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MicroRNA‑210 induces apoptosis 
in colorectal cancer via induction of reactive 
oxygen
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Abstract 

Background:  Deregulation of miRNA-210 is a common event in several types of cancer. However, increased expres‑
sion levels in the cancer tissue have been associated with both poor and good prognosis of patients. Similarly, the 
function of miR-210 with regard to cell growth and apoptosis is still controversial.

Methods:  Overexpression of miR-210 was performed in HCT116, SW480 and SW707 colorectal cancer (CRC) cell 
lines. Functional effects of a modulated miR-210 expression were analyzed with regard to proliferation, clonogenicity, 
cell cycle distribution, reactive oxygen species (ROS) generation, and apoptosis. Furthermore, quantitative real time 
(RT)-PCR and immunoblot analyses were performed to investigate signaling pathways affected by miR-210.

Results:  We show that in CRC cells miR-210 inhibits clonogenicity and proliferation which was accompanied by 
an accumulation of cells in the G2/M phase of the cell cycle. Additionally, overexpression of miR-210 results in an 
increase of ROS generation. Moreover, miR-210 mediated the induction of apoptosis which was associated with an 
upregulation of pro-apoptotic Bim expression and enhanced processing of Caspase 2. Importantly, inhibition of ROS 
generation rescued cells from miR-210-induced apoptosis.

Conclusions:  Taken together, miR-210 induces apoptosis in CRC cells via a ROS-dependent mechanism.
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Background
Colorectal carcinoma (CRC) is the third most common 
cancer and one of the leading causes of death due to can-
cer world-wide [1]. Defects in the apoptosis signaling 
cascade account for resistance to therapy of malignant 
tumors. In the case of CRC this resistance to radio- and 
chemotherapy substantially contributes to a poor prog-
nosis. So far, the molecular mechanisms underlying the 
varying degree of cell death resistance of CRC are largely 
unknown. Therefore, a better understanding of the regu-
lation of survival and therapy resistance of CRC cells is 
urgently required.

MicroRNAs (miRNAs) are short (20–23 nucleotides) 
non-coding mRNA molecules [2] functioning as post-
transcriptional regulators of gene expression. Since miR-
NAs contribute to the regulation of different cellular 
processes involving apoptosis, cell cycle regulation and 
differentiation, their deregulation quite often results in 
tumorigenesis [3]. MiRNAs are transcribed as so-called 
pri-miRNAs, which are cleaved by Drosha in the nucleus 
[4]. The resulting microRNA precursor molecules (pre-
miRNAs) are subsequently transported into the cyto-
plasm and processed to the mature miRNA by the Dicer 
complex [4]. The guide strand is integrated into the RISC 
complex resulting in the degradation of target mRNAs 
or their transcriptional inhibition [4]. MiRNAs were first 
discovered in 1993 by Lee et al. [5]. Since then, approx. 
1400 human miRNAs have been discovered, amongst 
them almost 400 to be deregulated in CRC [6].
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So far, it has been shown that miR-210 is upregulated 
in a variety of human cancers, including lung cancer 
[7–9], renal cell carcinoma [10–13], pancreatic carci-
noma [14], breast cancer [15], hepatocellular carcinoma 
[16], colorectal carcinoma [17, 18] and adrenocortical 
carcinoma [19, 20]. Besides, miR-210 is downregulated 
in squamous cell carcinoma [21] and ovarian cell carci-
noma [22]. Although miR-210 overexpression is accom-
panied by a poor prognosis in many human tumors [15, 
23–28], it has recently been shown, that high expression 
levels of miR-210 were significantly associated with an 
improved disease free survival in non-small cell lung can-
cer [29] and clear cell renal cell carcinoma post nephrec-
tomy [30]. Similarly, low miR-210 expression levels were 
accompanied with a higher rate of relapse and a poorer 
treatment outcome in pediatric acute lymphoblastic leu-
kemia [31]. Further, the function of miR-210 regarding 
the regulation of cell growth and apoptosis is quite con-
troversial. Whereas some studies show that downregula-
tion of miR-210 reduces viability in renal cell carcinoma 
[10], endothelial cells [32] and hepatoma [33], other stud-
ies claim that miR-210 acts in a pro-apoptotic manner in 
neuroblastoma [34], lung adenocarcinoma [35], renal cell 
carcinoma [36], esophageal squamous carcinoma [21] 
and lung adenocarcinoma [37].

In this study, we sought to explore the functional role 
of miR-210 with regard to apoptosis in CRC. We demon-
strate that an increased expression of miR-210 reduces 
proliferation, cell cycle progression and colony forma-
tion. Furthermore, overexpression of miR-210 induces 
ROS generation and apoptosis, accompanied by an 
increased Bim expression and Caspase 2 processing. 
Taken together our results identify miR-210 as a potent 
inducer of apoptotic cell death in CRC and suggest the 
miR-210-induced ROS generation to be a possible key 
player within this process.

Results
miR‑210 overexpression influences CRC growth
The role of miR-210 in the regulation of cell growth and 
death is quite controversial. Whereas some studies show 
that downregulation of miR-210 reduces viability in renal 
cell carcinoma [10], endothelial cells [32] and hepatoma 
[33], other studies claim miR-210 to act in a pro-apop-
totic manner [21, 34–37]. To characterize the functional 
relevance of miR-210 in CRC we analyzed the effects of 
an increased expression of miR-210 on cell growth. To 
this end, we transfected colorectal cancer cell lines with a 
miR-210 precursor oligonucleotide (pre-miR-210; Addi-
tional file  1: Figure S1). Overexpression of exogenous 
miR-210 resulted in a significant reduction of prolifera-
tion (Fig.  1a) which was accompanied by a decrease of 
cells in the G1 phase and an accumulation of cells in the 

G2 phase of the cell cycle (Fig.  1b). In line with these 
results, miR-210 overexpression reduced clonogenicity 
(Fig. 1c).

miR‑210 overexpression induces apoptosis
To further functionally analyze the effects of increased 
miR-210 expression levels, we investigated the impact 
of miR-210 on cell death. Overexpression of miR-210 
potently induced apoptotic cell death (Fig. 2a; Additional 
file  2: Figure S2), which was accompanied by cleavage 
of Caspase 3 (Fig.  2b). To characterize miR-210 medi-
ated apoptosis, we analyzed the expression levels of dif-
ferent pro- and anti-apoptotic proteins. Immunoblot 
analyses revealed a consistent downregulation of the 
anti-apoptotic Mcl-1 protein and an upregulation of the 
pro-apoptotic Bim protein upon miR-210 overexpression 
in all cell lines examined. The expression levels of other 
pro- or anti-apoptotic proteins which have addition-
ally been analyzed, were not or only marginally affected 
(Fig. 2c). MiR-210 mediated upregulation of Bim involves 
transcriptional mechanisms as demonstrated by quan-
titative PCR analyses of Bim mRNA (Fig. 2d). Since the 
AKT pathway is known to regulate Bim expression on 
the transcriptional level via FOXO transcription factors 
[38], we were interested whether this pathway is likewise 
affected by miR-210. As a matter of fact, immunoblot 
analysis revealed that the AKT pathway is less activated 
in cells overexpressing miR-210 compared to control cells 
(Fig. 2e), pointing to an involvement of AKT in the regu-
lation of Bim.

Further, we investigated the impact of Bim and Mcl-1 
on miR-210 mediated apoptosis. To this end, we simul-
taneously transfected miR-210 oligonucleotides and 
different siRNAs targeting Bim mRNA, which should 
counteract the pro-apoptotic effect of miR-210. Surpris-
ingly, knockdown of Bim did not (HCT116) or only mar-
ginally (SW480 and SW707) inhibit miR-210 induced 
apoptosis (Fig.  3a, b). With regard to Mcl-1, CRC cell 
lines were transduced with an Mcl-1 AdV and trans-
fected with miR-210 oligonucleotides. Overexpression of 
Mcl-1 significantly reduced miR-210 mediated apoptosis 
in SW480 and SW707 cells, however no effect on apopto-
sis rate in HCT116 cells was observed (Fig. 3c, d).

Inhibition of ROS partially protects cells from miR‑210 
induced cell death
MiR-210 overexpression has been associated with an 
impairment of mitochondrial function in various cellu-
lar contexts [37, 39, 40]. These effects have mainly been 
associated with miR-210 mediated regulation of the Fe-S 
cluster scaffold protein ISCU [39–42]. Thus, we examined 
the effects of miR-210 overexpression on ROS generation 
and ISCU expression in our cellular system. Importantly, 
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overexpression of miR-210 resulted in a substantial 
increase in ROS generation (Fig. 4a). Further, we observed 
a distinct decrease in ISCU expression upon transfection 
of miR-210 oligonucleotides (Fig.  4b). Moreover, siRNA 
mediated downregulation of ISCU increased cellular 
ROS generation and induced apoptosis (Additional file 3: 
Figure S3a, b). However, overexpression of ISCU did not 
counteract miR-210 mediated ROS and apoptosis induc-
tion (Additional file 3: Figure S3c, d). Since ROS is known 
to induce apoptosis via the activation of Caspase 2 [43, 
44], we investigated its processing dependent on miR-210 
expression. In fact, overexpression of miR-210 resulted in 
Caspase 2 cleavage (Fig. 4c). Additionally, as Caspase 3 is 
able to activate Caspase 2 [45, 46], we further wanted to 
exclude that the enhanced processing of Caspase 2 was 
exclusively mediated through a positive feed-back-loop 
resulting from an increased activation of Caspase 3. To 

this end, we transfected MCF-7 breast cancer cells, lack-
ing Caspase 3 expression [47], with pre-miR-210 and con-
trol oligonucleotides, respectively. Immunoblot analysis 
revealed that overexpression of miR-210 provoked Cas-
pase 2 processing in MCF-7 cells as well (Fig. 4d), thereby 
confirming that processing of Caspase 2 was independent 
of the activation of Caspase 3 within this context.

To further elucidate the role of ROS in miR-210 medi-
ated apoptosis, cells were treated with the ROS scaven-
ger N-acetylcysteine (NAC), which resulted in a decrease 
in miR-210 induced ROS generation (Fig. 5a). Although 
inhibition of ROS generation did neither affect expres-
sion levels of Bim, nor impair the cleavage of Caspase 2 
(Fig. 5b, c), NAC treatment led to a considerable decrease 
in miR-210 mediated cell death (Fig. 5d) and to a dimin-
ished cleavage of Caspase 3 (Fig. 5e), thereby suggesting 
a role of ROS generation in miR-210 mediated cell death.

Fig. 1  Overexpression of miR-210 inhibits cell growth. a Proliferation assay of CRC cell lines 24, 48 and 72 h after transfection with pre-miR-210 and 
a control miRNA, respectively. Cells were trypsinized and counted (mean ± SEM; n = 3; *p < 0.05; **p < 0.01; student’s t test). b Measurement of cell 
cycle distribution was performed 48 h after transfection of pre-miR-210 and a control miRNA, respectively. Cells were stained with PI and the DNA 
content was measured by FACS analysis. Data represent the mean of three independent experiments. c Pre-miR-210 and control miRNA transfected 
CRC cells were seeded into 6-well-plates (500 cells/well) 72 h post transfection and cultured for 7 days. The colonies were subsequently stained with 
crystal violet and counted (left panel; mean ± SEM; n = 3; *p < 0.05; **p < 0.01; student’s t-test). A representative picture is shown (right panel)
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Discussion
Altered expression of miR-210 can modulate either apop-
tosis resistance or sensitivity depending on the cellu-
lar context [10, 21, 32–37]. MiR-210 has been shown to 
be upregulated in CRC compared to normal tissue [17]. 

Further, high expression levels of miR-210 both in tumor 
tissue and serum of CRC patients correlate with a poor 
prognosis [17, 18]. Within this study we sought to explore 
the functional effects of an increased miR-210 expression 
in CRC.

Fig. 2  Overexpression of miR-210 induces apoptosis in CRC cell lines. a 72 h post transfection with pre-miR-210 and a control miRNA, respectively, 
the percentage of apoptotic cells was determined by PI staining and FACS analysis. Data indicate the percentage of cells showing a sub-G1-DNA 
content (mean ± SEM; n = 3; **p < 0.01; student’s t-test). Representative flow cytometric histograms are shown in Additional file 2: Figure S2. b 
CRC cell lines were transfected as described in A. Lysates were generated 72 h thereafter. Cleavage of Caspase 3 was determined by immunoblot 
analysis. c CRC cell lines were transfected as described in A. Lysates were generated 48 h thereafter. d qRT-PCR analysis of Bim mRNA expression in 
pre-miR-210 transfected CRC cell lines compared to control miRNA transfected cells. CRC cell lines were transfected as described in A. Isolation of 
RNA was carried out 48 h thereafter. The level of Bim mRNA expression was measured by quantitative RT-PCR analysis and normalized to internal 
18S rRNA expression (mean ± SEM; n = 3; **p < 0.01; student’s t-test). e CRC cell lines were transfected as described in A. Lysates were generated 
48 h (HCT116, SW707) and 72 h (SW480) thereafter. pAKT expression levels were determined by immunoblot analysis. pAKT expression levels were 
densitometrically quantified using ImageJ Software and normalized to total AKT expression
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Our results indicate that miR-210 functions in an anti-
tumorigenic manner by decreasing proliferation accom-
panied by an increased amount of cells in the G2/M 
phase of the cell cycle. This is in accordance with previous 

studies showing an accumulation of cells in the G2 phase 
in various tumor entities upon miR-210 overexpression 
[35, 36, 48]. Moreover it has been shown that miR-210 
overexpression induces senescence in fibroblasts [49] and 

Fig. 3  Downregulation of Bim and upregulation of Mcl-1 inhibit miR-210-mediated apoptosis. a CRC cell lines were transfected with pre-miR-210 
and a control miRNA, respectively. Concomitantly, they were transfected either with two different Bim-specific siRNAs or a control siRNA. 72 h post 
transfection, the percentage of apoptotic cells was determined by PI staining and FACS analysis. Data indicate the percentage of cells showing a 
sub-G1-DNA content (mean ± SEM; n = 3; *p < 0.05; student’s t-test). b CRC cells were transfected as described in A. Lysates were generated 72 h 
thereafter. The successful knockdown of Bim was monitored by immunoblot analysis. c CRC cell lines were transduced with Mcl-1 AdV and a control 
AdV, respectively. 24 h thereafter, cells were transfected with pre-miR-210 or a control miRNA. The percentage of apoptotic cells was determined 
72 h after transfection by PI staining and FACS analysis. Data indicate the percentage of cells showing a sub-G1-DNA content (mean ± SEM; n = 3; 
*p < 0.05; **p < 0.01; student’s t-test). d CRC cell lines were transduced with Mcl-1 AdV and a control AdV, respectively. Lysates were generated 72 h 
thereafter
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reduces tumor growth and proliferation in hepatocel-
lular xenografts [33]. Several direct and indirect targets 
of miR-210 might account for this effect. Zheng et  al. 
previously demonstrated that overexpression of miR-
210 blocks the expression of CyclinD1 and CyclinD2 via 
SHH/Gli1 signaling [50]. Additionally, the miR-210 target 
E2F3 [22, 36] plays an important role in regulation of pro-
liferation [51]. He et  al. further proposed Plk1, CyclinF, 
Bub1B, CDC25B and Fam83D to be involved in miR-
210-mediated cell cycle arrest [48]. In addition to the 
direct targets of miR-210, proliferation arrest might be 
induced by an increased ROS generation. Several targets 
are known that are involved in cell cycle regulation and 
are regulated by ROS. The observed accumulation of cells 
in G2 phase might therefore be caused by the regulation 
of the oxidative state of Cdc25C. This phosphatase which 
activates cyclinB/cdk1 complexes, might be repressed by 
elevated ROS levels by inducing an inhibitory disulfide 
bond [52]. Besides a direct regulation of cellular prolif-
eration, elevated amounts of ROS might contribute to 
the observed effects via activation of FOXOs. These tran-
scription factors regulate the transactivation of a series of 

genes involved in cell cycle control [53]. Activation of the 
FOXO transcription factors might occur upon increased 
ROS levels by MST1, which is activated upon nuclear 
DNA damage [54] or by inhibition of the AKT kinase, 
which negatively regulates FOXOs [55]. Interestingly, we 
observed a decrease in phosphorylated AKT upon miR-
210 overexpression. Similarly, Luo et al. recently demon-
strated a ROS-dependent inactivation of AKT signaling 
accompanied with an increased activity of FOXO3a in 
colorectal cancer cells [56].

An increased generation of ROS upon miR-210 upreg-
ulation has so far been observed in colorectal carcinoma 
[42], in adipose-derived stem cells [57] and fibroblasts 
[49]. Furthermore, it has been shown that an elevated 
expression of miR-210 reduces oxygen consumption and 
upregulates glycolysis in various tumor entities [39, 40, 
42, 58]. Within this context, it has been observed, that 
the activity of mitochondrial complex I [39, 40] and II 
[37] is impaired, resulting in an increased formation of 
ROS [54]. These effects have been proposed to be based 
on miR-210 mediated regulation of the Fe-S cluster scaf-
fold protein ISCU [39–42], SDHD [37], a subunit of the 

Fig. 4  Overexpression of miR-210 induces ROS generation. a Measurement of ROS generation was performed 48 h after transfection of pre-
miR-210 and a control miRNA, respectively (mean ± SEM; n = 3; *p < 0.05; **p < 0.01; student’s t-test). b CRC cell lines were transfected as described 
in A. Lysates were generated 48 h thereafter. ISCU expression was analyzed by immunoblot analysis. c CRC cell lines were transfected as described in 
A. Lysates were generated 48 h thereafter. Caspase 2 processing was analyzed by immunoblot analysis. d MCF-7 breast cancer cells were transfected 
as described in A. Lysates were generated 72 h thereafter. Caspase 2 processing was analyzed by immunoblot analysis
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succinate dehydrogenase complex, COX10 [42], a subu-
nit of cytochrome c oxidase, and NDUFA4 [37], a subunit 
of the NADH dehydrogenase 1 alpha subcomplex. In line 
with these observations we could also detect a decreased 
expression of ISCU and NDUFA4 (data not shown) upon 
miR-210 overexpression. Whereas siRNA-mediated 
downregulation of ISCU increased ROS generation and 
induced apoptosis, siRNA-mediated downregulation of 
NDUFA4 did neither alter ROS generation nor apoptosis 
rates (data not shown). However, ectopic overexpression 
of ISCU did not counteract miR-210 mediated apoptosis 
and ROS generation. Therefore, it might by very likely, 
that ISCU is only one of several miR-210 targets regulat-
ing ROS generation. This is also evidenced by the effects 
of ISCU downregulation, since the reduced expression 
of ISCU did not completely reach the extent of miR-210 
overexpression with regard to ROS generation and apop-
tosis induction.

Although there are several studies investigating the 
effect of a modulated miR-210 expression on apoptosis, 
the underlying molecular mechanisms are far from clear. 
Within this study we provide evidence, that an increased 
ROS generation induced by miR-210 overexpression con-
tributes to the apoptotic phenotype. One of the most 
common pathways contributing to ROS-induced apop-
tosis is the ASK1 signaling cascade. Induction of ROS 
results in the oxidation of the inhibitory protein thiore-
doxin. Subsequently ASK1 and the downstream stress 
kinases JNK and p38 get activated, whereas the latter are 
able to induce cell death [59].

Besides the ASK1/JNK/p38 signaling axis, the tran-
scription factor FOXO3 might contribute to the apop-
totic effects upon ROS generation by transactivation of 
its target genes Bim, Bcl-6 and Noxa [54]. Within this 
context, FOXO3 might be activated by MST1 or inhibited 
by the AKT kinase [54, 55]. Accordingly, it was recently 
demonstrated that ROS-dependent inactivation of the 
AKT signaling pathway was accompanied by an increase 
in Bim expression levels [56]. Indeed, we detected an 
increase of Bim expression levels upon miR-210 overex-
pression, which was at least partially due to transcrip-
tional regulation. Besides, ROS-induced ER stress and 
subsequent activation of the transcription factor CHOP 

might also contribute to the elevated Bim expression [38, 
60]. However, siRNA-mediated downregulation of Bim 
did not (HCT116) or only slightly (SW480 and SW707) 
diminish miR-210-mediated apoptosis, pointing to a dif-
ferent mechanism triggering miR-210-mediated apop-
tosis. Furthermore, inhibition of ROS generation using 
NAC did not alter Bim expression levels, rendering a 
ROS-dependent regulation of Bim rather unlikely.

Interestingly, we observed a miR-210 mediated upregu-
lation of the anti-apoptotic Bcl-2 protein in HCT116 and 
SW480 cells. So far it has been reported, that Bcl-2 over-
expression can either inhibit or increase ROS induced 
apoptosis [61–63]. In this regard, we observed, that 
ectopic overexpression of Bcl-2 significantly reduced 
miR-210 mediated apoptosis (data not shown). Within 
this context it is tempting to speculate whether an 
increased expression of miR-210 sensitizes cancer cells to 
Bcl-2 inhibitors.

Within this study we could further demonstrate, that 
overexpression of miR-210 results in an increased pro-
cessing of Caspase 2. Induction of ROS has been shown 
to induce activation of Caspase 2 [43, 44] in a both 
p53-dependent and –independent manner [64, 65] which 
might further result in apoptosis by Caspase 2-mediated 
cleavage of Bid or by directly inducing the release of Cyt 
c, AIF and SMAC from the mitochondria [66]. However 
inhibition of ROS generation did not alter Caspase 2 pro-
cessing nor did Caspase 2 downregulation inhibit miR-
210 induced cell death (data not shown).

The functional consequences of an increased miR-210 
expression in cancer patients are so far unknown. It has 
been shown, that elevated miR-210 expression levels 
might either be beneficial [29–31] or be accompanied by 
a poor prognosis [15, 17, 18, 23–27]. However, it is still 
unclear whether the latter is directly caused by increased 
expression levels of miR-210. Since hypoxia is one of the 
main factors contributing to a poor prognosis of cancer 
patients [67], elevated miR-210 expression levels, which 
are mainly regulated by HIF transcription factors [25, 68, 
69], might only be a bystander effect instead of directly 
influencing patients’ outcome. Therefore, the regulation 
of apoptosis by miR-210 might be of great biological rel-
evance in CRC and warrants further investigation.

(See figure on previous page.) 
Fig. 5  Inhibition of ROS generation affects miR-210 induced cell death. CRC cells were transfected with pre-miR-210 and a control miRNA, respec‑
tively. 24 h post transfection, cells were treated with NAC. a Measurement of ROS generation was performed 24 h post NAC treatment (30 mM) 
(HCT116: n = 1; SW480, SW707: n = 3; mean ± SEM; ***p < 0.001; *p < 0.05; student’s t-test). b Lysates were generated 48 h post NAC treatment 
(10 mM). Processing of Caspase 2 was analyzed by immunoblot analysis. c Lysates were generated 48 h post NAC treatment (10 mM). Bim expres‑
sion levels were determined by immunoblot analysis. d The percentage of apoptotic cells was determined 48 h post NAC treatment (30 mM) by 
PI staining and FACS analysis. Data indicate the percentage of cells showing a sub-G1-DNA content (mean ± SEM; n = 3; *p < 0.05; **p < 0.01; 
student’s t-test). e Lysates were generated 48 h post NAC treatment (10 mM). Cleavage of Caspase 3 was determined by immunoblot analysis
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Conclusions
Our experiments identify miR-210 as an inductor of 
apoptosis in CRC cells. Our results further identify miR-
210-mediated increase in ROS generation as a key driver 
of miR-210-induced apoptosis.

Methods
Materials
N-acetylcysteine was obtained from Sigma-Aldrich (St. 
Louis, MO, USA, A9165). The antibodies were obtained 
as follows: anti-actin (Chemicon, Billerica, MA, USA, 
1501); anti-AKT (Cell Signaling, Danvers, MA, USA, 
9272); anti-Bad (Santa Cruz, Dallas, TX, USA, sc-7869); 
anti-Bax (Santa Cruz, sc-493); anti-Bcl-2 (Santa Cruz; 
sc-509); anti-Bcl-XL (Cell Signaling, 2764); anti-Bim (Cell 
Signaling, 2933); anti-Caspase 2 (Cell Signaling, 2224); 
anti-Caspase 3 (Imgenex, San Diego, CA, USA, IMG-
144A); anti-cIAP1 (R&D Systems, Minneapolis, MN, 
USA, AF8181); anti-GAPDH (Santa Cruz, sc-32233); 
anti-ISCU (Santa Cruz; sc-373694); anti-Mcl-1 (Santa 
Cruz, sc-819); anti-pAKT (S472/473) (Cell Signaling, 
4058); anti-Puma (Cell Signaling, 4976); anti-XIAP (Cell 
Signaling, 2045).

Cell culture
The human colorectal cancer cell lines HCT116, SW480 
and SW707 as well as the human breast cancer cell line 
MCF-7 were purchased from the American Type Culture 
Collection (ATCC, USA), maintained in RPMI medium 
(Life Technologies, Darmstadt, Germany) supplemented 
with 10  % fetal calf serum (Sigma-Aldrich), 1  mM glu-
tamine, 25 mM glucose and 1 % penicillin/streptomycin 
(Life Technologies) and cultured at 37  °C in a 5  % CO2 
atmosphere. Cell lines were regularly tested for the pres-
ence of contamination using multiplex cell contamina-
tion test [70] and authenticated by SNP profiling [71].

Proliferation and clonogenicity assay
For the assessment of proliferation, cells were seeded into 
6-cm culture dishes and counted after 24, 48 and 72  h 
using the trypan blue exclusion assay. For clonogenicity 
assays, 500 cells were seeded into 6–well culture dishes 
and incubated for 7  days prior to crystal violet staining 
and colony counting.

FACS analysis
For analysis of cell cycle distribution and cell death, 
colorectal cancer cell lines were stained with propidium 
iodide (PI) as described previously [72].

For measurement of reactive oxygen species (ROS), 
colorectal cancer cells were seeded in 6-cm plates and 
transfected as indicated. Cells were incubated with the 
fluorescent H2DCF-DA (2,7-dichlorodihydrofluorescein 

diacetate; 5 µM; Biozol, Eching, Germany) for 30 min at 
37 °C.

Cells were subjected to flow cytometry analysis using 
a Becton–Dickinson FACScalibur cytometer and Cell 
Quest Software.

Transfections
Colorectal cancer cells were transiently transfected with 
siRNA using Lipofectamine 2000 (Life Technologies). 
Pre-miR-210 (miR precursor; PM10516) and co-pre-miR 
(control; AM17110) oligonucleotides were obtained from 
Life Technologies and used in a concentration of 50 nM. 
Bim siRNA #1 and #2 were obtained from Thermo Scien-
tific (Waltham, MA, USA, #D-004383-18, #D-004383-17) 
and used in a concentration of 25 nM. ISCU siRNA was 
obtained from Life Technologies (#s23908) and used in a 
concentration of 5 nM. A non-specific siRNA served as a 
control (Thermo Scientific, #D-001810-01).

The pcDNA3-ISCU plasmid was generated by PCR 
from the clone pENTR221-ISCU, provided by the 
ORFeome Collaboration (Genomics and Proteomics Core 
Facility, DKFZ, Heidelberg, Germany) using the following 
forward (F) and reverse (R) primers containing BamHI 
and XhoI restrictions sites: 5′- ATGCATGCATGG 
ATCCACCATGGCGGCGGCTGGGGCT -3′ (F) and 
5′- ATGCATGCATCTCGAGCAAGAAAGCTGGGTCC 
AATTTC -3′ (R). The PCR products were digested with 
BamHI and XhoI and cloned into the correspondent sites 
of pcDNA3-Flag. For the generation of stable transfect-
ants, complete medium containing Geneticin® (G418, 
Invitrogen) at a concentration of 1.5 mg/mL was used to 
select stably transfected cells.

Adenoviral transduction
Mcl-1-AdV was produced as described previously [73]. 
The control AdV consists of the empty AdV5 backbone 
and was kindly provided by Stefan Herzig (DKFZ, Heidel-
berg, Germany). CRC cells were incubated with recom-
binant AdVs directly after seeding using a multiplicity of 
infection of 10 (HCT116) or 200 (SW480, SW707).

Immunoblot analysis
Cellular lysate generation and immunoblot analysis were 
performed as described previously [72]. Densitometric 
analyses were performed using ImageJ software (National 
Institutes of Health, Bethesda, MD, USA, http://www.rsb.
info.nih.gov/ij/).

Quantitative PCR analysis
Quantitative real-time PCR was performed as described 
previously [73]. Following primer pairs were used: Bim: 
5′-CAACACAAACCCCAAGTCCT-3′ (forward), 5′-TC 
TTGGGCGATCCATATCTC-3′ (reverse); 18S: 5′-CATG 

http://www.rsb.info.nih.gov/ij/
http://www.rsb.info.nih.gov/ij/
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GCCGTTCTTAGTTGGT-3′ (forward), 5′ ATGCCAGAG 
TCTCGTTCGTT-3′ (reverse).

For measurement of miRNA expression, total RNA was 
isolated using the miRNeasy Mini Kit (Qiagen, Hilden 
Germany). Mature miRNAs were reversely transcribed 
using TaqMan® MicroRNA reverse transcription kit 
(Thermo Scientific) and TaqMan® MicroRNA Arrays 
(Thermo Scientific). Quantitative PCR analysis was per-
formed using the TaqMan® Universal PCR Master Mix 
(Thermo Scientific) and a 7300 Real-Time PCR System 
(Applied Biosystems, Foster City, CA, USA). All steps 
were carried out according to the to the manufacturer’s 
protocols.

Statistical methods
Significant differences were identified using the unpaired 
2-sided Student t test. Throughout, p values <0.05 were 
considered significant and are indicated as follows: 
*p < 0.05, **p < 0.01, ***p < 0.001.

Abbreviations
AdV: adenovirus; CRC: colorectal cancer; NAC: N-acetylcysteine; ROS: reactive 
oxygen species.
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