >1000 deeply phenotyped individ-
uals, Asnicar et al. (29) attempted a comprehensive evaluation of the
interplay of long-term diet, microbiome composition, and hundreds of
fasting and periprandial cardiometabolic blood biomarkers. They only
partially replicated the Israeli cohort findings by Zeevi et al. (25), with
overall microbiome features explaining relatively little of the variation of
glycemic indexes relative to blood lipids and inflammatory biomarkers
(25, 29). The PPGRs showed a marginal association with the gut mi-
crobiome (AUC = 0.6), again potentially highlighting the importance
of examining different populations toward replicating microbiome-
phenotype associations. This task is not trivial because host–microbe
dynamics are complex and results can seem contradictory depending
on the details of what parameters are being measured. For example, in
addition to demonstrating significant associations of food groups and
habitual diet with microbiome features, Asnicar et al. (29) noted dif-
ferential effects of certain bacterial species of fasting compared with
postprandial rises in biomarkers: Flavonifractor plautii was associated
with increased systemic inflammation biomarkers such as fasting GlycA
[composite marker of systemic inflammation based on an NMR signa-
ture of select acute phase proteins in the blood], but this was decoupled
from the biomarker’s postprandial rise, where the same species was cor-
related with a decrease in GlycA. Several other immunological and some
blood lipid biomarkers followed an analogous microbe–blood metabo-
lite dynamic (29). These results highlight the intricate complexity of the
microbiome and the need to better understand mechanisms before us-

ing an individual’s microbiome composition in the context of precision
nutrition.

Certain microbiome features whose association with host health has
been relatively consistently replicated in the literature might still not be
ready for implementation in precision nutrition platforms. One such ex-
ample is the commensal Akkermansia muciniphila, a well-characterized
gut bacterial species that has shown potential for some clinical util-
ity with regard to obesity (30). In the trial conducted by Asnicar et
al. (29) encompassing >1000 deeply phenotyped individuals, this ben-
eficial species was not among the main players correlating with car-
diometabolic health. However, a proof-of-concept clinical trial using
both live and pasteurized versions of an A. muciniphila probiotic did
show slightly improved insulin sensitivity, reduced insulinemia and to-
tal cholesterol, as well as fat mass reduction in individuals with obe-
sity (30). These results demonstrate the potential of microbiome anal-
ysis for facilitating novel probiotic approaches toward improving car-
diometabolic health outcomes. However, they also highlight our dis-
tance from being able to rely on an individual’s gut species abun-
dance metrics for improving health outcomes. This lack of replication
of species-level microbiome results will need to be addressed before
such results can be reliably applied to precision nutrition platforms. This
dearth of replication can, in part, be explained by factors that confound
microbiome analysis.

Stochastic Effects and Confounders of Microbiome
Composition Analysis

The majority of human microbiome studies fall short of assigning causal
effects of the gut microbial environment on host phenotypes (31). Thus,
it cannot be discerned whether the gut microbiota composition was
affected prior to an intervention or whether the bacterial populations
present are a consequence of the intervention itself. This situation is
in contrast to studies using rodent models, where investigators often
report a transfer of pathological phenotype, but then make often mis-
placed causal inferences with regards to human hosts (32). Indeed,
animal-based microbiome research might have played a role in over-
stating the causal effects of the microbiota in human health and disease.
Moreover, there is a paucity of longitudinal studies tracking shifts in
the gut microbial populations toward developing the concept of a core
healthy microbiome. David et al. (33) undertook such an exercise in
mapping the effects of 10,000 longitudinal human wellness measure-
ments to daily gut and salivary microbiota shifts through a period of
1 y for 2 individuals. They confirmed that, on the community level,
the microbiome was stable on a scale of months but noted that activ-
ities such as travel throughout various parts of the world can instill
profound changes. In addition to the aforementioned strong influence
of geographical location on microbiome composition, multiple reports
have indicated that the microbiome does entrain on diurnal rhythms,
which, if disrupted by interventions such as jet lag or sleep loss, can lead
to dysbiosis (34). Caporaso et al. (35) reported a marked variability in
2 individuals’ microbiota at the sequencing depth examined, suggest-
ing that no core microbiome exists at high abundance because only a
small subset of the bacterial taxa were found to be consistently present
across all samples even day-to-day. Others who have examined larger
cohorts (though at reduced sampling frequency) have suggested that a
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single measurement of the unperturbed fecal microbiome can supply
long-term insight on composition and metabolic potential (36). The
apparently different conclusions drawn by these researchers could be
inherent to the respective study designs: fewer subjects enable more
frequent sampling and can reveal day-to-day variance, whereas larger
studies are not powered (due to cost) to detect significant longitudinal
variances. In practice, the sampling frequency can ultimately be dictated
by pragmatism and individual lifestyle dynamics. Importantly, any ap-
proach should ensure that samples are processed using identical proce-
dures leading up to point of data analysis.

As noted, the reproducibility of microbiome associations across in-
dependent studies is low, with a significant methodological confounder
being the DNA extraction step (10). Other confounding variables in-
clude improper and/or inconsistent documentation of sample collection
and processing, and yet-to-be standardized data processing and analy-
sis methods (1). It appears clear that stool consistency, described with
the Bristol Stool Index (BSI), is often referred to as the single personal
factor with the largest effect size on microbiome composition variation
in healthy individuals (37). Further, some estimates put the cumula-
tive explanatory power of wellness and lifestyle variables on interindi-
vidual microbiota variation at <8% (38). This suggests that much of
the variation remains unexplained, with some reports proposing that
microbiome-host associations reported to date are overstated (39). As
part of their suggested remedy to this challenge, Vujkovic-Cvijin et al.
(39) have offered an essential methodological approach to data analy-
sis that involves case-control matching for confounding variables that
strongly associate with microbiome composition. They point out that
much of the difference in microbiomes between disease cases, such as
type 2 diabetes and irritable bowel syndrome, and controls is dimin-
ished when both are matched for alcohol intake or BSI. Approaching
independent datasets with consistent analytical rigor can help reduce
spurious findings and increase the number of studies that are able to
reproduce associations between health status and gut microbiota, thus
beginning to make this complex metagenomic biomarker also ripe for
more scalable precision nutrition applications in the generally healthy.

Concluding Remarks

The determination of individual microbiome composition holds po-
tential to be an important tool for precision nutrition in addition to
the currently available personal data derived from blood and various
genome, epigenome, metabolome, and emerging glycomic biomark-
ers of health and healthspan. However, until microbiota associations
are more consistently replicated, and randomized clinical trials and/or
other longitudinal cohort approaches revealing causal effects of mod-
ifying the microbiome on wellness (not just clinical) phenotypes, the
interpretation of individual microbiomes toward personalized recom-
mendations remains a challenge. Importantly, because intraindividual
microbiome composition variability has been established as much lower
than interindividual differences, it follows that each individual should
harbor personalized species abundance averages that define their state
of health. Nonetheless, even within-person microbiome variability can
be partly a function of the frequency of sampling. Thus, temporal vari-
ability should be adjusted in longitudinal samples toward establishing
individualized bacterial abundance metrics that would allow for more

accurate assessments of metabolic capacities and facilitate “thresholds”
for triggering personalized recommendations. Until microbiome anal-
ysis matures to a stage where consistent bacterial species’ functional ef-
fects have been demonstrated in independent studies spanning various
demographics, it appears to be premature for metagenomics, in and of
itself, to serve as a cost-effective solution or a reliable biomarker of well-
ness in individuals who are generally healthy. However, casting a wide
‘omics net, including metagenomics at the individual level, in future lon-
gitudinal studies, such as the NIH Nutrition for Precision Health pro-
gram, should enable n-of-1 study approaches toward realizing the mi-
crobiome’s full potential in precision nutrition (40).
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