

Association between insulin-like growth factor 1 gene rs35767 polymorphisms and cancer risk A meta-analysis

Lei Qin, MD, Jiawen Zhao, MD, Yongxian Wu, MD, Yutong Zhao, MD, Cankun Chen, MD, Mingbin Xu, MD, Jiwen Cheng, PhD, Chengyang Li, PhD*

Abstract

Background: Several studies have been conducted on the relationship between insulin-like growth factor 1 gene (IGF-1) rs35767 polymorphisms and cancer risk, but the results are conflicting. We performed a meta-analysis to investigate the relationship between IGF-1 rs35767 polymorphisms and cancer risk.

Methods: Eight studies (5 for IGF-1 rs35767 C>T and 3 for IGF-1 rs35767 A>G) with a total of 11,257 cases and 16,213 controls were included. The studies were about the association between IGF-1 rs35767 polymorphisms and cancer risk and acquired by searching PubMed, Embase, and Web of Science databases for articles published before January 20, 2019. STATA software was used to analyze the data and identify the strength of the association by using pooled-odds ratios (ORs) with corresponding 95% confidence intervals (Cls).

Results: No significant associations were observed between the IGF-1 rs35767 C>T polymorphism and cancer risk in all genetic models. However, the IGF-1 rs35767 A>G polymorphism was significantly associated with increased cancer risk for all genetic models (G vs A: OR=1.087, 95% CI: 1.036–1.141, P_h =.338; GG vs AA: OR=1.272, 95% CI: 1.121–1.442, P_h =.359; AG vs AA: OR=1.187, 95% CI: 1.043–1.351, P_h =.695; AG+GG vs AA: OR=1.187, 95% CI: 1.043–1.351, P_h =.695; GG vs AA+AG: OR= 1.086, 95% CI: 1.025–1.151, P_h =.275). Begg and Egger tests showed that no publication bias existed.

Conclusion: Our findings indicated that the IGF-1 rs35767 A>G polymorphism might be a risk factor for cancer development. However, additional well-designed studies with sample sizes larger than ours need to be conducted in the future to verify our findings.

Abbreviations: ALL = acute lymphoblastic leukemia, BC = breast cancer, CC = colorectal cancer, 95% CI = 95% confidence interval, HWE = Hardy–Weinberg equilibrium, IGF = insulin-like growth factor, OR = odds ratio, PC = prostste cancer, SNP = single-nucleotide polymorphism, TGCT = testicular germ-cell tumors.

Keywords: insulin-like growth factor 1 gene rs35767, polymorphisms, cancer, meta-analysis

1. Introduction

Cancer has become a major global public health problem due to the global increase in the incidence and mortality of this disease. Approximately 18.1 million new cancer cases and 9.6 million

Editor: Leyi Wang.

This work was supported by the National Natural Science Foundation of China (81660125).

The authors have no conflicts of interest to disclose.

Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.

^{*} Correspondence: Chengyang Li, Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, China (e-mail: LCY_Urology@163.com).

Copyright © 2019 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

How to cite this article: Qin L, Zhao J, Wu Y, Zhao Y, Chen C, Xu M, Cheng J, Li C. Association between insulin-like growth factor 1 gene rs35767 polymorphisms and cancer risk. Medicine 2019;98:46(e18017).

Received: 16 August 2019 / Received in final form: 3 October 2019 / Accepted: 16 October 2019

http://dx.doi.org/10.1097/MD.000000000018017

cancer deaths were recorded in 2018.^[1] The causes of cancer vary and have not been elucidated completely, but the consensus is that the endless proliferation of cells is central to the carcinogenic process, which is closely related to many signals that control cell growth and death.^[2] Therefore, the hormone that regulates cell proliferation has become a hot topic in research on cancer etiology.

Compared with lifestyle and the environment, genetics accounts for a larger proportion of the causation of cancer. Genetic research on the etiology of cancer has recently become a popular research field; single-nucleotide polymorphisms (SNPs) are markers of many complex diseases and the most common and effective type of genetic variations studied in association with disease susceptibility.^[3] Many studies have shown that gene polymorphism is associated with cancer risk.

The insulin-like growth factor (IGF) signaling pathway regulates and controls cell proliferation and is essential for the growth and development of mammalians. IGFs have the properties of tissue growth factors, but they also possess additional well-recognized functions similar to those of hormones that regulate growth and energy metabolism at the organism level.^[4,5] IGF-1 is a member of the IGF family. IGF-1 is bound principally by the type 1 IGF receptor, which plays a crucial role in cell proliferation, differentiation, and apoptosis, and exerts a recognized effect on tumor growth.^[6–8] IGF-1 is also a potent mitogen, and through this pathway, the genes that

predisposition is one of the most important ones. Several studies have investigated the association between IGF-1 rs35767 polymorphisms and cancer risk.^[10–17] However, the results of these studies are inconsistent. Therefore, we performed a comprehensive meta-analysis to obtain a precise estimation of the relationship between IGF-1 rs35767 polymorphisms and cancer risk.

2. Materials and methods

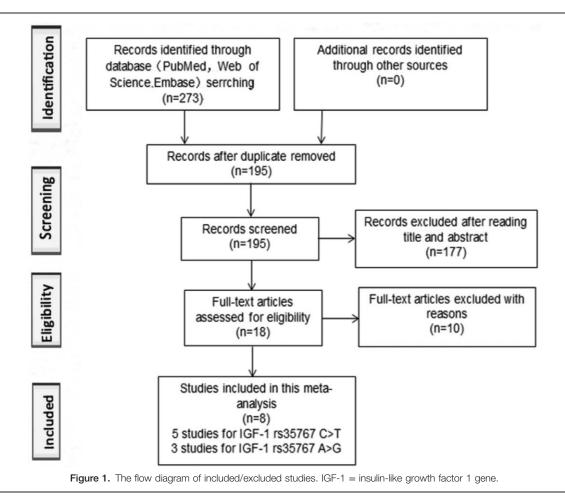
2.1. Publication search

To identify all articles that examined the association between IGF-1 rs35767 polymorphisms and cancer, we searched PubMed, Embase, and Web of Science databases for relevant articles (published before January 20, 2019) by using the following keywords: "IGF1 or IGF-1 or insulin-like growth factor 1," "polymorphism or genetic variant or SNPs," and "cancer or tumour or carcinoma." The references of the retrieved articles were also screened.

2.2. Inclusion and exclusion criteria

Studies included in this meta-analysis needed to satisfy the following criteria:

1. Investigates the relationship between IGF-1 polymorphisms and cancer risk


- 3. Published in English
- 4. Contains sufficient genotype data
- The exclusion criteria were as follows:
- 1. Lacking in case-control or cohort study design
- 2. Meta-analyses or reviews
- 3. Case reports, comments, reviews, or animal studies
- 4. Insufficient genotype data

2.3. Data extraction

Data extraction from eligible studies was independently performed by 2 authors. The extracted data included the 1st author, year of publication, country, type of cancer, number of cases and controls, genotyping methods, allele or genotype frequency, and Hardy–Weinberg equilibrium (HWE) in the control group. Any disagreements were resolved by a consensus achieved with a 3rd author.

2.4. Statistical analysis

The odds ratio (OR) and its 95% confidence interval (CI) were used to assess the strength of the association between IGF-1 polymorphisms and cancer risk in 5 genetic models, namely, allele, homozygote, heterozygote, dominant, and recessive. The significance of the combined OR was determined via a Z test (P < .05 suggests a significant OR). A test of heterogeneity was

conducted using Cochran Q test and Higgins I^2 statistic. I^2 values >50% indicated heterogeneity among studies. A random-effects model was applied when heterogeneity was observed ($I^2 > 50\%$, P < .05). Otherwise, the fixed-effects model was used.^[18,19] A Chi-squared test was performed to calculate HWE in the controls. The stability of the results was evaluated via a sensitivity analysis, that is, a study was omitted from each round of meta-analysis to reflect the effect of a single data set on the pooled results. Then, Begg and Egger tests were performed to evaluate the publication bias of the eligible literature.^[20-22] All statistical analyses were performed with STATA software (Version 12.0; Stata Corporation, College Station, TX), and P < .05 was considered statistically significant.

2.5. Ethical consideration

Ethical approval was not required for this study.

3. Results

3.1. Literature search and characteristics of eligible studies

The study selection procedure is shown in Figure 1. A total of 273 publications from PubMed, Embase, and Web of Science databases were reviewed. After the 1st scan, 78 duplicated records were rejected. Among the remaining 195 potentially relevant articles, 177 were considered improper after their titles

Table 1

Study	Year	Country	Cancer	Genotyping method	Case/control	P _{HWE}	SNP
Feik	2010	Austria	CC	Tqaman	121/1730	0.446(Y)	C>T
Qian	2014	China	PC	Tqaman	664/702	0.213(Y)	C>T
Mao	2017	China	Osteosarcoma	Tqaman	173/175	0.990(Y)	C>T
Pechlivanis	2007	Germany	CC	Tqaman	643/563	0.872(Y)	C>T
Canzian	2006	Caucasian	BC	Tqaman	772/1510	0.064(Y)	C>T
Chia	2007	America	TGCT	Tqaman	574/696	0.718(Y)	A>G
Ollberding	2012	America	CC	Tqaman	1953/2587	0.001(N)	A>G
Patel	2008	America	BC	Tqaman	6357/8250	< 0.001 (N)	A>G

BC=breast cancer, CC=colorectal cancer, HWE=Hardy-Weinberg equilibrium, IGF-1 = insulin-like growth factor 1, PC=prostste cancer, TGCT=testicular germ-cell tumors.

Table 2 Genotype distributions of insulin-like growth factor 1 rs35767 C>T polymorphism of enrolled studies.

		Case			Control		Ca	se	Con	trol
Study	CC	CT	TT	CC	CT	TT	C	Т	C	Т
Feik	79	40	2	1208	470	52	198	44	2886	574
Qian	242	323	99	304	327	71	807	521	935	469
Mao	63	86	24	66	83	26	212	134	215	135
Pechlivanis Canzian	440 549	185 201	18 22	391 1016	157 432	15 62	1065 1229	221 245	939 2464	187 556

 Table 3

 Genotype distributions of insulin-like growth factor 1 rs35767 A>G polymorphism of enrolled studies.

		Case			Control		C	ase	Co	ntrol
Study	AA	AG	GG	AA	AG	GG	Α	G	Α	G
Chia	16	151	407	21	192	483	183	965	234	1158
Ollberding	173	768	1012	301	1053	1233	1114	2792	1655	3519
Patel	251	1876	4230	378	2468	5359	2378	10336	3224	13186

Table 4

Results of the meta-analysis on insulin-like growth factor 1 rs35767 C>T polymorphism and cancer risk.

		Hetero	geneity		Odds rat	io		Publica	tion bias
Genetic model	Type of model	<i>ľ</i> , %	P h	OR	95% CI	Z test	POR	P _{Begg}	P _{Egger}
T vs C	Random	71.6	.007	1.046	0.870-1.256	0.48	.634	1.000	.861
TT vs CC	Random	65.6	.020	1.019	0.638-1.626	0.08	.938	.624	.220
CT vs CC	Fixed	43.6	.131	1.042	0.926-1.172	0.69	.491	.624	.490
TT+CT vs CC	Random	63.1	.028	1.047	0.879-1.311	0.70	.486	.624	.670
TT vs CT+CC	Random	56.4	.057	0.997	0.669-1.486	0.01	.989	.624	.172

_	

Results of the meta-analysis on insulin-like growth factor 1 rs35767 A>G polymorphism and cancer risk.

		Heterog	geneity		Odds rat	io		Publica	tion bias
Genetic model	Typle of model	<i>i</i> ², %	P _h	OR	95% CI	Z test	POR	PBegg	P _{Egger}
G vs A	Fixed	42.4	.338	1.087	1.036-1.141	3.41	.001	.602	.668
GG vs AA	Fixed	2.10	.359	1.272	1.121-1.442	3.74	.000	.602	.447
AG vs AA	Fixed	0.00	.695	1.187	1.043-1.351	2.59	.010	.602	.352
AG+GG vs AA	Fixed	0.00	.508	1.240	1.096-1.402	3.41	.001	.602	.393
GG vs AA+AG	Fixed	22.6	.275	1.086	1.025-1.151	2.80	.005	.602	.767

	Ca	ase	Contr	rol		Odds Ratio	Odds Ratio
study	Events	Total	Events	Total	Weigh	t M-H,Random,95%C	M-H.Random.95% CI
Feik(2009)	44	242	574	3460	14.70%	1.117(0.796,1.568	3)
Qian(2014)	521	1328	469	1404	24.24%	1.287(1.101,1.505	i) —
Mao(2017)	134	346	135	380	16.23%	1.007(0.742,1.366	i)
Pechlivanis(2007)	221	1286	187	1126	21.04%	1.042(0.842,1.290)
Canzian(2006)	245	1544	556	3020	23.79%	0.836(0.709,0.985	;) <u> </u>
Total(95%CI)		4746		9390	100%	1.046(0.870,1.256	
Total events	1165		1921				
Heterogeneity: Ta	u ² =0.029	8;Chi ² =	14.10;df	=4(P=0.	.007);12=	71.6%	
Test for overall eff	ect:Z=0.	48(P=0.6	534)				0.5 Case ¹ Control ²

A **Odds Ratio Odds Ratio** Case Control study **Events** Total **Events Total** Weight M-H,Random,95%CI M-H.Random.95% CI 2 81 52 1260 8.10% 0.588(0.141,2.459) Feik(2009) Qian(2014) 99 341 71 375 28.22% 1.752(1.236,2.482) Mao(2017) 24 87 26 92 20.24% 0.967(0.503,1.859) 18 458 Pechlivanis(2007) 15 406 19.16% 1.066(0.530,2.144) Canzian(2006) 22 571 62 1078 24.28% 0.657(0.399,1.080) Total(95%CI) 1538 3211 100% 1.019(0.638,1.626) **Total events** 165 226 Heterogeneity: Tau²=0.1701;Chi²= 11.63;df=4(P=0.020);l²=65.6% 0.5 Case Test for overall effect:Z=0.08(P=0.938) ¹ Control²

В

	Ca	ise	Cont	rol		Odds Ratio	Odds Ratio
study	Events	Total	Events	Total	Weigh	t M-H,Fixed,95%C	M-H,Fixed,95%CI
Feik(2009)	40	119	470	1678	7.62%	1.301(0.877,1.932)	
Qian(2014)	323	565	327	631	24.40%	1.241(0.987,1.559)	
Mao(2017)	86	149	83	149	6.47%	1.085(0.686,1.717)	· · · · ·
Pechlivanis(2007)	185	625	157	548	21.72%	1.047(0.813,1.348)	
Canzian(2006)	201	750	432	1448	39.79%	0.861(0.707,1.048)	
Total(95%CI)		2208		4454	100%	1.042(0.926,1.172)	\diamond
Total events	835		1469				
Heterogeneity: Ch	ni2=7.10;0	f=4(P=0	.131);12=4	3.6%	1.		1 1
Test for overall eff C	fect:Z=0.	69(P=0.4	491)				0.5 Case ¹ Control ²

Figure 2. Forest plots in the meta-analysis of the association between the IGF-1 polymorphism (rs35767 C>T) and cancer risk. (A) T vs C. (B) TT vs CC. (C) CT vs CC. (D) TT+CT vs CC. (E) TT vs CT+CC. CI = confidence interval.

and abstracts were read. Amongst the remaining 18 records for full-text assessment, 10 unrelated articles were eliminated in accordance with the predetermined inclusion and exclusion criteria. Ultimately, 8 studies (5 for rs35767 C>T and 3 for rs35767 A>G) with 11,257 cases and 16,213 controls were included in this meta-analysis. The types of cancer included in these studies were colorectal, prostate, and breast cancers; testicular germ-cell tumors; and osteosarcoma. The important characteristics of the selected articles are systematically listed in Table 1. Genotype distributions of IGF-1 rs35767 C>T and IGF-1 rs35767 A>G polymorphism of enrolled studies are showed in Tables 2 and 3 separately.

3.2. Meta-analysis

The results of the meta-analysis are shown in Tables 4 and 5. In addition to the heterozygote model, 4 other genetic models of IGF-1 rs35767 C>T satisfied the criteria for significant heterogeneity, and the random-effects model was used for the analysis. The results revealed no significant associations between the IGF-1 rs35767 C>T polymorphism and cancer risk for all genetic models (T vs C: OR=1.046, 95% CI: 0.870–1.256, P_h =.007; TT vs CC: OR=1.019, 95% CI: 0.638–1.626,

 $P_{\rm h}$ =.020; CT vs CC: OR=0.1.042, 95% CI: 0.926-1.172, $P_{\rm h}$ =0.131; TT+CT vs CC: OR=1.047, 95% CI: 0.0.879-1.311, $P_{\rm h}$ =0.028; TT vs CT+CC: OR=0.997, 95% CI: 0.669-1.486, $P_{\rm h}$ =0.057) (Fig. 2). However, fixed-effects models were used for the 5 genetic models of IGF-1 rs35767 A>G. The results suggested that the IGF-1 rs35767 A>G polymorphism was significantly associated with increased cancer risk for all genetic models (G vs A: OR=1.087, 95% CI: 1.036-1.141, $P_{\rm h}$ =.338; GG vs AA: OR=1.272, 95% CI: 1.121-1.442, $P_{\rm h}$ =.359; AG vs AA: OR=1.187, 95% CI: 1.043-1.351, $P_{\rm h}$ =.695; AG+GG vs AA: OR=1.187, 95% CI: 1.043-1.351, $P_{\rm h}$ =.695; GG vs AA +AG: OR=1.086, 95% CI: 1.025-1.151, $P_{\rm h}$ =.275) (Fig. 3).

3.3. Sensitivity analysis and publication bias

Sensitivity was evaluated by deleting each study 1 at a time. The result showed that no individual study significantly affected the pooled OR, suggesting the stability of this meta-analysis. The sensitivity analysis of the association between the IGF-1 rs35767 A>G polymorphism and cancer risk is shown in Figure 4.

Begg and Egger tests were performed to determine the publication biases of the studies, as shown in Figure 5. The results are presented in Tables 4 and 5. No statistical evidence of

	Ca	se	Contr	lo		Odds Ratio	Odds Ratio
study	Events	Total	Events	Total	Weight	M-H,Random,95%CI	M-H.Random.95%C
Feik(2009)	42	121	552	1730	14.83%	1.230(0.835,1.814)	— —
Qian(2014)	422	664	398	702	24.03%	1.332(1.072,1.655)	
Mao(2017)	110	173	109	175	12.97%	1.057(0.684,1.634)	
Pechlivanis(2007)	203	643	172	406	22.35%	1.049(0.821,1.339)	
Canzian(2006)	223	772	494	1510	25.82%	0.835(0.691,1.009)	
Total(95%CI)		2373		4523	100%	1.074(0.879,1.311)	\diamond
Total events	997		1725				
Heterogeneity: Tar	u ² =0.031	0;Chi ² =	10.85;df	=4(P=0.	028);I ² =	63.1%	
Test for overall eff D		Taban Ta	KL2 Investigated			Odds Ratio	Case Control
study	Events	ase Total	Cont Events		Weigh	t M-H,Random,95%CI	M-H.Random.95%
Feik(2009)	2	121	52	1730	6.51%	0.542(0.131,2.254)	·
Qian(2014)	99	664	71	702	30.79%	1.557(1.125,2.156)	
Mao(2017)	24	174	26	175	20.64%	0.923(0.507,1.681)	-
Pechlivanis(2007)	18	643	15	563	17.79%	1.052(0.525,2.108)	
Canzian(2006)	22	772	62	1510	24.27%	0.685(0.418,1.123)	
Total(95%CI)		2374		4680	100%	0.997(0.669,1.486)	\diamond
Total events	165		226				
Heterogeneity: Ta	u ² =0.108	6;Chi ² =	9.18 ;df	=4(P=0	.057);I ² =	56.40%	-,
Test for overall eff E	ect:Z=0.	01(P=0.	989)				0.5 Case ¹ Control ²

Figure 2. Continued.

	Ca	ase	Cont	rol		Odds Ratio	Odds Ratio
study	Events	Total	Events	Total	Weigh	t M-H,Fixed,95%CI	M-H,Fixed,95%C
Chia(2007)	965	1148	1158	1392	5.24%	1.066(0.862,1.316)	
Ollberding(2012)	2792	3906	3519	5174	27.12%	1.179(1.076,1.291)	-
Patel(2008)	10336	12714	13186	16410	67.64%	1.063(1.002,1.127)	-
Total(95%CI)		17768		22976	100%	1.094(1.043,1.148)	\diamond
Total events	14093		17863				
Heterogeneity: C	hi²=3.58;d	f=2(P=0.	167);l ² =44	4.2%			
Test for overall e A	ffect:Z=3.	67(P=0.	000)			0	^{.5} Case ¹ Control
	Ca	ase	Contr	rol		Odds Ratio	Odds Ratio
study	Events	Total	Events	Total	Weigh	t M-H,Fixed,95%CI	M-H,Fixed,95%C
Chia(2007)	407	423	483	504	3.82%	1.106(0.570,2.148)	
Ollberding(2012)	1012	1185	1233	1534	35.92%	1.428(1.164,1.752)	
Patel(2008)	4230	4481	5359	5737	60.27%	1.189(1.008,1.401)	-
Total(95%CI)		6089		7775	100%	1.272(1.121,1.442)	\diamond
Total events	5649		7075				
Heterogeneity: C	hi²=2.05;d	f=2(P=0.	359);l²=2.	4%			
Test for overall e B	ffect:Z=3.	74(P=0.	000)				0.5 ¹ Case ¹ Control
	Ca	ase	Contr	rol		Odds Ratio	Odds Ratio
study	Events	Total	Events	Total	Weigh	t M-H,Fixed,95%Cl	M-H,Fixed,95%C
Chia(2007)	151	167	192	213	3.81%	1.032(0.521,2.047)	
Ollberding(2012)	768	941	1053	1354	37.44%	1.269(1.030,1.564)	
Patel(2008)	1876	2127	2468	2846	58.75%	1.145(0.965,1.358)	-
Total(95%CI)		3235		4413	100%	1.187(1.043,1.351)	\diamond
Total events	2795		3713				
Heterogeneity: C	hi²=0.73;d	f=2(P=0.	695);l²=0.	00%			1 1
Test for overall e	ffect:Z=2.	59(P=0.	010)				0.5 Case ¹ Control

С

Figure 3. Forest plots in the meta-analysis of the association between the insulin-like growth factor 1 gene polymorphism (rs35767 A>G) and cancer risk. (A) G vs A. (B) GG vs AA. (C) AG vs AA. (D) AG+GG vs AA. (E) GG vs AA+AG.

Total 574 1953 6357 8884 if=2(P=0.5 .41(P=0.0 ase Total		696 2587 8205 11488 3 .00%	3.69% 37.79% 58.52% 100%	t M-H,Fixed,95%Cl 1.085(0.561,2.099 1.355(1.113,1.650 1.175(0.998,1.383 1.240(1.096,1.402 Odds Ratio))) 0.5 Case	Fixed,95%C
1953 6357 8884 if=2(P=0.5 .41(P=0.0	2286 7827 10788 508);I ² =0. 001) Contr	2587 8205 11488 3 .00%	37.79% 58.52% 100%	1.355(1.113,1.650 1.175(0.998,1.383 1.240(1.096,1.402 Odds Ratio))) ^{0.5} Case	dds Ratio
6357 8884 if=2(P=0.5 .41(P=0.0	7827 10788 508);I ² =0. 001) Contr	8205 11488 3 .00%	58.52% 100%	1.175(0.998,1.383 1.240(1.096,1.402 Odds Ratio)) 0.5 Case O(dds Ratio
8884 if=2(P=0.5 .41(P=0.0 ase	10788 508);I²=0. 001) Contr	11488 3 .00%	100%	1.240(1.096,1.402 Odds Ratio) 0.5 Case	dds Ratio
if=2(P=0.5 .41(P=0.0 ase	508);I ² =0. 001) Contr	3 .00% rol		Odds Ratio	I 0.5 Case	dds Ratio
.41(P=0.0	508);I ² =0. 001) Contr	.00% rol	Weight		Case	dds Ratio
.41(P=0.0	Contr	rol	Weight		Case	dds Ratio
ase	Contr		Weight		Case	dds Ratio
			Weight			
Total	Events	Total	Weight	MALL Eined OF VCI	M-H	Charles de la contrata
			weight	t M-H,Fixed,95%CI	141-11,1	Fixed,95%CI
574	483	696	5.76%	1.075(0.844,1.369)	-	•
1953	1233	2587	23.19%	1.181(1.050,1.328)		
6357	5359	8205	71.04%	1.056(0.986,1.32)		-
8884		11488	100%	1.086(1.025,1.151)	\diamond
	7075					
If=2(P=0.2	275);l ² =22	2.6%				
.80(P=0.0	005)				0.5 Case	1 Control
1	6357 8884	6357 5359 8884 7075	6357 5359 8205 8884 11488 7075	6357 5359 8205 71.04% 8884 11488 100% 7075 If=2(P=0.275);I ² =22.6%	6357 5359 8205 71.04% 1.056(0.986,1.32) 8884 11488 100% 1.086(1.025,1.151 7075 If=2(P=0.275);I ² =22.6%	6357 5359 8205 71.04% 1.056(0.986,1.32) 8884 11488 100% 1.086(1.025,1.151) 7075 If=2(P=0.275);I ² =22.6% I 80(P=0.005)

publication bias was observed in all of the genetic models for IGF-1 rs35767 C>T and IGF-1 rs35767 A>G.

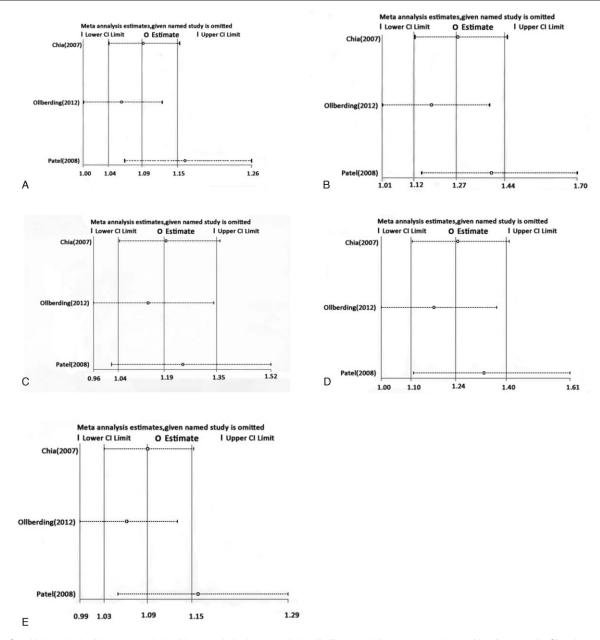
4. Discussion

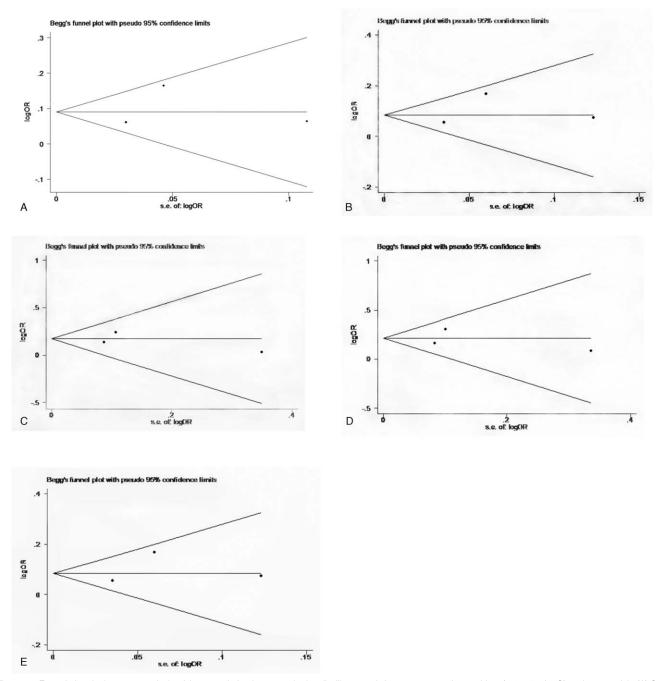
The SNP is a single-nucleotide variation at the genomic level that appears in coding or noncoding sequences.^[23] SNP analysis is useful in genomic DNA screening. Exploring the association between genes and diseases is a hot topic because susceptibility genes can affect biologic processes and provide linkages during the investigation of complex diseases, such as cancer.^[24] Many SNPs are associated with cancer susceptibility and may thus serve as biomarkers for clinical diagnosis. Understanding of the relationship between genes and cancer can provide a basis for the clinical diagnosis and treatment of cancer. Several IGF-1 SNPs, including rs1520220, rs6214, rs6220, and rs5742612, are associated with cancer susceptibility. Rs35767 SNPs are located in the promoter region of the IGF-1 gene, which is significantly associated with increased susceptibility to childhood acute lymphoblastic leukemia.^[25]

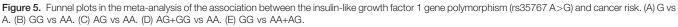
The IGF-1 is a potent mitogen that plays a crucial role in metastatic and antiapoptotic functions in many cancers.^[9,26]

Changes in the expression of IGF-1 may cause unlimited cell proliferation and division, which in turn may result in cancers because cancers could be produced from an unusual accelerated rate of proliferation.^[27] Several studies have suggested that elevated serum levels of IGF-1 increase the risk of acquiring colorectal, prostate, and breast cancer.^[28–39] The mature IGF-1 polypeptide is encoded by exons 3 and 4 of the IGF-1 gene, which comprises 6 exons.^[40] At the biologic level, IGF-1 is produced by the liver mainly in response to growth hormone stimulation. IGF-1 is also produced in an autocrine and paracrine manner. At the cellular level, IGF-1 combines with the IGF-1 receptor under the influence of IGF-binding proteins then via the RAS-mitogenactivated protein kinase signaling pathway to promote cell proliferation.^[41,42] IGF-1 can also serve as an effective antiapoptotic molecule by activating the phosphatidylinositol 3-kinase-AKT pathway to slow down apoptosis.^[5,43,44] For both reasons, it may be related to the occurrence and development of cancer.

A series of studies have investigated the association between IGF-1 rs35767 polymorphisms and cancer, but their results are conflicting. To date, no robust evidence on this association is available. With the limited sample size of individual studies,




Figure 4. Sensitivity analysis of the meta-analysis of the association between the insulin-like growth factor 1 gene polymorphism (rs35767 A>G) and cancer risk. (A) G vs A. (B) GG vs AA. (C) AG vs AA. (D) AG+GG vs AA. (E) GG vs AA+AG.


drawing a convincing conclusion is difficult because of low statistical validity. A systematic review and meta-analysis can overcome this drawback.^[45] We performed this meta-analysis to explore the association between IGF-1 rs35767 polymorphisms and cancer risk.

To our knowledge, this meta-analysis is the 1st to assess the association between IGF-1 rs35767 polymorphisms and cancer risk. In this meta-analysis, we systematically searched for literature on IGF-1 SNPs and cancer in three important databases (PubMed, Embase, and Web of Science). Eight case–control studies were included (5 for IGF-1 rs35767 C>T and 3 for IGF-1 rs35767 A>G). The results showed no significant associations between the IGF-1 rs35767 C>T polymorphism and cancer risk

for all the genetic models. However, the IGF-1 rs35767 A>G polymorphism was significantly associated with increased cancer risk for all the genetic models. Sensitivity analysis showed that no individual study significantly affected the pooled OR, suggesting the stability of this meta-analysis. Begg and Egger tests were performed to determine the publication biases of the studies. No statistical evidence of publication bias was observed in all of the genetic models for IGF-1 rs35767 C>T and rs35767 A>G.

The results of this meta-analysis should be interpreted with caution because of several limitations. Firstly, the number of included studies was small, and all data were from case–control studies. The obtained information may not be enough to estimate the association between IGF-I rs35767 polymorphisms and

cancer risk. Secondly, the results were based on single-factor estimates without any adjustment for other risk factors, including age, body mass index, ethnic groups, smoking and drinking status, and environmental factors. Thirdly, the studies on IGF-1 rs35767 C>T showed relatively evident heterogeneity, which might be a result of the difference in country, ethnicity, and source of controls. Lastly, potential publication bias might exist in our results because studies that report positive findings are more likely to be published than those reporting negative results.

cancer risk for the 1st time. The results of this meta-analysis reveal no significant associations between the IGF-1 rs35767 C>T and cancer risk for all genetic models. However, IGF-1 rs35767 A>G was significantly associated with increased cancer risk for all genetic models. Further experimental validations are necessary to confirm the results.

Author contributions

In conclusion, we systematically reviewed and meta-analyzed the relationship between IGF-1 rs35767 polymorphisms and Conceptualization: Lei Qin, Jiawen Zhao. Data curation: Lei Qin, Cankun Chen. Formal analysis: Lei Qin.

- Investigation: Mingbin Xu.
- Methodology: Jiawen Zhao, Mingbin Xu. Project administration: Chengyang Li.

Resources: Lei Qin, Cankun Chen.

Software: Jiawen Zhao.

Validation: Jiwen Cheng, Chengyang Li. Visualization: Cankun Chen, Jiwen Cheng.

Writing – original draft: Jiawen Zhao.

while - original draft. Jawen Zhao.

Writing – review & editing: Jiwen Cheng.

References

- Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.
- [2] Chen X, Guan J, Song Y, et al. IGF-I (CA) repeat polymorphisms and risk of cancer: a meta-analysis. J Hum Genet 2008;53:227–38.
- [3] Shastry BS. SNP alleles in human disease and evolution. J Hum Genet 2002;47:561–6.
- [4] Yokoyama S, Stefaneanu L, Kovacs K. Pituitary insulin: insulin-like growth factors. Endocr Pathol 1997;8:167–79.
- [5] Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 2008;8:915–28.
- [6] Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocr Rev 1994;15:80–101.
- [7] Harrela M, Koistinen H, Kaprio J, et al. Genetic and environmental components of interindividual variation in circulating levels of IGF-I, IGF-II, IGFBP-1, and IGFBP-3. J Clin Invest 1996;98:2612–5.
- [8] Burroughs KD, Dunn SE, Barrett JC, et al. Insulin-like growth factor-I: a key regulator of human cancer risk? J Natl Cancer Inst 1999;91:579–81.
- [9] González-Zuloeta Ladd AM, Liu F, Houben MP, et al. IGF-1 CA repeat variant and breast cancer risk in postmenopausal women. Eur J Cancer 2007;43:1718–22.
- [10] Canzian F, McKay JD, Cleveland RJ, et al. Polymorphisms of genes coding for insulin-like growth factor 1 and its major binding proteins, circulating levels of IGF-I and IGFBP-3 and breast cancer risk: results from the EPIC study. Br J Cancer 2006;94:299–307.
- [11] Pechlivanis S, Wagner K, Chang-Claude J, et al. Polymorphisms in the insulin like growth factor 1 and IGF binding protein 3 genes and risk of colorectal cancer. Cancer Detect Prev 2007;31:408–16.
- [12] Chia VM, Sakoda LC, Graubard BI, et al. Risk of testicular germ cell tumors and polymorphisms in the insulin-like growth factor genes. Cancer Epidemiol Biomarkers Prev 2008;17:721–6.
- [13] Patel AV, Cheng I, Canzian F, et al. IGF-1, IGFBP-1, and IGFBP-3 polymorphisms predict circulating IGF levels but not breast cancer risk: findings from the Breast and Prostate Cancer Cohort Consortium (BPC3). PLoS One 2008;3:e2578.
- [14] Feik E, Baierl A, Hieger B, et al. Association of IGF1 and IGFBP3 polymorphisms with colorectal polyps and colorectal cancer risk. Cancer Causes Control 2010;21:91–7.
- [15] Ollberding NJ, Cheng I, Wilkens LR, et al. Genetic variants, prediagnostic circulating levels of insulin-like growth factors, insulin, and glucose and the risk of colorectal cancer: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev 2012;21:810–20.
- [16] Qian J, Zhou H, Chen J, et al. Genetic polymorphisms in IGF-I and IGFBP-3 are associated with prostate cancer in the Chinese population. PLoS One 2014;9:e85609.
- [17] Mao J, Zhuang G, Chen Z. Genetic polymorphisms of insulin-like growth factor 1 are associated with osteosarcoma risk and prognosis. Med Sci Monit 2017;23:5892–8.
- [18] Abedinzadeh M, Neamatzadeh H, Jafari M, et al. Association of interleukin-10-1082A>G (rs1800896) polymorphism with predisposition to breast cancer: a meta-analysis based on 17 case-control studies. Rev Assoc Med Bras 19922018;64:756–64.
- [19] Zhu Y, Chen Z, Jiang H, et al. The genetic association between EGF A61G polymorphism (rs4444903) and risk of colorectal cancer: an update meta-analysis and trial sequential analysis. Medicine (Baltimore) 2019;98:e14007.

- [20] Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994;50:1088–101.
- [21] Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34.
- [22] Xu LL, Song ZC, Shang K, et al. Non-association of IL-16 rs4778889T/ C polymorphism with cancer risk in Asians: a meta-analysis. Asian Pac J Cancer Prev 2014;15:803–5.
- [23] Zhu W, Liu H, Wang X, et al. Associations of CYP1 polymorphisms with risk of prostate cancer: an updated meta-analysis. Biosci Rep 2019;39:
- [24] Mandal RK, Khan MA, Hussain A, et al. A trial sequential meta-analysis of TNF-alpha -308G>A (rs800629) gene polymorphism and susceptibility to colorectal cancer. Biosci Rep 2019;39:
- [25] Chokkalingam AP, Metayer C, Scelo G, et al. Fetal growth and body size genes and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control 2012;23:1577–85.
- [26] Ibrahim YH, Yee D. Insulin-like growth factor-I and cancer risk. Growth Horm IGF Res 2004;14:261–9.
- [27] Neumüller RA, Knoblich JA. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 2009;23:2675–99.
- [28] Chan JM, Stampfer MJ, Giovannucci E, et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 1998;279:563–6.
- [29] Hankinson SE, Willett WC, Colditz GA, et al. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 1998;351:1393–6.
- [30] Ma J, Pollak MN, Giovannucci E, et al. Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst 1999;91:620–5.
- [31] Stattin P, Bylund A, Rinaldi S, et al. Plasma insulin-like growth factor-I, insulin-like growth factor-binding proteins, and prostate cancer risk: a prospective study. J Natl Cancer Inst 2000;92:1910–7.
- [32] Toniolo P, Bruning PF, Akhmedkhanov A, et al. Serum insulin-like growth factor-I and breast cancer. Int J Cancer 2000;88:828–32.
- [33] Chokkalingam AP, Pollak M, Fillmore CM, et al. Insulin-like growth factors and prostate cancer: a population-based case-control study in China. Cancer Epidemiol Biomarkers Prev 2001;10:421–7.
- [34] Shi R, Berkel HJ, Yu H. Insulin-like growth factor-I and prostate cancer: a meta-analysis. Br J Cancer 2001;85:991–6.
- [35] Kaaks R, Lundin E, Rinaldi S, et al. Prospective study of IGF-I, IGFbinding proteins, and breast cancer risk, in northern and southern Sweden. Cancer Causes Control 2002;13:307–16.
- [36] Krajcik RA, Borofsky ND, Massardo S, et al. Insulin-like growth factor I (IGF-I), IGF-binding proteins, and breast cancer. Cancer Epidemiol Biomarkers Prev 2002;11:1566–73.
- [37] Palmqvist R, Hallmans G, Rinaldi S, et al. Plasma insulin-like growth factor 1, insulin-like growth factor binding protein 3, and risk of colorectal cancer: a prospective study in northern Sweden. Gut 2002;50:642–6.
- [38] Nomura AM, Stemmermann GN, Lee J, et al. Serum insulin-like growth factor I and subsequent risk of colorectal cancer among Japanese-American men. Am J Epidemiol 2003;158:424–31.
- [39] Peters G, Gongoll S, Langner C, et al. IGF-1R, IGF-1 and IGF-2 expression as potential prognostic and predictive markers in colorectalcancer. Virchows Archiv 2003;443:139–45.
- [40] Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev 2008;29:535–59.
- [41] Karamouzis MV, Papavassiliou AG. The IGF-1 network in lung carcinoma therapeutics. Trends Mol Med 2006;12:595–602.
- [42] Tao Y, Pinzi V, Bourhis J, et al. Mechanisms of disease: signaling of the insulin-like growth factor 1 receptor pathway–therapeutic perspectives in cancer. Nat Clin Pract Oncol 2007;4:591–602.
- [43] Samani AA, Yakar S, LeRoith D, et al. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 2007;28:20–47.
- [44] Xu GP, Chen WX, Xie WY, et al. The association between IGF1 Gene 3'-UTR polymorphisms and cancer risk: a meta-analysis. Medicine 2018;97:e13829.
- [45] Attia J, Thakkinstian A, D'Este C. Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J Clin Epidemiol 2003;56:297–303.