
����������
�������

Citation: Wang, R.; Lin, F.; Wei, Q.;

Niu, G.; Wang, H.-X. Thickness

Impact on the Morphology, Strain

Relaxation and Defects of Diamond

Heteroepitaxially Grown on Ir/Al2O3

Substrates. Materials 2022, 15, 624.

https://doi.org/10.3390/ma15020624

Academic Editor: Cyril Popov

Received: 9 December 2021

Accepted: 12 January 2022

Published: 14 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Thickness Impact on the Morphology, Strain Relaxation and
Defects of Diamond Heteroepitaxially Grown on
Ir/Al2O3 Substrates
Ruozheng Wang 1,† , Fang Lin 1,†, Qiang Wei 1, Gang Niu 2,* and Hong-Xing Wang 1,*

1 Ministry Education Key Laboratory of Physical Electronics and Devices, School of Electronic Science and
Engineering, Xi’an Jiaotong University, Xi’an 710049, China; wangrz@xjtu.edu.cn (R.W.);
leaf-lin@xjtu.edu.cn (F.L.); wbgwei@mail.xjtu.edu.cn (Q.W.)

2 Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of
Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China

* Correspondence: gangniu@xjtu.edu.cn (G.N.); hxwangcn@mail.xjtu.edu.cn (H.-X.W.)
† These authors contributed equally to this study and share the first authorship.

Abstract: This paper investigates the formation and propagation of defects in the heteroepitaxial
growth of single-crystal diamond with a thick film achieving 500 µm on Ir (001)/Al2O3 substrate. The
growth of diamond follows the Volmer–Weber mode, i.e., initially shows the islands and subsequently
coalesces to closed films. The films’ strain imposed by the substrate gradually relaxed as the film
thickness increased. It was found that defects are mainly located at the diamond/Ir interface and
are then mainly propagated along the [001] direction from the nucleation region. Etching pits along
the [001] direction formed by H2/O2 plasma treatment were used to show defect distribution at the
diamond/Ir/Al2O3 interface and in the diamond bulk, which revealed the reduction of etching pit
density in diamond thick-film surface. These results show the evident impact of the thickness on the
heteroepitaxially grown diamond films, which is of importance for various device applications.

Keywords: heteroepitaxial diamond; film thickness; morphology; TEM; etching pits

1. Introduction

Diamond is a promising material for high power and high frequency electronic de-
vices owing to its excellent material properties, e.g., ultra-wide band gap (5.5 eV), high
thermal conductivity (2200 W/m·K), high breakdown voltage (107 V/cm), high electron
and hole mobility (4500 cm2/V·s and 3800 cm2/V·s), and low dielectric constant (5.7) [1–5].
Heteroepitaxially grown single-crystal diamond is considered a promising method for
realizing large-area diamond substrate [6]. Diamond grown on an iridium (Ir) buffer layer
has been proved good crystallinity [7–9]. However, due to the difference of lattice constants
between diamond and Ir, the crystal lattice mismatch, strains and defects are generated
from diamond/Ir interface [10–13], leading to the higher defect density of heteroepitax-
ial diamond compared with homoepitaxial samples [14–16]. Therefore, it is essential to
understand the origin and propagation of defects during the different growth stages of
heteroepitaxial diamond, which could make great significance for the preparation and
practicability of large-area, high-quality diamond substrate.

In this work, heteroepitaxial diamond on Ir/Al2O3 substrates has been performed by
MPCVD (microwave plasma chemical vapor deposition) with different thickness. Methods
such as scanning electron microscope (SEM), atomic force microscope (AFM) and X-ray diffrac-
tion (XRD) are introduced to analyze the morphology and crystallinity of initial diamond
growth. Then, transmission electron microscope (TEM) is used to observe the cross-section
of the diamond/Ir (001) interface which is fabricated by FIB. The etching pit distribution on
the surface of a heteroepitaxial diamond along the (001) direction is detected by SEM. It is
clear that the etching pit density at the diamond/Ir interface is larger due to lattice mismatch.
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With the increase in film thickness, the diamond is coalesced to the closed film combined with
strain relaxation so that the etching pit density reduces a lot. This research could provide
important evidence for the understanding of the dislocation distribution of heteroepitaxial
diamond thick films, both at the interface and in the film bulk.

2. Experimental

A 300 nm Ir (001) film was deposited on 10 mm × 10 mm Al2O3 [11–20] substrate by
magnetron sputtering (ACS-4000-C4, ULVAC, Japan). The deposition power was 75 W, the
Ar flow was 50 sccm, and the deposition rate was about 2 nm/min. Then, the (001)-oriented
diamond was fabricated on Ir/Al2O3 substrate using bias enhanced nucleation (BEN)
method by direct current chemical vapor deposition (DC-CVD, made by ourselves). The
total gas flow rate was 500 sccm, the CH4/H2 flow ratio was 5%, the gas pressure was
25 torr, the direct current was 1.5 A, the temperature was 900 ◦C, a bias voltage on substrate
of 350 V, and the duration time was 150 s [17]. After BEN, the diamond nuclei were formed
on the Ir surface. Ir/Al2O3 nucleated substrates were put in MPCVD (AX5250S Seki
Technotron Corp., Tokyo, Japan) for epitaxial diamond growth. The deposition power was
2500 W, the chamber pressure was 90 torr, the temperature was 950 ◦C, the total gas flow
rate was 500 sccm, the CH4/H2 flow ratio was 5%, and the N2/H2 flow ratio was 0.03%.
SEM (ZEISS, Crossbeam 540, Jena, Germany), AFM (SPI, 3800-SPA-400, Osaka, Japan) and
XRD (Panalytical, X’Pert PROMRD, Almelo, The Netherlands) were used to analyze the
effect of thickness on the diamond surface morphology and crystallinity. Furthermore, four
samples were selected to grow 5 mins, 10 mins, 20 mins and 40 mins, respectively, which
were defined as sample 1 to sample 4 (S1 to S4). Finally, after 100 h of growth, the 500 µm
of diamond thick film was obtained (sample 5, S5).

Then, S5 was cut and polished along (110) plane with a roughness nearly 2 nm [18].
After that, the sample was etched by H2/O2 plasma at the gas flow of 500/5 sccm, the
temperature of 900 ◦C, and the duration time of 30 min. Etch pits appeared where the
dislocations emerged at the crystal surface [19,20]. TEM (JEOL, JEM 2100 F, Tokyo, Japan)
was used to observe the interface of diamond/Ir. SEM was applied to observe the surface
and cross-section of heteroepitaxial diamond. Different regions located in the cross-section
of S5 were tested by Raman spectra (Renishaw, inVia, Banbury, UK).

3. Results and Discussion

Figure 1 showed the variation of heteroepitaxy diamond morphology observed by
SEM. In Figure 1a, diamond epitaxial layers contained with a lot of highly oriented diamond
dots had appeared on the Ir/Al2O3 substrate. Then, the adjacent diamond dots gradually
combined to form an island grains distribution (shown in Figure 1b). Moreover, the island-
shaped grains had gradually coalesced, becoming a closed thin-film structure, only few
areas represented grain gaps that were not entirely coalesced (shown in Figure 1c). The
diamond film finally formed a complete closed film as shown in Figure 1d, which provided
a precondition for the thick-film growth of S5.



Materials 2022, 15, 624 3 of 9

Materials 2022, 15, x FOR PEER REVIEW 3 of 8 
 

 

have formed a closed film. The root mean square (RMS) roughness of four samples were 
4.44, 41.1, 2.05 and 2.37 nm, respectively, reflecting the variation of film morphology dur-
ing initial diamond growth. We guessed that increase of S4 could possibly be due to the 
selection of test area, e.g., substrate roughness, non-coalesced film, or impurities adsorbed 
on the film surface. 

 
Figure 1. SEM observation of diamond at different growth time after nucleation. (a) 5 min; (b) 10 
min; (c) 20 min; (d) 40 min. 

 

Figure 1. SEM observation of diamond at different growth time after nucleation. (a) 5 min; (b) 10 min;
(c) 20 min; (d) 40 min.

AFM with the range of 2 µm × 2 µm was applied to observe the film roughness of
S1 to S4, which is described in Figure 2. Figure 2a shows that the surface of diamond
dots presented scattered square humps with a grain size of about 120 nm and thickness
of about 15 nm. For the S2 sample, the grain size showed an obvious increase, with a
grain size of about 400 nm and a thickness of about 200 nm (shown in Figure 2b), which
attributed to island growth mode. Then, the image of S3 showed that the fluctuation of
the film decreased rapidly, and the height steps reduced to about 10nm, representing the
characteristics of closed diamond films (shown in Figure 2c). Lastly, in Figure 2d, the
flatness of diamond films was achieved, indicating that the diamond grains have coalesced
and have formed a closed film. The root mean square (RMS) roughness of four samples
were 4.44, 41.1, 2.05 and 2.37 nm, respectively, reflecting the variation of film morphology
during initial diamond growth. We guessed that increase of S4 could possibly be due to the
selection of test area, e.g., substrate roughness, non-coalesced film, or impurities adsorbed
on the film surface.

Figure 3 represented the XRD rocking curves of diamond (004) orientation at different
growth stages. Obviously, there was no diamond (004) characteristics peak in the initial
growth stage when heteroepitaxial diamond film is too thin to form a continuous and dense
film (corresponded to S1). Then, with the increase in film thickness, the diamond (004) peak
gradually appeared and grew in intensity. Meanwhile, as growth continues, the full widths
at half maximum (FWHM) of (004) rocking curves were decreased, at which the FWHM
of S5 measured in the (004) direction was 284.4 arcsec, showing a decent crystallinity of
heteroepitaxy diamond grown on Ir/Al2O3 substrate.
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Figure 3. XRD rocking curves of heteroepitaxial diamond at different growth stages after nucleation
(S1 to S4) and the thick film (S5).

As mentioned above, in order to study the propagation of defects in heteroepitaxial di-
amond, a thick diamond film (S5, 500 µm) was deposited by MPCVD. TEM was adopted to
characterize the cross-section of diamond bulk along [110] zone axis (ZA). The propagation
of defects at the diamond/Ir interface was directly observed by a TED mode at 400 kV. The
sample (10 µm × 5 µm × 100 nm) was prepared on the back of utilizing a focused ion beam
(FIB) technology. The bright diamond epitaxial layer and the dark Ir metal layer could
be detected in the Figure 4, as well as noticeable dark stripes in the diamond bulk. These
shadows revealed that the diamonds gradually converted from single grains into coalesced
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films, as shown in area A in Figure 4. Especially in the regions above Ir layer, there were
lots of dislocations with an angle of 45◦ along the Ir (001) plane. With the increase in film
thickness, diamond grains gradually coalesced, along with dislocations extended to the
surface (shown in area B in Figure 4), corresponding to the image that is displayed in
Figure 1d. Selected area diffraction pattern (SADP) images were measured in order to make
sure the crystal orientation of the TEM images. The results showed that in the area A near
diamond/Ir interface, there were regular spots representing cubic crystal systems in the
electron diffraction spots. After the calculation of SADP images, the crystal plane spacing
of diamond (2–20) plane was 1.274 Å, increased by 1% compared to standard diamond card
(1.261 Å), which was related to the epitaxial diamond growth from Ir/Al2O3 substrate. In
addition, the crystal-plane spacing of Ir (2–20) was larger than that of diamond (1.357 Å),
and two azimuthally broadened diffraction spots can be observed at the SADP of area A,
indicating the in-plane disorientation of the initial diamond islands grown on the Ir layer.
This means, because of the small disorientation of the Ir buffer, the diamond islands at the
very beginning of the growth had a tendency to be textured [21]. As growth continued,
such a tendency stopped and the diamond layer followed the single crystalline epitaxial
growth. Meanwhile, the asymmetric diffraction spots disappeared in the SADP images at
area B and C, and the lattice constants were 1.267 Å and 1.265 Å, respectively, which were
close to the intrinsic diamond.
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Figure 4. TEM image of heteroepitaxy diamond on Ir (001)/Al2O3 substrate along [110] zone axis (area A:
near diamond/Ir interface; area B: above the diamond/Ir interface; area C: in the diamond bulk).

Additionally, the morphology of heteroepitaxial diamond after H2/O2 plasma treat-
ment was observed by SEM. Figure 5a,b showed the etching pit distributions both at the
diamond/Ir interface and the film surface along the (001) direction, which represented
extensive overlapping rectangles appearance. Some cracks were found in Figure 5a which
was attributed to the strain between Al2O3 substrate and diamond thin film [22], but it
has no relationship with the defects since the cracks were formed before H2/O2 plasma
treatment. Moreover, the lower etching pit density was observed on Figure 5b, indicating
partial dislocations were annihilated in the epitaxial layer during diamond growth. The
shape of etching pits depended on the angle of dislocation terminated at the diamond/Ir
surface which could be observed at Figure 1a before [23], illustrating that the propagation
of dislocations were mainly along (001) from the nucleation region [24].
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terface and (b) at the surface of diamond thick film; Etching pits of heteroepitaxial diamond cross-
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interface. (e) the magnification near film surface. (A1: 20 µm above diamond/Ir interface. A2: at the
diamond/Ir interface; D: 200 µm above diamond/Ir interface).

Furthermore, etching pits distribution in the cross-section region extending from
the interface to diamond bulk was shown in Figure 5c–e. At the diamond/Ir interface,
numerous etching pits and rough epitaxial layers were detected, representing the poor
crystal quality at grain boundaries (area A2) [24]. Then, as the initial growth continued,
especially in the film bulk of 20 µm above diamond/Ir interface (area A1), a relatively
high etching pit density along the (220) direction was obtained. When the thickness of the
diamond film exceeded 200 µm, etching pit density reduced notably due to the improved
epitaxial crystallinity (area D). It was clear that the etching pits were not continuously
distributed in the whole diamond bulks. We could infer that due to the larger lattice
mismatch at diamond/Ir/Al2O3 substrate, a great quantity of etching pits were located
at interface. During the growth mode of diamond transition from dispersed islands to
coalescence film (shown in Figure 1), the etching rate by H2/O2 plasma treatment on the
film was also changed. Therefore, the heteroepitaxial diamond film had undergone a
relaxation process. With the increase in film thickness, the lattice constant of the epitaxial
film was close to the diamond (220) standard value (1.265 Å vs. 1.261 Å), and the strain of
the film was fully relaxed. The epitaxial layer was formed as high-quality and dense film.
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Then, a Raman spectrum was used to test the diamond characteristics peaks and
defects at different positions of the diamond bulk, which is shown in Figure 6. The laser
wavelength was 532 nm, and we chose five positions on the cross-section of the diamond
bulk, which were 5, 20, 50, 100, 500 µm away from the diamond/Ir interface, respectively. A
weak first-order diamond characteristic peak (1332 cm−1) could be observed at the position
of 5 µm above the diamond/Ir interface. However, there were fluorescence peaks related
to nitrogen (N) defects in a wide range of 1460 cm−1, the intensity of which exceeded
that of the diamond characteristic peaks [25,26]. As growth continued, the intensity of
the diamond characteristic peak significantly increased, while the nitrogen-related peaks
remained stable. This phenomenon depicted that there were a large number of N vacancies
located in grain boundaries during the initial growth of the diamond. Then, the grains
coalesced to closed films so that the N vacancy concentrations kept stable [27,28]. Last,
the Raman peak width was reduced from 6.27 cm−1 to 5.42 cm−1 with the increase in
film thickness, indicating the better crystal quality and lower defects at the heteroepitaxial
diamond film surface.
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4. Conclusions

In summary, the impact of film thickness on heteroepitaxially grown diamond is ex-
plored. SEM results show the evolution of diamond morphology from dots, islands, and then
coalesced to closed film. AFM results display that the island growth possesses the largest
roughness of 41.1 nm, and then a smooth surface with RMS of 2.37 nm is obtained. XRD
rocking curves depict that the decent FWHM of 284.4 arcsec is obtained from the diamond
thick film. The dislocations distribution in heteroepitaxial diamond extending from interface
to the film bulk is observed by TEM and SEM. Numerous etching pits near the interface
owing to the small disorientation of the initial diamond islands grown on the Ir layer. With
the coalescence of diamond islands to closed film, the diamond bulk strain is relaxed so that
the dislocations are reduced. This study illustrates the generation and evolution of dislocation
in the whole heteroepitaxial diamond thick film, which will contribute to promote the quality
of heteroepitaxial diamond substrate and electronic devices.
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