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Abstract

Changing light conditions, caused by the rotation of earth resulting in day and night or

growth on the surface or within a substrate, result in considerably altered physiological pro-

cesses in fungi. For the biotechnological workhorse Trichoderma reesei, regulation of glyco-

side hydrolase gene expression, especially cellulase expression was shown to be a target

of light dependent gene regulation. Analysis of regulatory targets of the carbon catabolite

repressor CRE1 under cellulase inducing conditions revealed a secondary metabolite clus-

ter to be differentially regulated in light and darkness and by photoreceptors. We found that

this cluster is involved in production of trichodimerol and that the two polyketide synthases

of the cluster are essential for biosynthesis of dihydrotrichotetronine (syn. bislongiquinolide

or bisorbibutenolide). Additionally, an indirect influence on production of the peptaibol antibi-

otic paracelsin was observed. The two polyketide synthetase genes as well as the monooxy-

genase gene of the cluster were found to be connected at the level of transcription in a

positive feedback cycle in darkness, but negative feedback in light, indicating a cellular

sensing and response mechanism for the products of these enzymes. The transcription fac-

tor TR_102497/YPR2 residing within the cluster regulates the cluster genes in a light depen-

dent manner. Additionally, an interrelationship of this cluster with regulation of cellulase

gene expression was detected. Hence the regulatory connection between primary and

secondary metabolism appears more widespread than previously assumed, indicating a

sophisticated distribution of resources either to degradation of substrate (feed) or to antago-

nism of competitors (fight), which is influenced by light.

Introduction

In their natural habitat, fungi constantly face the challenge to outcompete other organisms in

complex ecosystems. Therefore they developed powerful enzyme systems for degradation of

substrates, which provide for fast growth and efficient colonization of their environment [1].
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However, fungi also evolved the ability to kill, or at least inhibit the growth of their competitors

by producing a versatile array of secondary metabolites [2]. Application of these different sur-

vival utilities has to be tightly controlled in order to balance the assignment of resources for

feeding to succeed by superior growth or fighting to decrease the chances of survival for

competitors.

Due to its high capacity for cellulose degradation, which is also industrially exploited [3],

the filamentous fungus Trichoderma reesei (anamorph of Hypocrea jecorina) has become a

model organism for plant cell wall degradation [4, 5]. Traditionally, this species was also used

as a model for studying light responses [6]. Cellulases [7] as well as numerous glycoside hydro-

lases are regulated in dependence of the light status in T. reesei [8–10] and the photoreceptors

BLR1, BLR2 and ENV1. Also the photoreceptor homologues in Neurospora crassa, WC-1,

WC-2 and VVD were shown to regulate cellulase gene expression in [11]. T. reesei BLR1 and

BLR2 receive blue light as a signal and exert their function as GATA-type transcription factors

[6, 12]. They were shown to have functions in regulation of plant cell wall degrading enzymes

as well as CAZyme genes in general in dependence of light [10, 13] and to influence regulation

of the pheromone system in T. reesei [14]. ENV1 is a PAS domain protein acting as a photore-

ceptor and is regulated by BLR1 and BLR2 [12]. Also ENV1 impacts CAZyme gene expression

[10], pheromone response [14] and sexual development [14, 15] and is assumed to exert its

function in part via the cAMP pathway [16, 17]. ENV1 further connects light response to oxi-

dative stress response due to an evolutionary conserved amino acid alteration compared to N.

crassa [18].

However, also numerous components of the signaling pathways are known to impact cellu-

lase regulation [19, 20] indicating that many extracellular signals causing this regulation still

remain to be discovered.

Production of extracellular enzymes is an energy-consuming process and only initiated

when needed [21]. In the presence of plant cell wall components, expression of hydrolytic

enzymes is induced, which act synergistically for degradation of the complex polymers present

in this substrate. As these polymers are too large to enter the fungal cell, small products of

their hydrolysis act as signaling molecules for the presence of degradable plant material [22,

23]. One of the crucial mechanisms for regulation of enzyme production needed for substrate

utilization is carbon catabolite repression (CCR). CCR prevents biosynthesis of numerous

hydrolytic enzymes involved in degradation of complex polysaccharides, if an easily metaboliz-

able carbon source is available [24, 25]. Thereby, the T. reesei carbon catabolite repressor

CRE1 can act positively or negatively on gene regulation and the extent of this effect is also

dependent on the growth rate in many cases [26].

CRE-1 was shown to be a direct target of the white collar complex (WCC) in N. crassa upon

growth on sucrose [27] and its transcript rapidly increases upon onset of illumination [28].

Furthermore, cre-1 is also regulated by the WCC N. crassa on cellulose [11] and its deletion in

N. crassa leads to considerably increased cellulase activity on cellulose [11, 29].

Usually, secondary metabolites are preferentially produced after the active growth phase, if

nutrients in the environment become limiting or if environmental conditions such as humid-

ity, temperature, UV irradiation or pH threaten the functionality of the fungal cell [30]. In

fungi, biosynthesis of secondary metabolites is organized via regulation of specific gene clus-

ters [31]. However, many of these gene clusters, which became obvious during analysis of fun-

gal genomes, appear to be silent under common laboratory conditions. Therefore, recent

research efforts concentrate on elucidation of regulation of secondary metabolite clusters and

investigation of environmental signals initiating activation of such silent clusters and “cryptic”

pathways connected to them [32, 33]. In this respect, especially overexpression of a putative

regulator of a predicted but silent cluster proved effective [34]. These efforts also indicate a
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regulatory crosstalk between different secondary metabolite pathways, due to activation of

more than one cluster upon overexpression of a regulator (for example LaeA) [35].

As other fungi, species of the genus Trichoderma apply chemical warfare to defend their ter-

ritory [36]. More than 100 such metabolites have been described for Trichoderma spp. and

range from potential antibiotics to mycotoxins as well as volatile organic compounds [37, 38].

For the biotechnological workhorse Trichoderma reesei, the trichothecene toxin trichodermin

[39] as well as the peptaibol antibiotic paracelsin [40] have been described. Trichodermin is

much less toxic than most other metabolites of the group trichothecene toxins [39]. However,

only limited data is available on regulation of individual secondary metabolites in T. reesei (see

also below).

Two regulators important for production of the yellow pigment produced by T. reesei,
YPR1 and YPR2, were identified. A metabolite produced by the gene cluster located next to

the genes encoding YPR1 and YPR2 was determined to be sorbicillin [41].

The genome of T. reesei contains 11 polyketide synthases [42] and several non-ribosomal

peptide synthetases [43]. Although this number is small compared to other fungi [42], their

presence indicates a considerable potential for production of secondary metabolites. Interest-

ingly, analysis of the genome also revealed that plant cell wall degrading enzymes of T. reesei
are often found in clusters along with genes involved in secondary metabolism [43]. Conse-

quently, it is reasonable to assume that T. reesei evolved a mechanism for balancing the opera-

tion of primary and secondary metabolism during its life cycle. Indeed, the transcription

factor XPP1, for which previously a function in xylanase regulation was reported [44], was sug-

gested to act as a switch between primary and secondary metabolism [45]. Thereby, lack of

XPP1 causes both increased diversity and quantity in produced secondary metabolites in

T. reesei upon growth on glucose [45]. Moreover, XPP1 regulates transcript levels of different

polyketide synthase encoding genes including TR_73618 and TR_73621, which are located

close to YPR1 and YPR2 in the genome of T. reesei [45].

It was shown that production of secondary metabolites as well as the light dependence of

this process is strongly dependent on the carbon source in fungi. Even the concentration of the

carbon source in the cultivation medium can switch the preference for secondary metabolite

production from light to darkness in Aspergillus nidulans. This process is regulated by VeA

and its associated proteins including the photoreceptors LreA and LreB as well as the phyto-

chrome FphA ([46] and references therein).

Here we investigated the connection between cellulase regulation and secondary metabo-

lite production with respect to a light- and photoreceptor regulated gene cluster. We show

a connection between secondary metabolite production and cellulase regulation as well as a

light dependent feedback regulation of the biosynthetic genes within the cluster. Our

findings further revealed that the genes of this cluster are required for production of

dihydrotrichotetronin.

Results

Regulatory targets of CRE1 are different in light and darkness

We investigated the the effect of a loss of CRE1 on light/dark regulated gene expression upon

growth on cellulose. Therefore we cultivated Δcre1 and the wild-type strain in Mandels Andre-

otti minimal medium with microcrystalline cellulose as carbon source for 72 hours in constant

light (1800 lux, white light) or in constant darkness. Transcript levels of 263 genes increased in

Δcre1 as compared to the wild-type in darkness and 154 increased in Δcre1 in comparison to

the wild-type in light, while a decrease of transcript levels was observed for 244 genes in dark-

ness and 134 genes in light. Only 12 genes were upregulated in darkness and light and 11
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genes showed a decrease in both conditions (Fig 1A; S1 File). Genes upregulated in darkness

are enriched in functions of metabolism (p-value 5.42E-04), amino acid metabolism (p-value

1.32E-03), nitrogen, sulfur and selenium metabolism (p-value 2.37E-03), ion transport (p-

value 1.99E-03) and transport facilities (p-value 8.30E-05). In light, upregulated genes show an

enrichment in metabolism (p-value 2.79E-04) as well and further in nitrogen, sulfur and sele-

nium metabolism (p-value 6.32E-06) in transport facilities (p-value 4.47E-03), cellular import

(p-value 1.20E-03). Hence, CRE1 consistently negatively regulates metabolic genes and trans-

port in light and darkness, albeit the targets of these functional shifts are not the same in light

and darkness.

Positive effects of CRE1 on gene regulation showed a striking difference in targeted func-

tions in light and darkness. Although again, several metabolic genes were regulated, no signifi-

cant enrichment was observed within the genes downregulated in the mutant strain in light.

In darkness, genes involved in sugar, glucoside, polyol and carboxylate catabolism and anabo-

lism (p-values <3.35E-03) were enriched. However, the most striking difference was found in

regulation of genes involved in protein synthesis (45 genes) i. e. ribosomal proteins and genes

involved in ribosome biogenesis and translation with p-values below 7E-22, which only occurs

in darkness.

Hence our analysis confirms the function of CRE1 in regulation of metabolism also upon

growth on cellulose. Additionally, gene regulation by CRE1 is specific for light and darkness

with surprisingly few genes being regulated in light as well as darkness (Fig 1A).

Genes regulated by CRE1 are clustered in the genome

Evaluation of the genomic loci of genes up- or down-regulated by CRE1 in light and darkness

revealed a non random distribution of 259 genes, which were assigned to 36 genomic clusters

(S2 File). In several cases, these clusters contained CAZyme encoding genes. Interestingly,

again a strong enrichment among the genes in these 36 clusters in functions of protein synthe-

sis, ribosome biogenesis and translation (up to p-values of E-09) was found.

Among these clusters was also one comprising secondary metabolism genes (cluster 1 in S2

File) which resides in a genomic area previously described as a region of increased CAZyme

density ([43]; Figure 2a therein). Part of the cluster we found and which is described in [43]

was recently described to be responsible for production of a sorbicillin component in T. reesei
[41] and in Penicillium chrysogenum [47] and is regulated by XPP1 in T. reesei [45].

CRE1 differentially regulates a secondary metabolite cluster in light and

darkness

Our previous data showed that this cluster 1 (S2 File) overlaps with a light dependently regu-

lated cluster on cellulose [9]. Accordingly, (direct or indirect) regulation of the cluster by

CRE1 was negative in light and positive in darkness (Fig 1B). Hence we refer to this cluster sor-

bicillin- or “SOR” cluster and we selected the two polyketide synthetase genes TR_73618 and

TR_73621, the monooxygenase gene TR_73623, the transporter gene TR_43701 and the tran-

scription factor gene TR_102497 for further analysis. Searching 1000 bp of the upstream

sequences of these genes all contain putative CRE1 binding motifs (5’ SYGGRG 3’, -874, -813,

-426 and -424, relative to the ATG for TR_73618; -852, -349 and -347 for TR_73621, -950,

-921 and -273 for TR_73623, -192 for TR_43701 and -726, -660, and -358 for TR_102497). Fig

1C shows the composition of the cluster in T. reesei along with the gene designations assigned

in previous publications [5, 41, 48]. In order to avoid confusion, we will use the unique JGI

protein ID number of the respective genes hereafter.

Dihydrotrichotetronine production in T. reesei
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Fig 1. Light dependent regulation by CRE1 and the CRE1-regulated cluster. Transcriptome analysis of

Δcre1 was done in comparison to QM9414 as wild-type in constant light and constant darkness upon growth

on microcrystalline cellulose as carbon source for 72 hours. (A) Venn diagrams showing positive and negative

gene regulation in a strain lacking cre1 in light and darkness upon growth on cellulose. (B) Regulation of

cluster genes by CRE1 in light and darkness related to the respective wildtype strain under the same

conditions. (C) Schematic representation of the cluster genes along with protein IDs as assigned in JGI (http://

genome.jgi.doe.gov/Trire2/Trire2.home.html) along with protein designations assigned previously [5, 41, 48].

https://doi.org/10.1371/journal.pone.0182530.g001
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Since the genes in the SOR cluster are regulated in a light dependent manner, we checked

transcriptome data on the photoreceptors BLR1, BLR2 and ENV1 grown under similar condi-

tions (GSE36448; [10]) for regulation of the genes in our cluster. We found that the photore-

ceptors BLR1 and BLR2 negatively regulate the genes of this cluster, while ENV1 exerts

positive regulation (Figure A in S3 File; [10]), hence suggesting that this cluster is important

for photoadaptation [49–51]. Evaluation of transcriptome data from growth of the wild-type

on different carbon sources revealed that the cluster is upregulated upon growth on cellulose

and on glucose, but only very low transcript levels are present on glycerol, lactose and sophor-

ose (GSE81365) [9], which is in agreement with detection of a product of the cluster upon

growth on glucose as reported previously [41]. The regulation of the SOR cluster genes by

components of the heterotrimeric G-protein pathway as found upon re-analysis of transcrip-

tome data from strains lacking the G-protein beta and gamma subunits or a phosducin

(GSE27581) [8] supports a connection to nutrient sensing.

These findings suggest that CRE1 is not only the main carbon catabolite repressor, but also

involved in light dependent balancing of secondary metabolism and substrate degradation.

The SOR cluster genes influence secondary metabolite patterns in a

light dependent manner

We deleted the genes of the SOR cluster and investigated their functions in secondary metabo-

lism. Therefore we used high performance thin layer chromatography (HPTLC) to obtain a

first overview on secondary metabolite patterns secreted by T. reesei upon growth on cellulose

(Fig 2). This analysis showed that the overall amount of secondary metabolites per biomass is

lower in darkness for most strains than it is in the light, since the signal strength of most strains

including the wild-type QM6a in the “DARK” panel is weaker (Fig 2). In the light, individual

bands for TR_73623 and TR_73621 (arrows in Fig 2, “LIGHT” panel) are increased. However,

in darkness, we found elevated signal strengths in several bands for the two PKS-encoding

genes TR_73618 and TR_73621 (upper “DARK” panel) as well as a general increase of band

intensities for the monooxygenase-encoding TR_73623. Deletion of the transcription factor-

encoding TR_102497 also caused an increase in visible bands in darkness (Fig 2).

TR_73618 and TR_73621 are required for the biosynthesis of

dihydrotrichotetronine

In order to gain an insight into the nature of the metabolites formed by the SOR cluster, we

investigated the secreted metabolites upon growth on cellulose by mass spectrometry using a

multimetabolite standard solution for precise metabolite identification and quantification. We

found that the amount of trichodimerol only showed an increasing trend in darkness com-

pared to light, while dihydrotrichotetronine and paracelsin levels were strongly increased in

darkness (Fig 3A). Deletion of the transcription factor gene ypr2/TR_102497 clearly decreased

production of trichodimerol in light and darkness, which confirms its function in regulation

of the SOR cluster (Fig 3B–3E). Lack of the PKS encoding genes and the monoxygenase and

the transporter consistently abolished production of trichodimerol and dihydrotrichotetronin

in darkness, while trichodimerol was still detectable in TR_73618 in light (Fig 3B–3E). Hence

we conclude that the SOR cluster is required for the production of trichodimerol and dihydro-

trichotetronin, with TR_73621 being sufficient for production of trichodimerol, but not dihy-

drotrichotetronin in the light.

In addition to the function of the cluster in production of these compounds, deletion of

SOR cluster genes in part also impacts production of paracelsin in a light dependent manner,

but likely in an indirect way. Deletion of ypr2/TR_102497 causes somewhat increased
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Fig 2. Secondary metabolite patterns in deletion mutants. HPTLC (high performance thin layer

chromatography) analysis of secondary metabolites secreted by mutant strains in the LCS cluster upon

growth on cellulose in light or darkness. Numbers represent protein IDs of genes deleted in the respective

analyzed strain. Samples are adjusted to biomass produced and hence represent secondary metabolites

produced by equal amounts of biomass. The three panels represent different methods of visualization of the

Dihydrotrichotetronine production in T. reesei
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paracelsin levels in light, while, all other deletion mutants showed decreased paracelsin levels

in light (Fig 3F). In darkness, only TR_73623 and. ypr2/TR_102497 were relevant for paracel-

sin levels and suggest an involvement of TR_73623 in biosynthesis of paracelsin or a precursor

as well as direct or indirect regulation of paracelsin biosynthesis by ypr2/TR_102497 (Fig 3G).

YPR2 differentially regulates cluster genes in light and darkness

Since HPTLC and mass spectrometry data clearly showed a role of YPR2 in regulation of the

secondary metabolites produced by the cluster, we analyzed its role in regulation of the indi-

vidual genes. Upon growth on cellulose in darkness, we found a strong positive influence of

YPR2 on the four other genes in the cluster (Fig 4A). In light, the pks genes were only present

at a very low level already in the wild-type and only a minor influence of YPR2 was observed

(Fig 4B). For the monooxygenase, however, YPR2 is essential for induction in light and YPR2

has a strongly negative effect on the transporter gene TR_43701 in light (Fig 4B).

Biosynthetic genes show light dependent mutual regulation

A mutual influence of biosynthetic genes due to a feedback mechanism caused by altered pre-

cursor availability seemed possible. In the wild-type we found strongly decreased transcript

levels upon growth in light to less than 1% of dark levels for TR_73618, TR_73621 and

TR_73623 (Fig 5A–5F), which is in agreement with transcriptome data. Transcript levels of

TR_73618 in deletion strains of TR_73621 or TR_73623 were decreased in darkness (Fig 5A)

and transcript levels of TR_73621 in darkness strongly decreased in the absence of TR_73618

and were around the extremely low light levels in a strain lacking TR_73623 (Fig 5C and 5D).

For TR_73623 decreased transcript abundance was observed in deletion strains of TR_73621

and TR_73618 (Fig 5E). Hence, the function of TR_73623 is required for induction of the pks

genes TR_73618 and TR_73621 and the absence of one of the pks genes leads to a decrease in

transcript abundance of the other by roughly 5 fold. Consequently, the biosynthetic genes

show a mechanism of positive feedback on each other in darkness (Fig 5G).

In light, transcription levels of these three genes were already at a very low level compared

to darkness (Fig 5B, 5D and 5F) and the regulatory effects were less dramatic. Deletion of

TR_73618 increased transcript levels of TR_73621 and vice versa. For TR_73623 no significant

influence on the pks genes was observed, but on the other hand, TR_73621 did have a positive

effect on transcript levels of TR_73623 (Fig 5H).

In summary this analysis revealed a positive feedback cycle in darkness and a negative feed-

back cycle, albeit predominantly comprising the pks genes, in light (Fig 5G and 5H).

Genes of the SOR cluster influence cellulase regulation

The finding of a secondary metabolite cluster to be regulated by the carbon catabolite repressor

CRE1, that is known for its high relevance for cellulase gene expression, suggested a connec-

tion of the regulation of this cluster to cellulase gene expression. Therefore we tested all dele-

tion mutants of the cluster genes for their impact on transcript regulation of the major

cellulase gene cbh1 as well as cellulase activity (Fig 6A–6D).

same metabolite patterns: Upper panel: Remission at 366 nm; middle panel: derivatized, remission at 366 nm,

lower panel: derivatized, transmission visible light. The analysis of light- and dark samples was done in

parallel on the same HPTLC plate and consequently signal strengths in light and dark are comparable. Arrows

highlight bands with altered signal strength compared to wildtype. Three biological replicates were analyzed

and a representative sample is shown.

https://doi.org/10.1371/journal.pone.0182530.g002
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Fig 3. Quantitative mass spectrometry analysis in light and darkness. (A) Quantitative analysis of

abundance of trichodimerol (“T”), dihydrotrichotetronin (“D”) and paracelsin B (“P”) in light compared to

darkness in wildtype. (B-G) Quantitative analysis of abundance of trichodimerol (B, C), dihydrotrichotetronin

(D,E) and paracelsin (F,G) in light (light grey bars) and darkness (dark grey bars) in strains lacking cluster

genes upon growth in liquid minimal medium with cellulose as carbon source. Produced metabolites were

Dihydrotrichotetronine production in T. reesei
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In light, where the transcripts of the cluster genes are only present in very low amounts,

and hence likely of low relevance, we did not detect significant changes in cbh1 transcript levels

or specific cellulase activity (Fig 6A and 6C). In darkness however, deletion of the transcription

factor gene TR_102497/ypr2 resulted in increased cbh1 transcript levels and correspondingly

increased specific cellulase activity (Fig 6B and 6D). Deletion of the pks gene TR_73621

resulted in a positive trend for cbh1 transcript levels and increased specific cellulase activity

(Fig 6B and 6D). We conclude that there is indeed a mutual influence of the secondary metab-

olites produced by this cluster and/or its regulators with enzyme expression.

Discussion

Polyketides are a diverse group of chemicals being produced as secondary metabolites in many

fungi. They include polyphenols, polyenes and macrolides, which can be toxins such as sterig-

matocystin or aflatoxin or important pharmaceuticals such as lovastatin [52].

The polyketide synthases found in the SOR cluster belong to the group of non reducing

fungal PKS clade III and the reducing clade I of the lovastatin/citrinine type, respectively. Both

PKSs are specific to T. reesei as no orthologues were found in T. atroviride or T. virens [42]

although there are orthologous genes in A. nidulans and N. crassa. The SOR cluster is con-

served only in the phylogenetically already relatively distant Penicillium chrysogenum, but not

in closer related fungi [41, 47].

Previously, regulation of sorbicillin production by the transcription factors YPR1 and

YPR2 was shown for growth on glucose [41]. Due to the effect of YPR2 on the sorbicillin deriv-

atives trichodimerol and dihydrotrichotetronin, that we showed here, our data are in line with

a biosynthesis of trichodimerol and dihydrotrichotetronin from sorbicillin as intermediate

involving the genes of the SOR cluster [41]. It remains to be shown, whether trichodimerol

and dihydrotrichotetronin are only produced upon growth on cellulose as in our study or if

these compounds were just not detected on glucose. Trichodimerol was isolated from P. chry-
sogenum and inhibits production of TNF-alpha by macrophages [53] and exhibits strong

related to the biomass formed under the respective conditions. Errorbars show standard deviations of two

biological replicates. Values with statistically significant difference from wild-type are marked with an asterisk

(except for lacking production). Structures show the respective compound.

https://doi.org/10.1371/journal.pone.0182530.g003

Fig 4. Transcript levels of cluster genes in a strain lacking TR_102497/YPR2. Transcript levels of

TR_73618, TR_73621, TR_73623 and TR_43701 were determined by quantitative RT-PCR after growth on

cellulose in constant darkness (A) or in constant light (B) for 96 hours and are shown relative to the wildtype.

Errorbars show standard deviations of at least three biological replicates and three technical replicates. Values

with statistically significant difference from wild-type are marked with an asterisk (except when no transcript was

detected at all).

https://doi.org/10.1371/journal.pone.0182530.g004
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Fig 5. Mutual regulatory response of biosynthetic genes to deletions. The effects of deletions of the

biosynthetic genes on transcript levels of TR_73618 (A, B), TR_73621 (C, D) and TR_73623 (E, F) in

constant light (LL) or constant darkness (DD) are shown relative to wild-type in darkness. As transcript levels

in light are too low to be evaluated next to darkness results (A, C, E), they were also presented separately (B,

D, F) with the y-axis showing transcript levels in relation to the wild-type in darkness. Strains were grown in
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cytotoxic activity on three cancer cell lines [54]. Dihydrotrichotetronin was isolated from Tri-
choderma longibrachiatum [55] and is also known as bislongiquinolide [56] or bisorbibuteno-

lide [57]. Also this compound has potential anticancer activity [58, 59].

For trichodimerol and (dihydro)trichodetronin a biosynthetic route was suggested which

involves condensation of two sorbyl-cyclohexadienone type 2,4-dimethylhexaketides to form

trichodimerol and on the other hand a Diels-Alder reaction for formation of (dihydro)tricho-

tetronine from the same sorbyl-cyclohexadienone and a sorbyl-tetronic acid dimethyl hexake-

tide [55]. We found that TR_73621 and TR_73623 are essential for both biosynthesis of

trichodimerol and dihydrotrichotetronin in light and darkness, while the second PKS

TR_73618 is only essential for trichodimerol biosynthesis in darkness. Formation of trichodi-

merol by the SOR cluster is in agreement with previous studies showing sorbicillin formation

constant light (LL) or constant darkness (DD) on cellulose for 96 hours. Errorbars show standard deviations of

at least three biological replicates and three technical replicates. (G, H) Schematic representation of positive

and negative feedback of mutual gene regulation in light and darkness. Values with statistically significant

difference from wild-type are marked with an asterisk in A,C and E for darkness and in B, D and F for light.

https://doi.org/10.1371/journal.pone.0182530.g005

Fig 6. Cellulase regulation by cluster genes. (A, B) Specific cellulase activity in mutants of the cluster genes

upon growth in constant light (A, light grey bars) or in constant darkness (B, dark grey bars) for 96 hours on

cellulose related to wild-type. (C, D) Transcript levels of cbh1 in mutants of the cluster genes upon growth in

constant light (C, light grey bars) or in constant darkness (D, dark grey bars) for 96 hours on cellulose related to

wild-type. Errorbars show standard deviations of at least three biological replicates and two technical

replicates. Values with statistically significant difference from wild-type are marked with an asterisk (except for

lacking production).

https://doi.org/10.1371/journal.pone.0182530.g006
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[41]. The Diels-Alderase suggested to be required for formation of dihydrotrichotetronine

remains to be determined. However, related PKSs have been shown to exert Diels-Alderase

activity and also stand-alone Diels Alderases are known [60, 61]. Unfortunately, the structural

requirements for enzymatic Diels-Alderase activity are not sufficiently described to conclude a

responsible domain and enzymes currently known to show this activity show hardly any

sequence similarities [61]. Therefore it can neither be proposed nor excluded that the PKSs of

the SOR cluster or TR_73623 could be required for this reaction.

In addition to trichodimerol and dihydrotrichotetronin, an (likely indirect) influence of

cluster genes on paracelsin production was observed, which can be assumed to be a side effect

due to an imbalance in secondary metabolism and/or precursor availability caused by deletion

of the respective genes.

Already with the annotation of the genome of T. reesei [43], a biased placement of genes

involved in secondary metabolism close to CAZyme clusters was noted. At the time it was

interpreted as a means to fend off competitors for nutrients. Our study now supports this

hypothesis of coordination of substrate degradation and competition and moreover shows

that regulation of the SOR cluster is strongly regulated by light. Accordingly, metabolic func-

tions have recently been shown to be considerably influenced by the circadian clock including

coordination of anabolic and catabolic functions [62, 63]. Cellulase regulation in T. reesei is

also known to be regulated in dependence of light [7, 10, 12] and transcriptome analysis in

light and darkness as well as with photoreceptor mutants also indicated a relevance for energy

metabolism [9–11]. Therefore an economic distribution of resources for feeding (enzyme pro-

duction) and fighting (secondary metabolite production) would appear reasonable.

Nutrient- and light dependent regulation of secondary metabolism has been shown previ-

ously and was even dependent on the concentration of a carbon source [46]. Light is also

known as one crucial factor in regulation of secondary metabolism in fungi [64]. Hence, the

different regulation patterns seen in light and in darkness in our study are not without prece-

dent. However, the mutual regulation of transcript levels in response to the lack of either one

of the PKSs or TR_73623 was unexpected and suggests an intracellular sensing mechanism,

responding to altered precursor availability or product formation. Despite the numerous

reports on regulation of primary and secondary metabolism in light and darkness, a clear

explanation as to the biological importance of this regulation, that would also be consistent for

different species could not yet been found. Nevertheless, it is tempting to speculate that the dif-

ferent condition in terms of light (including harmful UV light), humidity, oxidative stress etc.

during day or night and on versus in the substrate [65] are important for the light dependent

gene regulation in fungi.

The function of a switch between primary and secondary metabolism was suggested for

T. reesei XPP1 [45]. XPP1 was initially described as a repressor of xylanase genes, where its

deletion caused a roughly 1.5 to 2fold increase in xylanase activity [44]. Interestingly, we see a

comparable phenomenon for TR_102497/YPR2, which has a clear influence on secondary

metabolism in its gene cluster, but also impacts cellulase gene expression. Even the crucial car-

bon catabolite repressor CRE1 with its clearly nutrient targeted function impacts regulation of

secondary metabolite genes. It will be interesting to learn how widespread the interconnec-

tions and regulators of primary and secondary metabolism indeed are. Our findings already

indicate an energy driven distribution of resources that is triggered by both regulators of sec-

ondary metabolism and primary metabolism.

While CCR is mainly studied with respect to regulation of carbon source degrading

enzymes, a function of CCR and/or CRE1-homologues in secondary metabolism was investi-

gated in Aspergilli. Although indications for a role of CCR in this process were detected (for

example [66]), an involvement of CreA was not unequivocally proven [67, 68]. However, in
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these studies, the light conditions under which the experiments were performed are not

described and a regulatory role of CreA was only analyzed under carbon catabolite repression

conditions, but a potential function under derepressed conditions was not considered. In this

respect it is also interesting, that a relevance of CRE1 for translation associated functions as

found in our study was only detected on glucose so far [69]. Considering the differences in

gene regulation and functional distribution of regulated genes [9, 10] under inducing condi-

tions and particularly on cellulose in light and darkness, uncontrolled light conditions may

have masked some regulatory effects on cellulose.

Materials and methods

Strains and cultivation conditions

QM9414 (ATCC26921), Δcre1 [26], QM6a (ATCC13631), QM6aΔku80 and QM6aΔmus53
[70] were used. Strains were propagated on malt extract agar (3% w/v; Merck, Darmstadt,

Germany).

For transcriptome analysis, Mandels Andreotti (MA) minimal medium [71] supplemented

with 0.1% (w/v) peptone (Roth, Karlsruhe, Germany) with 1% (w/v) microcrystalline cellulose

(Alfa Aesar, Karlsruhe, Germany) as carbon source. QM9414 (ATCC26921) and Δcre1 were

grown directly in the MA medium for 72 hours in 200 ml of medium in constant light (1800

lux; Osram L 18W/835 fluorescent bulbs) or constant darkness at 28˚C on a rotary shaker (200

rpm). Harvesting was done under red safety light (darkroom lamp, Philips PF712E, red, E27,

15 W) for all dark cultivations in order to avoid interference of light pulses with gene

regulation.

The same conditions were applied for cultivation of QM6a, QM6aΔku80 and QM6aΔmus53
along with the recombinant strains constructed for this study, except that these strains were

grown for 96 hours. Mycelia and supernatants were used for determination of biomass forma-

tion, cellulase activity and quantitative reverse transcription PCR (qRT-PCR) analysis. For

inoculum production, strains were grown on malt extract agar plates for 10 days in constant

darkness to avoid interference of light effects or circadian rhythms. 109 conidia per L were

used as inoculum.

Construction of deletion strains and copy number determination

Yeast recombination cloning was used for vector construction as described [72] using primers

for amplification of flanking sequences as provided in this study. Deletions were introduced

into QM6aΔku80 (TR_73618, TR_73621, TR_73623 and TR_43701) or QM6a Δmus53

(TR_102497) by protoplasting [73] and absence of open reading frames was confirmed by

PCR. Primers used for vector construction and confirmation of deletion are listed in Table A

(S3 File). The respective parental strain as well as QM6a were used as controls for every experi-

ment. Determination of copy numbers of integrated deletion cassettes (Table B in S3 File) was

performed as described previously [8]. Two deletion strains of the same gene were included in

the analysis.

Nucleic acid isolation and qRT PCR

Strains grown on Mandels Androtti medium with cellulose as carbon source were harvested

by filtration and snap frozen in liquid nitrogen. For cultivations in constant darkness, harvest-

ing was done with red safety light. Isolation of total RNA using the RNeasy Plant Mini Kit

(QIAGEN, Hilden, Germany) as well as quality control was done as described earlier [17].

Only high quality RNA was used for further analyses. Total RNA (1 μg) was treated with
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DNase I (Thermo Fisher, Waltham, MA, USA) and reverse transcription was performed using

the GoScript Reverse Transcription System (Promega, Madison, USA). qRT-PCR analysis was

performed as outlined in (Tisch et al., 2011) with the GoTaq QPCR Master Mix (Promega,

Madison, WI, USA) on the CFX96 Real Time cycler (Bio-Rad, Hercules, USA). Three biologi-

cal replicates and three technical replicates were considered for analysis. Data analysis was

done using the software qbase+ (Biogazelle). Primers used are listed in Table A (S3 File).

Secondary metabolite analysis

For secondary metabolite analysis the same cultures were used as for qRT-PCR, biomass deter-

mination and cellulase analysis. Secondary metabolites were determined in the supernatants

from these cultures as normalized to the respective biomass formed.

Application of high performance thin layer chromatography (HPTLC) and data visualiza-

tion was performed as described in [74] except that separation was done with chloroform and

1 mM trifluoroacetic acid in methanol.

Mass spectrometric, quantitative analysis and identification of secreted secondary metabo-

lites was done as described previously [75] with a QTrap 5500 MS/MS system (Applied Biosys-

tems, Foster City, CA) equipped with a TurboIonSpray electrospray ionization (ESI) source

and a 1290 series UHPLC system (Agilent Technologies, Waldbronn, Germany). Chro-

matographic separation was done at 25˚C on a Gemini1 C18-column, 150×4.6 mm i.d., 5 μm

particle size, equipped with a C18 security guard cartridge, 4×3 mm i.d. (all from Phenomenex,

Torrance, CA, US). Using this approach, routine detection and quantification of 710 metabo-

lites is performed. Calibration with a serial dilution of a multi analyte stock solution for these

metabolites enables reliable identification and quantification of the fungal metabolites present

in the sample. Confirmation of positive analyte identification was obtained by the acquisition

of two MRMs per analyte, which yielded 4.0 identification points according to commission

decision 2002/657/EC. In addition, the LC retention time and the intensity ratio of the two

MRM transition agreed with the related values of an authentic standard within 0.1 min and

30% rel., respectively.

Transcriptome and bioinformatic analysis

We used the gene expression service for custom arrays as provided by Roche-NimbleGen

(Madison, USA) for transcriptome analysis of high quality RNA of Δcre1 grown in constant

light or constant darkness on cellulose. Data are deposited at NCBI Gene Expression Omnibus

(GEO accession number GSE99441). For differential gene regulation a threshold of 2fold with

a p-value of 0.01, false discovery rate (FDR) corrected, was applied (ANOVA statistics, PAR-

TEK Genomics Suite 6.6; St. Louis, USA).

Functional category analysis was done with the MIPS Functional Catalogue tool in the latest

version of May 2014 (http://mips.helmholtz-muenchen.de/funcatDB/; [76]). Analysis of geno-

mic clustering was performed using the open source software REEF [77] and obtained clusters

were fused manually if overlapping.

DNA analysis and search for promotor motifs was done with Generunner 3.0 (Version

5.0.79d Beta). The t-test was used to evaluate statistical significance of results.

Biomass determination of cellulase activity

Determination of biomass formation in liquid culture with cellulose as biomass was done as

described previously [7]. Briefly, mycelium was harvested and snap frozen in liquid nitrogen.

Then, the material was ground to a fine powder using a Retsch Mill (Retsch MM301, Haan,

Germany), resuspended in 0.1 M NaOH, sonicated and after incubation at room temperature
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and centrifugation, the protein content (reflecting biomass) was determined by the Bradford

method (Bio-Rad Protein Assay; Biorad, Hercules, USA). CMCase activity was measured in

the culture filtrates using the Azo-CM-Cellulose kit (S-ACMC-L, Megazyme, Wicklow,

Ireland).
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