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A B S T R A C T
Background

Obesity is associated with low-grade chronic inflammation, and serum markers of
inflammation are independent risk factors for cardiovascular disease (CVD). However, the
molecular and cellular mechanisms that link obesity to chronic inflammation and CVD are
poorly understood.

Methods and Findings

Acute-phase serum amyloid A (A-SAA) mRNA levels, and A-SAA adipose secretion and serum
levels were measured in obese and nonobese individuals, obese participants who underwent
weight-loss, and persons treated with the insulin sensitizer rosiglitazone. Inflammation-eliciting
activity of A-SAA was investigated in human adipose stromal vascular cells, coronary vascular
endothelial cells and a murine monocyte cell line. We demonstrate that A-SAA was highly and
selectively expressed in human adipocytes. Moreover, A-SAA mRNA levels and A-SAA secretion
from adipose tissue were significantly correlated with body mass index (r¼ 0.47; p¼ 0.028 and
r¼ 0.80; p¼ 0.0002, respectively). Serum A-SAA levels decreased significantly after weight loss
in obese participants (p¼ 0.006), as well as in those treated with rosiglitazone (p¼ 0.033). The
magnitude of the improvement in insulin sensitivity after weight loss was significantly
correlated with decreases in serum A-SAA (r ¼�0.74; p ¼ 0.034). SAA treatment of vascular
endothelial cells and monocytes markedly increased the production of inflammatory cytokines,
e.g., interleukin (IL)-6, IL-8, tumor necrosis factor alpha, and monocyte chemoattractant protein-
1. In addition, SAA increased basal lipolysis in adipose tissue culture by 47%.

Conclusions

A-SAA is a proinflammatory and lipolytic adipokine in humans. The increased expression of
A-SAA by adipocytes in obesity suggests that it may play a critical role in local and systemic
inflammation and free fatty acid production and could be a direct link between obesity and its
comorbidities, such as insulin resistance and atherosclerosis. Accordingly, improvements in
systemic inflammation and insulin resistance with weight loss and rosiglitazone therapy may in
part be mediated by decreases in adipocyte A-SAA production.

The Editors’ Summary of this article follows the references.
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Introduction

Complications of excess fat mass, particularly central or
visceral adipose tissue, include insulin resistance and result-
ing hyperinsulinemia, glucose intolerance and diabetes,
hypertension, hyperlipidemia, and a prothrombotic state.
This constellation of obesity-related complications, often
referred to as the metabolic syndrome or syndrome X [1,2],
markedly increases risk of cardiovascular disease (CVD) and
death [3,4].

Although the link between excess body fat and the
metabolic and cardiovascular sequelae is well documented
clinically and epidemiologically, the molecular and cellular
underpinnings for this link are poorly understood. Excess
and/or dysfunctional adipose tissue is associated with chronic
low-grade systemic inflammation, which is also associated
with CVD. For example, a modest elevation in C-reactive
protein (CRP), an acute-phase reactant protein produced by
the liver and a long-known marker of inflammation, has been
shown to be predictive of CVD risk and events [5]. Indeed,
measurement of CRP is now recommended in some clinical
settings to stratify individual CVD risk and to help direct
therapy [3,6]. Serum amyloid A (SAA), another acute-phase
reactant protein, has also been shown to be a predictor of
CVD [7,8]. Whether these acute-phase reactant proteins are
directly involved in inflammation and the atherosclerotic
process or simply markers of these processes is not known.

Adipose tissue is ‘‘inflamed’’ in obesity, with decreased
expression of the anti-inflammatory adipokine adiponectin
and increased secretion of a variety of proinflammatory
cytokines, e.g., tumor necrosis factor alpha (TNF-a), interleu-
kin (IL)-6, and prothrombotic factors such as plasminogen
activator inhibitor-1 (PAI-1) [9]. Infiltration of adipose tissue
by macrophages is in part responsible for this inflammatory
process associated with obesity [10,11]. However, the upstream
regulator(s) responsible for the inflammatory state in adipose
tissue and the role adipose tissue-derived inflammatory factors
play in systemic inflammation remain unclear [12]. In a
systematic search of differentially expressed genes between
adipocytes and stromal vascular cells, we noted that serum
amyloid A1 and A2 (SAA1 and SAA2, collectively called A-
SAA) were highly expressed in human adipocytes, which was
unexpected but in agreement with recent publications [13,14].
A-SAA has been regarded as merely an inflammation marker
and thought to be produced primarily in liver. In this study, we
aimed to test the hypothesis that adipose A-SAA may be a
molecular link between obesity and its comorbidities in
humans.

Methods

Human Participants
The Institutional Review Boards of the respective institu-

tions approved all human studies, and each volunteer
provided written informed consent to participate. All partic-
ipants were healthy according to medical history, physical
examination, and laboratory testing unless otherwise specified
in the protocols. The individuals studied showed no clinical or
laboratory evidence of acute inflammation such as fever or
elevated white blood cell counts. Abdominal adipose tissue
samples were obtained from overnight-fasted participants by
aspiration with a 4-mm cannula under local anesthesia with

lidocaine as previously described [19] or obtained from
nondiabetic participants undergoing intra-abdominal sur-
geries. All blood samples were stored at�80 8C until used.
Cross-sectional study of body mass index and serum A-SAA

levels. Participants were part of the previously described
Amish Family Diabetes Study [20]. Initially, A-SAA levels were
measured in plasma samples from 19 sex- and age-matched
(age within 5 y) sets of nondiabetic sibling pairs with a
discordance in body mass index (BMI) of at least 3 kg m�2.
These 38 individuals were then included in an expanded set
of 134 nondiabetic individuals with BMIs ranging from 17.0
to 41.8 kg m�2. Blood samples for A-SAA measurements were
obtained from an antecubital vein after an overnight fast.
Effect of weight loss on A-SAA and insulin sensitivity.

Thirty-three sedentary, overweight or obese (BMI 32.3 6 4.0
kg m�2, mean 6 standard deviation [SD]), postmenopausal
(58 6 5.7 y, mean 6 SD) women were studied before and
after a 6-mo weight loss program. The intervention consisted
of weekly outpatient classes with a dietitian on the principles
of a hypocaloric dietary program that followed the American
Heart Association (AHA) Step I guidelines with restriction of
caloric intake by 250–350 kcal d�1 as previously described
[21]. Fat mass was determined by dual-energy X-ray absorpti-
ometry (Model DPX-L; Lunar Radiation, Madison, Wisconsin,
United States) using the 1.3z DPX-L extended analysis
program. Fasting serum levels of A-SAA were measured
before and after the intervention in all participants.
Subcutaneous abdominal fat biopsies were obtained at
baseline in a subset of 31 participants under local anesthesia
for the ex vivo studies of adipose A-SAA expression and/or
secretion (described below). Eight of the participants under-
went 3-h hyperinsulinemic-euglycemic clamp studies at
baseline and after completion of the weight loss program to
assess changes in insulin sensitivity. Women were weight-
stabilized (, 1 kg) for at least 2 wk prior to metabolic testing
before and after weight loss. All testing was performed in the
morning after a 12-h overnight fast. Arterialized blood was
obtained from a dorsal heated hand vein. Basal plasma
glucose and insulin levels were measured in the fasted state. A
10 min priming with insulin followed by a continuous
intravenous infusion of insulin (240 pmol m�2 min�1,
Humulin, Eli Lilly, Indianapolis, Indiana, United States) was
performed for 180 min. Glucose was infused at a variable rate
to keep the plasma glucose, measured every 5 min, at the
basal (fasting) level. Blood was also drawn every 10 min for
the determination of plasma insulin levels. Plasma glucose
was measured with the glucose oxidase method (Beckman
Instruments, Fullerton, California, United States). Insulin was
determined by radioimmunoassay (Linco, St. Louis, Missouri,
United States).
The mean concentration of glucose and insulin was

calculated for each sample time point. The trapezoidal rule
was used to calculate the integrated response over 30-min
intervals from 30 to 180 min for each participant. The
integrated response was divided by its time interval to
compute mean concentrations. Plasma glucose and insulin
levels during the clamps averaged 5.17 6 0.10 mmol l�1 and
474 6 14 pmol l�1, respectively. This was 97.7% 6 0.2% of
the desired goal with a coefficient of variation of 5.2% 6

0.4% in all clamps. Glucose utilization (M) for the 120- to 180-
min interval was calculated from the amount of glucose
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infused after correction for glucose equivalent space (glucose
space correction).

Effect of treatment with the peroxisome proliferator-
activated receptor-gamma agonist rosiglitazone on A-SAA.
Eighthealthy,nondiabetic,overweightorobeseparticipants(age
44.769.1y,BMI30.863.1kgm�2,mean6SD)wererecruitedand
treatedwithrosiglitazone4mgd�1for4wk,followedby8mgd�1for8
wk.FastingserumlevelsofA-SAAweremeasuredbeforeandat12wk
into the rosiglitazone intervention. At the same time points,
subcutaneousabdominal fatbiopsieswereobtainedunder local
anesthesia for ex vivo studies of adipose A-SAA expression and
secretion(describedbelow).

Adipose Tissue Fractionation and Microarray Analysis
For microarray analysis, human omental and subcutaneous

adipose tissues were obtained from four women (two obese,
two nonobese) undergoing semielective intra-abdominal
surgery at the University of Maryland Medical Center.
Isolated adipocytes and stromal-vascular cells (SVCs) were
obtained by collagenase digestion (final concentration 2 mg
of collagenase per gram of fat tissue) in Kreb Ringer
bicarbonate buffer containing 4% albumin and 200 nM
adenosine (KRB-A). After centrifugation at ;200 g for 1–2
min, the medium below the floating adipocytes (containing
the SVCs) was removed and subjected to centrifugation at 800
g for 5 min. The pelleted SVCs were resuspended in KRB-A
and washed three times using the same procedure. The
floating adipocytes were washed three additional times with
KRB-A. RNA was extracted from adipocyte and SVC
fractions, and microarray analysis was conducted using
Affymetrix (Santa Clara, California, United States) human
U133A chips according to the manufacturer’s instructions.

Northern Analysis
Human adipose tissue and liver specimens were purchased

from the National Disease Research Interchange (Philadel-
phia, Pennsylvania, United States), and total RNAs were
prepared with Trizol (Invitrogen, Carlsbad, California,
United States) according to the manufacturer’s instructions.
All other RNAs were purchased from Clontech (Palo Alto,
California, United States). Total RNA (15 lg) extracted from
the specified mouse (C57BL) or human tissue was subjected to
agarose gel electrophoresis and blotted onto Nylon mem-
branes using standard methods. Human SAA2 cDNA corre-
sponding to nucleotides 1–536 of BC020795, and murine
SAA2 cDNA corresponding to nucleotides 1–565 of U60438,
were used as probes. These probes are 97% (human) and 95%
(mouse) identical to SAA1 sequence and thus would be
expected to hybridize to both SAA1 and SAA2. By contrast,
the mouse SAA2 probe was only 62% identical to SAA3
mRNA and thus would not be expected to hybridize to SAA3
mRNA under the stringent wash conditions used. The probes
were random-labeled (Stratagene, La Jolla, California, United
States) with 32P-dCTP, and hybridization was carried out at 65
8C in Rapid-Hyb buffer (Amersham Biosciences, Piscataway,
New Jersey, United States). Blots were washed twice with 0.53
SSC/1% SDS at 65 8C (stringent wash), and visualized by
PhosphoImager (Amersham Biosciences).

RT-PCR Analysis
For semiquantitative RT-PCR analysis, reverse transcrip-

tion was carried out in a reaction containing 1 lg of total

RNA, poly-dT primer, and MMLV reverse transcriptase using
the Advantage kit (Clontech, Palo Alto, California, United
States). PCR was performed under conditions typically
consisting of 28 cycles of 94 8C for 30 s, 55 8C for 30 s, and
72 8C for 60 s. For detection of human A-SAA mRNA in
fractionated adipocytes and SVCs, primers 59-GAGAGAAGC-
CAATTACATCGGC-39 and 59-AGTATTTCTCAGGCAGGC-
CAGC-39, which fully match both SAA1 and SAA2, were used.
In addition, human SAA1 and SAA2 mRNAs were quantitated
individually by RT-PCR using a common forward primer 59-
ATGGGGCTCGGGACATGTGGAG-39, which was paired with
reverse primer 59-AGTCCTCCGCACCATGGCCTGT-39

(SAA1-specific) or 59-AGTCCTCCGCACCATGGCCAAA-39

(SAA2-specific). Human b-actin was amplified as a control
with primers 59-TTAATGTCACGCACGATTTCC-39 and 59-
AGACCTTCAACACCCCAGCCA-39. RT-PCR products were
electrophoresed on a 1% agarose gel, stained with ethidium
bromide, and visualized by UV transillumination.
The level of adipose A-SAA mRNA expression was more

accurately quantitated by real-time PCR. Applied Biosystems
(ABI, Foster City, California, United States) TaqMan PCR
kits with commercially available assay-by-design primers
were used on an ABI PRISM 7900 Sequence Detection
System. The primers and probe for SAA match both SAA1
and SAA2 genes and therefore measure total A-SAA (SAA1
and SAA2) mRNA. Cyclophilin A mRNA was used as an
internal standard. Threshold cycle (CT) values were obtained
and relative gene expression was calculated using the
formula (1/2)CT SAA � CT cyclophilin A.

SAA Secretion from Adipose Tissue
To examine the relationship between adipose A-SAA

secretion and BMI, and regulation by weight loss and
rosiglitazone treatment, adipose tissue fragments were
obtained at biopsy in premenopausal women over a range
of BMI values (26.8 6 4.2 kg m�2, mean 6 SD, n ¼ 16), in
postmenopausal women subjected to weight loss (n¼ 33), and
in participants before and after 12 wk of rosiglitazone
therapy (n ¼ 7). Adipose tissue fragments were incubated
for 3 h in M199 medium containing 1% BSA, and the medium
was collected and stored at �80 8C until analysis for A-SAA.
Adipocyte size was determined by a photomicrographic
method [22].
For ex vivo studies of the regulation of SAA secretion,

adipose organ culture was performed as previously described
[23]. In a sterile hood, fresh human subcutaneous adipose
tissue was minced into 5- to 10-mg pieces, washed with warm
sterile saline, and cultured with no hormones, 25 nM
dexamethasone (American Pharmaceutical Partners, Schaum-
burg, Illinois, United States), 7 nM insulin (Novo Nordisk,
Princeton, New Jersey, United States), or a combination of
these hormones, with and without rosiglitazone (1 lM )
(GlaxoSmithKline, Philadelphia, Pennsylvania, United States).
The culture medium was changed daily and A-SAA was
assayed in the conditioned medium on day 2.

Effect of SAA on Cytokine Production
Primary human coronary artery endothelial cells were

purchased from Cambrex (Walkersville, Maryland, United
States) and grown in endothelial cell basal medium-2 (EBM-2)
supplemented with EGM-2 BulletKit. All experiments were
conducted between the third to fifth subcultures. Human

PLoS Medicine | www.plosmedicine.org June 2006 | Volume 3 | Issue 6 | e2870886

A-SAA, an Inflammatory Adipokine



primary adipose SVCs from the subcutaneous depot were
isolated as described as above from a normal female
participant (BMI 27.5 kg m�2) who underwent elective
abdominal reconstructive surgery. The SVCs were cultured
in complete EGM-2, and subcultures between the second to
third subcultures were used. RAW264 monocytes (ATCC,
Manassas, Virginia, United States) were grown in RPMI1640
medium supplemented with 10% fetal bovine serum. These
cells were seeded on six-well tissue culture plates at about
75% confluence and grown to 90%–95% confluence. The
growth medium was replaced with supplement-free media
(EBM-2 basal medium for human coronary artery endothelial
cells and RPMI1640 for RAW264 monocytes). The cells were
treated 1 h after the medium change with recombinant
synthetic human apo-SAA (Peprotech, Rocky Hill, New Jersey,
United States), or vehicle (PBS). The endotoxin level for this
commercial preparation was less than 0.1 ng lg�1 protein.
The conditioned medium was collected 8 h after SAA
treatment by centrifugation at 2,000 g for 5 min and frozen
until use for cytokine analysis. To examine the effect of SAA
on adiponectin secretion, minced adipose tissue was cultured
with recombinant SAA (2.34 lg ml�1), and the conditioned
medium was collected from 24 to 48 h of incubation for
adiponectin assay.

Effect of SAA on Lipolysis
Minced adipose tissue samples were cultured with recombi-

nant SAA at a final concentration of 2.34 lg ml�1. After 24 h,
medium was collected and glycerol was measured using a
fluorometric assay [24] to assess changes in lipolysis in
response to SAA. Data are presented as micromoles of
glycerol per gram of adipose tissue in 24 h.

Cytokine Analysis
Human A-SAA (BioSource, Camarillo, California, United

States) and PAI-1 (American Diagnostica, Greenwich, Con-
necticut, United States) were measured with ELISA kits
according to instructions of the manufacturers. The SAA
ELISA kit detects only A-SAA (SAA1 and SAA2) and not
SAA4. The intra- and interassay coefficients of variation were
5% and 8%, respectively. Human monocyte chemoattractant
protein-1 (MCP-1), IL-6, and IL-8; and mouse TNF-a, MCP-1,
and RANTES in tissue culture media were analyzed at the
Cytokine Core Facility, University of Maryland School of
Medicine with cytokine multiplex reagents (Upstate Biotech-
nology, Lake Placid, New York, United States) by Luminex
100 (Luminex Corporation, Austin, Texas, United States).
Human serum IL-6 and TNF-a levels were measured by high
sensitive Quantikine enzyme-linked immunosorbent assay
(R&D Systems, Minneapolis, Minnesota, United States), and
adiponectin levels were measured by radioimmunoassay
(Linco, St. Charles, Michigan, United States). All samples
were assayed in duplicate.

Statistical Analysis
Results are expressed as mean 6 standard error of the

mean (SEM) unless otherwise specified. Variables that were
not normally distributed were natural logarithm-transformed
for analysis and back-transformed for presentation. The
Student’s two sample or paired t test was applied when
appropriate, as specified in the figure legends. Significance of
correlations between two variables was determined by the

Spearman rank correlation coefficient. In order to control
for relatedness among the Amish participants, variance
components analysis as implemented in SOLAR [25] was
used to assess the correlation between BMI and A-SAA levels
in the larger set of 134 Amish individuals. Differences were
considered to be significant at p , 0.05.

Results

Acute-Phase SAA Is Highly Expressed in Human
Adipocytes
Microarray analysis of mRNA preferentially expressed in

fat cells compared to stromal cells of human subcutaneous
and omental adipose tissue pointed our attention to A-SAA
(unpublished data). Semiquantitative RT-PCR analysis with
primers fully and specifically matching SAA1 and SAA2
cDNAs validated the high level of expression of A-SAA mRNA
in human adipocytes but not in SVCs (Figure 1A). Northern
analysis showed that A-SAA mRNA was selectively and
abundantly expressed in human adipose tissue (Figure 1B,
left). The higher expression of A-SAA mRNA in human
adipose compared to liver tissue (at least 15-fold) was
confirmed in an independent Northern analysis containing
additional specimens of adipose and liver tissues (Figure 1B,
right). Conversely, in mice, A-SAA mRNA was predominately
expressed in liver but not in adipose tissue (Figure 1C). These
studies show, unexpectedly, that in humans, A-SAA is
predominately expressed in adipose tissue, more specifically
in adipocytes, and that the adipose expression is species-
specific.

Obesity Is Associated with Increased Circulating Levels of
A-SAA due to Increased Adipose A-SAA Gene Expression
and Secretion
Selective and abundant A-SAA expression in adipocytes

suggests that obesity may be associated with increased
circulating A-SAA levels. To test this hypothesis, we
measured plasma A-SAA levels in 19 age- and sex-matched
nondiabetic sibling pairs who were discordant (.3 kg m�2)
for BMI. A paired t-test showed significantly higher plasma
A-SAA levels in the heavier siblings (p¼ 0.044) and a positive
Spearman correlation coefficient was observed between the
BMI and A-SAA differences (r ¼ 0.54, p ¼ 0.017). In an
expanded set of 134 nondiabetic men and women over a
range of BMIs, BMI was a significant predictor of A-SAA
level (p ¼ 0.025, controlling for age, sex, and family
structure). When individuals were grouped (Figure 2) into
lean (BMI , 25 kg m�2), overweight (25 kg m�2 � BMI , 30
kg m�2), and obese (BMI � 30 kg m�2), the mean plasma A-
SAA level of the obese group (ln-transformed for analysis,
back-transformed for presentation) was 43% higher than
that of the lean group (p ¼ 0.013, adjusted for age, sex and
family structure).
Increased serum A-SAA levels in obesity could be the result

of normal expression and secretion of A-SAA from an
increased fat mass, and/or increased expression and secretion
of A-SAA from dysfunctional adipose or other tissues. To
distinguish between these possibilities, adipose tissue samples
were obtained from healthy premenopausal women over a
range of BMIs, and A-SAA mRNA expression and secretion
were measured. Adipose tissue A-SAA mRNA levels were
significantly correlated with BMI (r ¼ 0.47, p ¼ 0.028, n ¼ 22;
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Figure 3A). Moreover, SAA release per gram of adipose tissue
was strongly correlated with BMI (r¼ 0.80, p¼ 0.0002, n¼ 16;
Figure 3B). Furthermore, there was a strong correlation
between adipose A-SAA gene expression and secretion in
seven of these individuals who had both A-SAA mRNA and A-
SAA secretion measured (r ¼ 0.89, p ¼ 0.007, n ¼ 7). A-SAA
gene expression was also positively correlated with average
adipocyte size (r¼0.47, p¼0.04, n¼19; Figure 3C). These data
suggest that increased A-SAA secretion from adipose tissue in

obesity is the result of both increased fat mass and an
increased rate of secretion per unit of adipose tissue.

Changes in A-SAA Levels Are Associated with Outcomes
of Clinical Interventions: Effect of Weight Loss and
Rosiglitazone Therapy
If A-SAA is a marker of or causal link between obesity and

its metabolic and cardiovascular complications, we would
predict that circulating A-SAA levels would decrease in
response to interventions that decrease obesity or its
metabolic complications, e.g., insulin resistance. We meas-
ured serum A-SAA levels before and after weight loss with a
hypocaloric diet program in 33 obese (BMI 32.3 6 4.0 kg m�2;
mean 6 SD) postmenopausal women. A mean (6 SEM)
weight loss of 6.0 6 0.7 kg or 7.1% was associated with a
13.8% reduction in SAA levels (p¼0.006, n¼33; paired t-test).
Significantly, the relative changes in serum A-SAA concen-
tration correlated with relative changes in BMI (r ¼ 0.39, p ¼
0.03, n¼ 33) and body fat mass (r¼ 0.35, p ¼ 0.04) (Figure 4),
but not with changes of fat free mass (r¼ 0.23, p¼ 0.30). Eight
of these participants also underwent hyperinsulinemic-
euglycemic clamps before and after the weight loss inter-
vention. In response to weight loss, increases in insulin
sensitivity were correlated with decreases in A-SAA (r¼�0.74,
p¼0.034). These findings suggest that A-SAA falls in response
to weight loss and that a decrease in A-SAA partially predicts
the increase in insulin sensitivity seen with weight loss in
obese postmenopausal women.
We next reasoned that if A-SAA was an inflammatory

adipokine involved in the metabolic consequences of obesity,
other interventions that influence inflammation and insulin
sensitivity might alter A-SAA concentrations. Eight over-
weight or obese nondiabetic individuals (BMI 30.8 6 3.1 kg

Figure 1. Tissue-Restricted Expression of A-SAA mRNA

(A) Representative semiquantitative RT-PCR analysis of A-SAA and b-actin
mRNA in SVCs and adipocytes fractionated from human omental (O) and
subcutaneous (S) adipose tissues.
(B and C) Northern analyses of multiple tissue blots from the human and
mouse, respectively. For all Northern analyses, 15 lg of total RNA from
the indicated tissues were electrophoresed, blotted onto a nylon
membrane, and hybridized with a radiolabeled human (B) or murine
(C) SAA2 cDNA probe, which detects both SAA1 and SAA2 (upper gels).
Equality of RNA loadings was estimated by ethidium bromide staining
(lower gels). Comparison of A-SAA expression was made in five
independent participants (B, right). Epi, epididymal; SubQ, subcutaneous
DOI: 10.1371/journal.pmed.0030287.g001

Figure 2. Circulating A-SAA Levels are Positively Correlated with BMI

A-SAA levels were measured in plasma of normal human participants
who were divided into lean (BMI , 25 kg m�2, n¼ 54), overweight (BMI
25–30 kg m�2, n¼ 49) and obese (BMI � 30 kg m�2, n¼ 31) groups. Data
are expressed as mean 6 SEM (ln-transformed for analysis, back-
transformed for presentation), adjusted for age, sex, and family structure.
* p¼ 0.013 versus lean group.
DOI: 10.1371/journal.pmed.0030287.g002
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m�2, mean 6 SD) were treated for 12 wk with rosiglitazone, a
drug with insulin sensitizing and anti-inflammatory actions.
There were no statistically significant changes in body weight
or fat mass in these individuals during the 12-wk interven-
tion. Nevertheless, serum A-SAA levels decreased by a mean
of 37% after treatment (p¼ 0.033) (Figure 5A). Moreover, the
secretion of A-SAA from adipose tissue explants obtained by
aspiration from these same participants was significantly
reduced after rosiglitazone treatment (Figure 5B). The extent
of serum A-SAA decrease tended to correlate with that of
adipose A-SAA secretion, although the correlation was not
statistically significant, presumably due to the small sample
size. Notably, one participant (green line in Figure 5)
responded to rosiglitazone with a marked reduction in A-
SAA. Exclusion of this individual changed the p-values for
serum and adipose SAA secretion from 0.033 and 0.034 to
0.001 and 0.055, respectively. Thus, rosiglitazone reduced
adipose A-SAA secretion and lowered serum A-SAA levels
with no significant change in BMI or fat mass.
The mechanism by which rosiglitazone decreases adipose

A-SAA secretion could be direct, through action on adipose
tissue, or indirect, through its effects on circulating hormones
or other factors. Thus, we further investigated whether
rosiglitazone acted directly on adipose tissue to decrease A-
SAA secretion. Adipose tissue obtained from nondiabetic
participants was cultured ex vivo. Incubation of the fat
explants for 2 d with insulin or dexamethasone resulted in an
SAA accumulation in the medium, and combination of the
two hormones was additive in the stimulatory effect. Addition
of rosiglitazone in the presence of insulin and dexamethasone
reduced A-SAA secretion into the medium by 70% (p¼0.002)
(Figure 6). These findings indicate that rosiglitazone acts
directly on adipose tissue to suppress A-SAA production by
adipocytes.

SAA Is a Proinflammatory Cytokine
We hypothesized that A-SAA, produced by adipocytes, may

be a causal link between obesity, chronic systemic inflamma-
tion, and metabolic and cardiovascular consequences

Figure 3. Adipose A-SAA Gene Expression and Secretion Are Increased

with BMI

Adipose A-SAA mRNA levels, measured by quantitative real-time RT-PCR
(top) and A-SAA release by adipose tissue (middle), were significantly
correlated with BMI. Furthermore, adipose A-SAA mRNA levels were
increased with the adipocyte size (bottom). Dotted lines indicate 95%
confidence intervals.
DOI: 10.1371/journal.pmed.0030287.g003

Figure 4. Reductions of Serum A-SAA and Fat Mass are Correlated

Correlation between changes in serum A-SAA levels and changes in body
fat mass before and after weight loss. Dotted lines indicate 95%
confidence intervals.
DOI: 10.1371/journal.pmed.0030287.g004
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through stimulation of inflammatory cytokines locally in
adipose tissue as well as at distant sites. Primary human
coronary vascular endothelial cells (HCVECs), adipose SVCs
and mouse RAW264 monocytes were treated with vehicle
(PBS), or with low (0.47 lg ml�1) or high (2.34 lg ml�1)
concentrations of SAA for 8 h, and the conditioned medium
was assayed for cytokine production. SAA dramatically
stimulated, in a dose-dependent manner, the release of IL-
6, IL-8, MCP-1, and PAI-1 in HCVECs; IL-6, IL-8, and MCP-1
in adipose SVCs; and IL-6, RANTES, TNF-a, and MCP-1 in
RAW264 monocytes (Figure 7). Treatment of these cells with
1 ng ml�1 lipopolysaccharide, a concentration that is at least
ten times higher than the maximum possible contamination
of endotoxin in the recombinant SAA, did not stimulate

inflammatory cytokine secretion in HCVECs or adipose
SVCs. Thus, SAA is a potent proinflammatory adipokine.

SAA Stimulates Lipolysis
One mechanism by which obesity may be linked to insulin

resistance is through increased lipolysis, which results in
increased circulating levels of free fatty acids (FFAs) and
decreased glucose uptake by muscle and liver [26]. Because
chronic treatment with inflammatory adipokines such as
TNF-a [27] and IL-6 [28] increase basal lipolysis, we next
examined whether SAA might have a similar effect. Culture of
human adipose tissue treated with SAA for 24 h significantly
increased lipolysis, as measured by glycerol accumulation in
the incubation medium by 47% 6 11% (mean 6 SEM, p ¼
0.001) (Figure 8).

SAA Versus Adiponectin, IL-6, and TNF-a
Another mechanism by which adipose secretion of SAA

might link obesity with insulin resistance is through down-
regulation of adiponectin expression and/or secretion. To
test this hypothesis, we treated human adipose tissue explants
with SAA (2.34 lg ml�1) and measured adiponectin secretion
into the medium. We found that SAA tended to reduce
adiponectin secretion, but the difference did not reach
statistical significance (basal versus SAA treatment [ng g
tissue�1 24 h�1], 2.80 6 1.6 versus 2.34 6 1.27, p¼ 0.07, n¼ 9].
We further examined whether the levels of A-SAA in plasma
of human participants over a wide range of BMIs were
correlated with those of adiponectin. Although adiponectin
levels were negatively correlated with BMI (r ¼ �0.3, p ,

0.0001, n¼157), and SAA levels were correlated with BMI (see
above), there was no correlation between the levels of A-SAA
and adiponectin (r¼ 0.049, p ¼ 0.45, n¼ 157). These findings
do not support a role of adiponectin in SAA-mediated
pathways of insulin resistance.
We further examined the relationship of serum A-SAA

levels with IL-6 and TNF-a in a population of postmenopausal

Figure 5. Rosiglitazone Reduces Serum A-SAA Levels and Adipose A-SAA

Production in Humans

Serum A-SAA (n¼ 8) (top) and adipose secretion of A-SAA ex vivo (n¼ 7)
(bottom) were measured in nondiabetic participants before and after 3
mo of rosiglitazone treatment. The data are plotted with lines
connecting the A-SAA levels of each individual. Serum A-SAA and
adipose secretion of A-SAA (one symbol for same person of both studies)
were significantly decreased by rosiglitazone (p ¼ 0.033 and p ¼ 0.034,
respectively; paired t-test after log-transformation).
DOI: 10.1371/journal.pmed.0030287.g005

Figure 6. Rosiglitazone Directly Suppresses A-SAA Production in Adipose

Tissue

Human adipose tissue explants were incubated in cell culture medium
199 (basal) or medium with insulin (Ins, 7 nM) and dexamethasone (Dex,
25 nM) in the presence or absence of rosiglitazone (Rosi, 1 lM) for 48 h.
A-SAA production between 24 and 48 h was measured and corrected for
tissue weight. Data are expressed as mean 6 SEM, n ¼ 3 independent
experiments. * p ¼ 0.03, ** p ¼ 0.002, two sample t-test after log-
transformation.
DOI: 10.1371/journal.pmed.0030287.g006
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obese women. Serum A-SAA is positively correlated with
serum IL-6 (r¼0.54, p¼0.03, n¼16), but not with serum TNF-a
(r ¼ �0.30, p ¼ 0.11, n ¼ 30), which is consistent with the
observation that there is no correlation between serum IL-6
andTNF-a levels (r¼0.03, p¼0.93, n¼16). This finding suggests
that common mechanisms may regulate A-SAA and IL-6.

Discussion

Increasing evidence supports the hypothesis that the low-
grade chronic systemic inflammation associated with obesity
may be an important mediator of the metabolic syndrome
and its constituents, including insulin resistance, type 2
diabetes, dyslipidemia, and hypertension [29–31]. However,
the molecular and cellular mechanisms that link obesity to
inflammation are poorly understood. SAA is a multigene
family consisting of four genes (SAA1–4) that are conserved in
major vertebrates [32]. In humans, three of the four genes
(SAA1, SAA2, and SAA4), but not SAA3 (a pseudogene), are
expressed [33]. In response to acute inflammatory stimuli,
SAA1 and SAA2 levels in plasma can increase as much as
1,000-fold within 5–6 h and therefore, SAA1 and SAA2 are
collectively known as acute-phase SAA (A-SAA) [34]. As with
other acute-phase reactants, e.g., C-reactive protein, and
based on animal studies, the liver is thought to be the primary
source of circulating A-SAA [35].
In this study, we demonstrate that in humans, A-SAA (both

SAA1 and SAA2) is predominantly expressed in adipose
tissue, specifically adipocytes. Others have recently reported
similar findings [13,14]. Adipose expression of A-SAA in
humans is in sharp contrast to mice, in which A-SAA is
expressed predominantly in liver. There is a report of the
expression of murine SAA3 in adipose tissue [36], but this
gene is not expressed in humans [33]. Similar to the results of
other investigators [15,16], we found that circulating A-SAA
levels are elevated in obese compare to lean individuals and,

Figure 7. SAA Is a Potent Proinflammatory Mediator

Human coronary artery endothelial cells (HCAECs, A), adipose stromal
vascular cells (SVCs, B) and mouse RAW264 monocytes (C) were treated
with vehicle (PBS, white bar), low (0.47 lg ml�1, hatched bar), or high
(2.34 lg ml�1, black bar) concentrations of recombinant human SAA for
8 h in serum-free medium. Cell-free supernatants were then assayed for
cytokines. Data are expressed as mean 6 SEM from n¼ 3–5 independent
experiments. Statistical significance (*p , 0.05; **p , 0.01; two sample t-
test) was observed between the SAA-treated groups and vehicle.
DOI: 10.1371/journal.pmed.0030287.g007

Figure 8. SAA Stimulates Lipolysis

Adipose tissues (eight subcutaneous and one omental) were cultured in
the presence or absence of SAA (2.34 lg ml�1) for 24 h. SAA treatment
increased lipolysis by 47% 6 11% as assessed by measurement of
glycerol accumulation in the culture medium. Data are expressed as
mean 6 SEM (log-transformed for analysis, back-transformed for
presentation). * p ¼ 0.001, n¼ 9.
DOI: 10.1371/journal.pmed.0030287.g008
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furthermore, that A-SAA expression is correlated with BMI
and fat cell size. Collectively, these results strongly support
adipose SAA as a major source of circulating SAA, partic-
ularly in obese individuals.

Is A-SAA a marker of excess and/or dysfunctional adipose
tissue and inflammation or is it a causal link between obesity,
inflammation, and metabolic and cardiovascular sequelae?
We demonstrated that interventions that are known to
decrease chronic inflammation and improve the metabolic
and cardiovascular consequences of obesity, such as weight
loss and rosiglitazone treatment, also decrease adipose A-SAA
expression and secretion as well as circulating A-SAA levels.
Similar findings with regard to serum A-SAA levels were
recently reported in persons who underwent weight loss
[13,14,37], and in those treated with rosiglitazone [38].
Furthermore, previous studies indicated that A-SAA is a
potent stimulus for the expression and release of TNF-a, IL-6,
and IL-8 in neutrophils [17,18,39]. We showed also that A-
SAA directly stimulates the production of inflammatory
cytokines in coronary artery endothelial cells and monocytes,
as well as locally by adipose tissue SVCs. Others have shown
that A-SAA is induced by TNF-a and IL-6 in hepatoma cells
[40], suggesting positive feedback between A-SAA and other
cytokines. Collectively, these findings implicate A-SAA as a
local and systemic proinflammatory adipokine, and not just a
marker of inflammation.

The increased mass of dysfunctional adipose tissue in
obesity is known to be a source of several inflammatory
factors, including TNF-a [41], IL-6 [42], and MCP-1 [43], and
also of the prothrombotic factor PAI-1 [44]. These proin-
flammatory cytokines are predominantly products of SVCs
within adipose tissue [42,45]. By contrast, A-SAA, like leptin
and adiponectin, is a product of adipocytes and not SVCs
(Figure 1A). Our finding that SAA potently stimulates the

secretion of proinflammatory cytokines in adipose SVCs
suggests that adipocyte A-SAA acts as a paracrine factor to
enhance cytokine production by SVCs. In addition, obesity is
associated with increased infiltration of adipose tissue by
macrophages [10,11], which may also be target cells of SAA
action. SAA may also be a chemoattractant for macrophages,
raising a possible link for the association of fat cell size with
macrophage infiltration in obese adipose tissue [10]. Thus, A-
SAA may act locally to alter cytokine production and fat
metabolism as well as systemically on liver, muscle, cells of the
immune system, and the vasculature, to impact insulin
resistance and atherosclerosis (Figure 9).
The signaling pathways of the A-SAA-mediated inflamma-

tion response are not well studied. In neutrophils, SAA
induces IL-8 production through the formyl peptide recep-
tor-like 1/lipoxin A4 receptor and activates nuclear factor
kappa B [46]. The same signaling pathway recently has been
shown to be an important mediator of inflammation-
associated insulin resistance [47,48]. Whether the induction
of cytokine production by A-SAA in vascular endothelial cells
and SVCs, as we have shown here, occurs through the same
mechanism remains to be determined.
Our findings that rosiglitazone treatment significantly

reduces A-SAA secretion and serum A-SAA levels suggest
that SAA1 and SAA2 may be target genes of peroxisome
proliferator-activated receptor-gamma. Both in vitro and in
clinical studies, rosiglitazone exhibits anti-inflammatory
properties [38,49,50], which are likely to be beneficial in
slowing or reversing atherosclerosis [51]. Thus, the suppres-
sion of A-SAA may be a significant component of the anti-
inflammatory and antiatherogenic action of peroxisome
proliferator-activated receptor-gamma agonists, providing
evidence that agents that inhibit A-SAA secretion or action
may be efficacious for treatment of the metabolic syndrome
and atherosclerosis.
Obesity is associated with increased basal lipolysis in

adipose tissue [26] and elevated circulating FFAs that are
thought to elicit systemic insulin resistance [52]. We also
discovered that SAA, like IL6 [28] and TNF [27], has a long-
term effect in stimulating basal lipolysis. The lipolytic activity
of SAA can be an autocrine feedback mechanism by which
increased SAA production (Figure 3) from enlarged adipo-
cytes limits further triacylglycerol accumulation. The result-
ing increased release of FFA into the circulation may
contribute to insulin resistance. The mechanism of SAA-
mediated lipolysis is under investigation. A recent study
indicated that SAA binds CLA-1 (CD36 and LIMPII Analo-
gous-1), resulting in activation of extracellular signal-regu-
lated kinase 1/2 and p38 mitogen-activated protein kinases
[53]. Extracellular signal-regulated kinase activation is in-
volved in TNF-a-induced lipolysis [27]. CLA-1 is highly
expressed in adipose tissue (unpublished data). Thus, SAA
may act through CLA-1 and the extracellular signal-regulated
kinase signaling pathway to stimulate lipolysis directly.
Alternatively, increased lipolysis by SAA might be indirect,
through its stimulation of other lipolytic cytokines, e.g., IL-6
and TNF-a.
Recent studies suggest that in addition to its role in

inflammation, A-SAA may play a direct physiological role in
cholesterol metabolism. SAA is an apolipoprotein and a
component of high-density lipoprotein (HDL) particles [54].
The interaction of SAA with HDL may impair the function of

Figure 9. Schematic Diagram of Proposed Pathophysiological Role of

Adipocyte-Derived A-SAA in Human Obesity

A-SAA secreted from adipocytes acts locally on adipose SVCs to stimulate
cytokine release and in adipocytes to stimulate lipolysis, increasing FFA
release and decreasing insulin sensitivity in adipocytes, and possibly
contributing to systemic dyslipidemia. In addition, A-SAA secretion by
adipocytes into the circulation stimulates cytokine production at more
distant sites, including in endothelial cells and monocytes, resulting in
endothelial dysfunction, monocyte infiltration, accelerated atheroscle-
rosis, and possibly insulin resistance in muscle and liver. A-SAA-
stimulated lipolysis increases circulating FFA concentrations, further
contributing to insulin resistance in muscle and liver. Finally, A-SAA
incorporation into HDL accelerates its degradation and impairs its
function, resulting in decreased HDL and accelerated atherosclerosis.
DOI: 10.1371/journal.pmed.0030287.g009
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HDL as an antiatherogenic molecule [55] and facilitate its
degradation [56]. Dyslipidemia, including low HDL-choles-
terol (HDL-C), is a metabolic consequence of obesity and a
component of the metabolic syndrome [29]. Thus, the
increase of adipose-derived SAA in obesity that we observed
may be a mechanistic link between obesity, low HDL-C, and
increased CVD risk (Figure 9).

CRP is an acute-phase reactant produced in the liver and a
marker of chronic low-grade inflammation. Modest elevation
in CRP is associated with increased CVD risk in epidemio-
logical studies [5,57,58]. In contrast to A-SAA, CRP is barely
expressed in adipose tissue in humans (unpublished data). If
A-SAA is a direct mediator of obesity-associated inflamma-
tion and its metabolic and cardiovascular consequences,
might serum A-SAA be a better indicator of obesity-
associated CVD risk than CRP? Ridker et al. [5] showed that
both CRP and A-SAA levels confer similar risk for CVD
events in participants of the Women’s Health Study.
Similarly, in the Women’s Ischemia Syndrome Evaluation
(WISE) Study, Johnson et al. [7] recently reported that SAA is
independently associated with angiographic coronary artery
disease and highly predictive of 3-y cardiovascular events.
These studies did not specifically address the relationship
between BMI and A-SAA (or CRP) in predicting CVD events.
Our studies suggest that A-SAA may be a valuable diagnostic
and prognostic marker of obesity-associated CVD risk and
possibly of the effects of interventions such as weight loss and
rosiglitazone therapy. Additional studies are needed to better
define the biology and clinical utility of A-SAA and to further
establish A-SAA as a causal link between obesity and
inflammation and their cardiovascular consequences.
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Editors’ Summary

Background. Obesity often alters an individual’s overall metabolism,
which in turn leads to complications like diabetes, high blood pressure,
and an increased risk of cardiovascular disease (disease of the heart and
blood vessels, such as stroke or heart attacks). Having established a
strong link between inflammation and cardiovascular disease, scientists
now think that obesity might cause persistent low-level inflammation,
and that this is the reason for the cardiovascular problems seen in many
obese people. By better understanding the links between obesity,
inflammation, and cardiovascular disease, the hope is that scientists may
be able to find medications that can be given to obese people to reduce
their risk of heart attacks and strokes.

Why Was This Study Done? Previous research had suggested that a
substance in the blood called A-SAA, which is raised by inflammation,
might be a ‘‘missing link’’ between inflammation and cardiovascular
disease, since an individual’s baseline level of A-SAA is associated with
the risk for cardiovascular disease (in other words, the higher the A-SAA,
the higher the risk of cardiovascular disease). In the new study,
researchers wanted to know whether the reason that obese people
have a higher risk of cardiovascular disease is because they have higher
blood levels of A-SAA.

What Did the Researchers Do and Find? They found that obese people
had higher levels of A-SAA in their blood. A-SAA appears to be produced
in fat cells (or adipocytes) and then released into the blood. Obese
people have higher numbers of fat cells, which could by itself account
for the higher blood levels of A-SAA, but the researchers also found that
the average fat cell from an obese individual produces and secretes
higher levels of A-SAA than fat cells from lean individuals. When the
researchers studied people who underwent weight loss, they found that
A-SAA levels fell in response to weight loss, and this was associated with
improvements in their metabolism. They then studied obese individuals
who received the diabetes drug rosiglitazone (which is known to reduce
inflammation). They found that even though these individuals did not
lose weight, their A-SAA levels dropped as their metabolism improved.
Trying to get at the mechanisms by which A-SAA might cause
inflammation and diabetes, the researchers found that exposure to A-
SAA can stimulate the activation of proinflammation molecules in a
number of different cells, including blood vessel cells. It can also
stimulate cells to break down fat stores and release fats, which could
lead to metabolic complications and ultimately contribute to diabetes.

What Do These Findings Mean? Together with similar results from
other studies, the findings here suggest that A-SAA could promote
inflammation, and that elevated levels of A-SAA in obese individuals
could contribute to the chronic low-level inflammatory state that puts
them at higher risk for cardiovascular complications. The authors
speculate that drugs that reduce the blood levels of A-SAA might be
useful as treatments for obese patients (to lower their risk of heart
attacks and strokes). However, as they acknowledge, additional studies
are needed to establish that A-SAA is indeed a causal link between
obesity and inflammation and whether it plays a major role before it
could be considered a promising drug target.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0030287.

� MedlinePlus pages on obesity and cardiovascular disease

� US Centers for Disease Control and Prevention pages on obesity and
cardiovascular disease

� Wikipedia pages on obesity and cardiovascular disease (note:
Wikipedia is a free Internet encyclopedia that anyone can edit)
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