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Analysis on Bilateral Hindlimb Mapping in Motor Cortex of the 
Rat by an Intracortical Microstimulation Method

Intracortical microstimulation (ICMS) is a technique that was developed to derive 
movement representation of the motor cortex. Although rats are now commonly used in 
motor mapping studies, the precise characteristics of rat motor map, including symmetry 
and consistency across animals, and the possibility of repeated stimulation have not yet 
been established. We performed bilateral hindlimb mapping of motor cortex in six 
Sprague-Dawley rats using ICMS. ICMS was applied to the left and the right cerebral 
hemisphere at 0.3 mm intervals vertically and horizontally from the bregma, and any 
movement of the hindlimbs was noted. The majority (80% ± 11%) of responses were not 
restricted to a single joint, which occurred simultaneously at two or three hindlimb joints. 
The size and shape of hindlimb motor cortex was variable among rats, but existed on the 
convex side of the cerebral hemisphere in all rats. The results did not show symmetry 
according to specific joints in each rats. Conclusively, the hindlimb representation in the 
rat motor cortex was conveniently mapped using ICMS, but the characteristics and inter-
individual variability suggest that precise individual mapping is needed to clarify motor 
distribution in rats.
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INTRODUCTION

Intracortical microstimulation (ICMS) can derive movement 
representation of the motor cortex in central nervous system 
disease. Neurophysiologic experimental studies using ICMS in 
animals began recently and are ongoing (1-4). As studies of 
ICMS, using the rodents are generalized and experiments with 
the rats are becoming more common being cost effective and 
convenient to manage (5). However, despite the existence of a 
number of ICMS studies using rats, accurate maps of the rat 
motor cortex and optimal stimulation parameters have not yet 
been established (5).
 The motor cortex mapping is essential to develop a new treat-
ment or device using the animal models in the central nervous 
system disorder. If hindlimb mapping is achieved accurately 
and consistently, it will be helpful to research the effect of the 
motor cortex stimulation for treating the intractable pain or Par-
kinson’s disease (6, 7). Also, it is expected to be the basic step 

for developing artificial neural network device such as spinal 
cord-machine interface to treat spinal cord injury models and 
research of neural plasticity (6, 7).
 In this study, we focused on the analysis of characteristics of 
hindlimb motor cortex such as symmetricity in each animal, 
the consistency across animals, and possibility of repeated stim-
ulation in each point. 

MATERIALS AND METHODS

Animals
Sixteen male Sprague Dawley rats (Orient Bio Inc., Seongnam, 
Korea), weighing 250-300 g were used in this study. Before map-
ping, all rats were housed two per cage under simulated day-
light conditions with alternating 12-hr light-dark cycles, and 
had free access to food and water. The environment tempera-
ture was maintained at 22 ± 2°C.
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Brain exposure
Because the purpose of our study is to find out the movement 
of hindlimb induced by ICMS, Rompun (Bayer, Leverkusen, 
Germany) for a muscle relaxant was excluded and we used only 
Zoletil (40 mg/kg) (Virbac S.A., Carros, France) which was in-
jected intraperitoneally for induction and maintenance of an-
esthesia. We performed a 10 × 4 mm craniotomy at each side 
after midline vertical scalp incision on the vertex of rat. Each 
side of bony window exposed from 5 mm anterior to 5 mm pos-
terior of bregma and from 1 mm to 5 mm lateral of midline (Fig. 
1). With an 33-gauge needle, dura was carefully removed.

Cortical stimulation
Bipolar electrodes were inserted to a depth of 1.5 mm from the 
neocortical surface. The diameter of bipolar electrodes was 0.2 
mm. Bregma was chosen as the center of matrix which divided 
by 0.3 mm square coordinates to penetrate and stimulate in the 
center of each square, and skipped when located over a blood 
vessel. Brain swelling or bleeding by minor injury disturbing a 
stable stimulation were tried to be avoided. Stimulation param-
eters consisted of 0.02 msec-long, a frequency of 300 Hz, an in-
tensity 4 mA and 12 pulse trains/sec.
 First, we investigated the movement of hindlimb provoked 
by the left side ICMS. Three days later, the mapping at the right 
side motor cortex was performed in the same way, and we eval-
uated the bilateral symmetricity of stimulation points. Antibiot-
ics administration started from the first operation for prevent-
ing infection.

Evaluation of response and mapping
Rats were kept in prone position during stimulation. Bilateral 
forelimbs and hindlimbs were not fixed and were freely hang-

ing so that it was possible to observe the movement of hip, knee 
and ankle joints at a time. We conducted the mapping of ex-
posed cortical surface except blood vessels. Cortical surface 
was stimulated from 5 mm anterior to 5 mm posterior of breg-
ma and from 1 mm to 5 mm lateral of midline with intervals of 
0.3 mm. The results were recorded using a matrix table com-
posed of squares corresponding to each stimulation points in 
brain (0.3 × 0.3 mm). Only the respond points were demarcat-
ed at the matrix table as an abbreviation (Fig. 2). 

Ethics statement
Animal experiments were approved by the institutional animal 
care and use committee of Asan Institute for Life Sciences, Seoul, 
Republic of Korea (project No. 2010-12-219).

RESULTS

Sixteen rats were used in this study, but finally motor cortex map-
ping was obtained only in six rats. The cases unable to perform 
mapping in early ten rats were due to brain swelling caused by 
repeated electrode penetration as well as inappropriate stimu-
lation parameter or microbleeding during dura opening. 
 The motor abilities of the six rats that completed the study 
did not decrease by penetration technique and cortical stimu-
lation. All the hindlimb movements were developed from the 
contralateral side of hemisphere ICMS conducted. In most rats, 
the stimulation points that caused movement of a given joint 
were irregulary and widely distributed. Particulary, the motor 
cortex of hindlimbs was found to be located on the convex side 
which is different from the human motor cortex of lower ex-
tremity that located in the interhemispheric area dominantly. 
 All movement of hindlimb’s joints appeared in flexion only, 
not appeared in extension. The majority (80% ± 11.2%) of res-
pon ses were not restricted to a single joint, and movement occ-
urr ed simultaneously in two or three hindlimb joints (Table 1). 
The results of mapping in six rats are shown in Fig. 2. The motor 
maps were asymmetric, and were not consistent across the six 
rats. There were thirty points which showing the same joints re-
sponse in more than four rats, and only one point (3.1 mm left 
lateral from the midline, 1.5 mm posterior to the bregma) that 
elicited the same movement (knee flexion) in all six rats (Fig. 3). 
However, when indicate three-dimensional summary of corti-
cal mapping according to individual joints, the overall shape is 
seem to be symmetrical (Fig. 4). The mean areas of hindlimb 
representation were 2.5 ± 5.1 mm2 at left hemisphere, 1.9 ± 0.9 
mm2 at right hemisphere and 2.2 ± 5.3 mm2 in total.
 Seven days after brain mapping, the cortex was reexposed to 
evaluate the possibility of repeated stimulation. However, re-
peated motor cortex stimulation was not possible in any of the 
six rats due to brain swelling and surface hemorrhage even 
though we used anti-adhesion film (Surgiwrap®, MAST, Zurich, 

Fig. 1. A schematic diagram of craniotomy in rat. A median incision was performed 
on the scalp and the dura mater was exposed after two (left and right) rectangular 
craniotomy (each 10 mm length and 4 mm width) using the bregma as the reference 
point. Finally, the dura was removed.
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Switzerland) between brain cortex and scalp to prevent wound 
adhesion.

DISCUSSION

The study on the cortical surface stimulation was begun earlier 
than intracortical stimulation, which can stimulate motor cor-
tex with lower amplitude, but the specificity is lower than intra-
cortical stimulation (1, 2). ICMS has the advantage of pyramidal 
cell stimulation (1, 2, 8). In this study, ICMS was tried in 16 rats 
and only final six rats showed cortical stimulation with hindlimb 
response over ten points of stimulation. In early ten rats, stimu-
lation of motor cortex was not possible due to hematoma or 
swelling mainly from damage during dural opening and elec-

trode insertion injury. These obstacles were overcome by use of 
a microscope and fine bipolar electrode with 0.2 mm diameter. 
The optimal parameters for motor cortex stimulation are not 
known, but in this study, we used stimuli of 0.02 ms, 300 Hz, 4 
mA, 12 times pulses/sec delivered at 1.5 mm depth where layer 
5, 6 exist. These parameters are similar to previous reports (5, 
9-12).
 In the human cortex, the motor area of hindlimb is located in 
the interhemispheric region. On the contrary, motor cortex in 
the rat was reported to be located on the convex side of the ce-
rebral hemisphere and our data also support these previous re-
ports (3, 4, 16, 17). Early studies of the rat motor cortex showed 
that it is represented in the medial and lateral agranular fields 
of the frontal lobe, which controls face, forelimb, hindlimb and 

Fig. 2. Motor maps in six rats (A-F). The functional mappings obtained by intracortical motor cortex stimulation in bilateral hemisphere were recorded using a matrix table com-
posed of squares corresponding to each stimulation points in the brain (0.3 mm × 0.3 mm). The motor maps were asymmetric, and were not consistent across the six rats. H, 
hip flexion; K, knee flexion; A, ankle dorsiflexion; FL, forelimb; HL, hind limb; T, tail; W, whiskers.
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Table 1. Summary of the number and percentages (%) of stimulated points and 
joints response

Total No. of 
stimulated 

points

No. of points 
presenting 
hindlimb  

movement

No. of  
1 joint  

response 
(%)

No. of Multiple joints  
response (%)

No. of  
2 joints  

response (%)

No. of  
3 joints  

response (%)    

Rat 1 Lt.
Rt.

49
79

13
16

1 (7)
3 (19)

7 (54)
0 (0)

5 (37)
13 (81)

Rat 2 Lt.
Rt.

38
62

5
16

0 (0)
5 (31)

5 (100)
3 (19)

0 (0)
8 (50)

Rat 3 Lt.
Rt.

140
105

76
22

14 (18)
9 (41)

39 (51)
9 (41)

23 (30)
4 (18)

Rat 4 Lt.
Rt.

107
80

20
28

2 (10)
7 (25)

10 (50)
11 (39)

8 (40)
10 (36)

Rat 5 Lt.
Rt.

78
77

21
25

5 (24)
4 (16)

2 (10)
5 (20)

14 (66)
16 (64)

Rat 6 Lt.
Rt.

50
63

28
17

7 (25)
1 (6)

2 (7)
2 (12)

19 (68)
14 (82)

Total 928 287  58 (20) 95 (33) 134 (47)

Lt., left; Rt., right.

229 (80)

body (13-15), and most studies except two (16, 18) described 
the area as a whole movement of forelimb, whisker, neck or tail 
rather than specific joints (5, 9-11). The studies which analysed 
individual joint response reported that hindlimb area is behind 
bregma; ankle and knee joints tend to be located lateral side of 
hip joint (16, 18). By contrast, our results showed that all hindlimb 
joints including the hip, knee, and ankle were intermingled with-
out any consistent distribution.
 In regarding to the areal extents of hindlimb representation, 

this study showed slightly larger dimension with wide variation 
(2.2 ± 5.3 mm2 in total) than previous report (2.0 ± 0.5 mm2) 
(16). In addition, one experimental animal showed that anteri-
or margin of hindlimb representation at left side was located 
beyond bregma anteriorly in our study. This finding is different 
from other studies which showed the hindlimb motor cortex 
was distributed behind bregma (16, 19). These discrepancies 
about the size and distribution of hindlimb motor cortex might 
be caused by strain related phenomenon as mentioned in pre-
vious study (17). 
 In this study, we clearly observed that stimulation at a single 
location could elicit simultaneous movements in multiple joints. 
Especially, 47% of stimulation showed three joints contraction 
and the average of response with more than two joints was 80% 
± 11.2%. In the literature, multiple joints response in one stimu-
lation was reported variously and overlapping of sensory and 
motor cortex also reported (14, 19, 20). This is likely due to cor-
tico-cortical connection of axons within the motor cortex, as 
has been reported using the tract-tracing technique (21). 
 We performed motor mapping in both hemispheres to clarify 
the degree of symmetry in the somatotopic organisation of the 
rat motor cortex. Although the precise joints stimulated by ICMS 
do not show symmetricity in each animal (Fig. 2), the overall 
shape of motor maps indicated with numbers of stimulated 
joint exhibited grossly symmetrical shape (Fig. 4), supporting 
previous reports of symmetrical motor maps for gross move-
ments of forelimb, whisker, neck muscle and tail (5, 9-11, 15). 
The only two previous studies which described specific joints 

Fig. 3. Summary of motor maps in six rats. Numbers in each squares of a matrix table indicate the numbers of rats that exhibited a motor response at each joint (hip, knee, an-
kle) in response to intracortical microstimulation of left (A) and right (B) hemisphere. The stimulations of each site usually represent more than two joints (80%). There were thirty 
points which showing the same joints response in more than four rats, and we found only one point (3.1 mm left lateral from the midline, 1.5 mm posterior to the bregma, indi-
cated by grey highlight) that elicited the same movement (knee flexion) in all six rats. H, hip flexion; K, knee flexion; A, ankle dorsiflexion.
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Fig. 4. Three-dimensional summary of motor maps in six rats showing the distribution of each joint according ankle (A, B), knee (C, D) and hip (E, F) to intracortical microstimu-
lation of left and right hemisphere. Even though the precise joints stimulated by ICMS do not show symmetricity in each animal, the overall shape of motor maps indicated with 
numbers of  stimulated joint exhibited grossly symmetrical shape. 
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analyzed unilateral hemisphere and did not study the symme-
tricity (16, 18 ).
 All movements of hindlimb’s joints appeared in flexion only 
without extension in this study. Also, the previous reports of 
hindlimb mapping of specific joints in the rat observed predo-
minantly flexion responses, with the exception of plantar flex-

ion, even though they stimulated with very low amplitude (16, 
18). We hypothesize that in the rat motor cortex, intercellular 
connections for flexion movement are dominant rather than 
extension movement in rats, and this phenomenon could ex-
plain the exclusive responses of hindlimb flexion to ICMS. 
 We performed hindlimb mapping of the rat motor cortex us-
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ing ICMS. The results showed high inter-individual variations 
in the hindlimb motor map, asymmetry according to specific 
joints, and response of multiple joints to stimulation at a single 
location, which suggest that precise individual mapping is need-
ed to clarify motor distribution in rats.
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