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The zebrafish has emerged as an exciting vertebrate model to study different
aspects of immune system development, particularly due to its transparent embryonic
development, the availability of multiple fluorescent reporter lines, efficient genetic tools
and live imaging capabilities. However, the study of immunity in zebrafish has largely
been limited to early larval stages due to an incomplete knowledge of the full repertoire
of immune cells and their specific markers, in particular, a lack of cell surface antibodies
to detect and isolate such cells in living tissues. Here we focus on tissue resident or
associated immunity beyond development, in the adult zebrafish. It is our view that, with
our increasing knowledge and the development of improved tools and protocols, the
adult zebrafish will be increasingly appreciated for offering valuable insights into the role
of immunity in tissue repair and maintenance, in both health and disease throughout the
lifecourse.

Keywords: adult zebrafish (Danio Rerio), tissue resident immunity, tissue repair and regeneration, ageing, gut,
heart, retina, brain

INTRODUCTION

It is becoming increasingly clear that the innate and adaptive immune systems play crucial roles
in tissue maintenance and repair during health and disease. Studies in animal models are crucial
to identifying complex functions of immunity in sometimes surprising aspects of biology. For
example, it was discovered relatively recently that macrophages, previously thought of as purely
cell debris-eating machines, promote fibrosis and scarring in mammals after an injury. Further, they
have been identified as being crucial for tissue regeneration, directly communicating with epithelial
cells in a variety of vertebrate models, reviewed elsewhere (Pott and Hornef, 2012; Ginhoux and
Guilliams, 2016). Zebrafish are well placed as a model to decipher the complex functions of immune
cells in tissue regeneration and other disease related processes due to their genetic tractability and
the ease of live imaging. However, the majority of studies are largely limited to embryonic and larval
stages due to their rapid, external development, genetic tractability, and transparent embryonic
development. However, to best study tissue regeneration and human disease, fully differentiated
tissues and organs are required. Here we put forward the adult zebrafish as a relevant and valid
model for studying tissue immunity in health and disease throughout the whole animal’s lifecourse.
We highlight the recent advances in our knowledge of tissue immunity in adult zebrafish and the
best tools currently available to study it. It is our view that our increasing knowledge and the on-
going development of tools and protocols are already making the adult zebrafish a valuable model
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offering insights into the role of immunity in tissue health
throughout the lifecourse, and this model is likely to become
more and more eminent in the future of the field, if we push
forward for the continuous development of tools.

Ontogeny of Tissue Immunity in
Zebrafish
It wouldn’t make sense to delve into adult zebrafish tissue
immunity before addressing their ontogeny. Unfortunately,
though, this is where the problem starts. In the mouse, the
most commonly used vertebrate immunology model, the origin
of tissue resident or associated immune cells is generally well
described, exemplified in (Bain et al., 2014; Ginhoux and
Guilliams, 2016; Ferrero et al., 2018), whereas in the zebrafish,
our knowledge is still largely incomplete.

In mice, extensive work over decades has shown that
most tissues have resident immune cells, both innate (mainly
macrophages and NK cells, depending on the tissue) and adaptive
(T- and B-cells). The different flavors within these immune
cells vary depending on tissue and disease status (Mowat et al.,
2017; White et al., 2017). Amongst these, we know the most
about macrophages. In mice, tissue-resident macrophages seem
to derive from embryonic precursors that populate most tissues
during embryogenesis, becoming a specialized, tissue-resident,
self-renewing population in the adult (Hoeffel et al., 2012;
Hashimoto et al., 2013; Yona et al., 2013; Hoeffel and Ginhoux,
2015). A well-known exception, at least in mice, is the gut. Recent
work has shown that the macrophage population in the adult
mouse gut is constantly re-populated by circulating monocytes,
which then differentiate into mature macrophages and are
maintained in situ (Bain et al., 2014; Bain and Mowat, 2014a,b).
In zebrafish, our knowledge is more limited. Nevertheless, recent
work by Alemany et al. has identified distinct signatures in
resident immune cells in the adult zebrafish, using sophisticated
single-cell sequencing and tracking analysis (Alemany et al.,
2018). Their work shows that haematopoietic cells in the kidney
marrow derive from a small set of multipotent embryonic
progenitors. Surprisingly, the authors indicate that resident
immune cells in the fin do not originate from haematopoietic
stem cells and instead seem to arise either from epidermal and
mesenchymal transdifferentiation, or from ectodermal ancestors
similarly to mesenchymal cells. The origin and maintenance of
resident immune cells remains to be fully elucidated in other
organs such as the gut. Notwithstanding, the zebrafish model
is also making key contributions to the understanding of tissue
immunity in vertebrates, thanks to an impressive availability of
transgenic reporter lines for different immune cells/inflammatory
markers (see Table 1 for details). Seminal work has shown that,
like in other vertebrates, zebrafish have a fully functional tissue-
associated immunity, including T-cells, B-cells, macrophages,
neutrophils, eosinophils, and mast cells (Moss et al., 2009;
Renshaw and Trede, 2012; Nguyen-Chi et al., 2015; Pereiro
et al., 2015; Dee et al., 2016), even if it is not yet determined
whether they are resident in all tissues or not. Emerging data,
however, is shedding light on the ontogeny of tissue immunity
in zebrafish.

Recent work has shown that microglia, the specialized
macrophages in the Central Nervous System (CNS); have
different origins depending on the age of the animals. In the
adult zebrafish, microglia derive from haematopoietic stem cells
(HSCs) and not from primitive macrophages, which occurs only
in early development (Ferrero et al., 2018). This has also been
shown for adult zebrafish Langerhans cells in the skin and
suggested to also be the case for liver, heart, gut and brain
(He et al., 2018). Together, these elegant recent studies suggest
that most zebrafish adult resident or associated immunity derives
from the second wave of hematopoiesis, mainly from the ventral
wall of the dorsal aorta (VDA region), and not from erythro-
myeloid progenitors (EMPs) as previously thought. This is also
emerging as the current model in mammalian systems (Sheng
et al., 2015) although there are still uncertainties and some
controversy in the field (Perdiguero et al., 2015).

Crucially, recent work is showing that, more than ontogeny,
tissue immunity seems to be particularly dictated by the tissue in
which it resides. There are key tissues in adult zebrafish that are
being intensely investigated and multiple studies highlight that
the role of immunity in tissue repair and maintenance is largely
conserved in zebrafish. Key examples where this has been shown
are in the heart, gut, brain, and retina.

Selected Examples of Tissue Immunity in
Adult Zebrafish
Heart
Recent years have seen many studies identify crucial and
perhaps surprising roles for immune cell populations in the
heart in homeostasis and disease, although much remains to be
discovered. A recent study in mice indicated a remarkable role
for resident cardiac macrophages in the distal atrioventricular
node where they make direct connections to cardiomyocytes
via Connexin 43 and facilitate electrical conductance (Hulsmans
et al., 2017). In zebrafish, we currently know very little about
cardiac macrophages under homeostatic conditions although
our own experience has revealed a population of immune cells,
labeled with L-plastin and transgenic markers of macrophages
(see Table 1), is present in the unwounded heart and recent work
suggests these may be derived from HSCs (see above; Figure 1).
Recently, many studies have shown important contributions of
different immune cell lineages in response to cardiac injury and
disease in mammalian models. In particular, vital roles have
been suggested for macrophages in complete regeneration of the
neonatal mouse heart (Aurora and Olson, 2014; Lavine et al.,
2014). However, the inflammatory response in the adult zebrafish
heart has been less well characterized. Recent studies revealed
that immune cells are recruited to the heart following cryoinjury
of the ventricle in adult zebrafish (Schnabel et al., 2011). Two
recent reports have also shown that macrophages are required
for cardiomyocyte proliferation and therefore regeneration in the
heart of adult zebrafish (de Preux Charles et al., 2016; Lai et al.,
2017). Our own experience suggests that all immune cell lineages
that we were able to analyse are recruited to the heart after injury
and whereas roles can be assigned for macrophages of the innate
immune system, the precise roles for other cell types remain more
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of a mystery (RJR, unpublished). However, another recent report
has shown important roles for a Treg subset of zebrafish T-cells in
promoting regeneration in a number of different tissues including
the heart (Hui et al., 2017), suggesting intriguing and important
roles for different immune cell populations in varying aspects of
regeneration and disease remain to be elucidated.

Gut
The gut can be considered the biggest compartment of the
immune system, and it is constantly exposed to multiple foreign
antigens, which it must distinguish from harmless dietary
proteins and the resident microbiota (Mowat, 2018). When this
goes wrong, the immune system can “misfire” and contribute
to chronic inflammatory disorders such as Inflammatory Bowel
Disease (IBD) (Bain and Mowat, 2014b; Mowat et al., 2017;
Andrews et al., 2018; Corridoni et al., 2018; Liu et al., 2018)
and age-associated gut degeneration (Man et al., 2014; Sato
et al., 2015; Soenen et al., 2016). Additionally, gut immunity is
essential for the steady-state epithelial renewal (Andrews et al.,
2018) that, similarly to humans, occurs roughly every 3 days
in adult zebrafish (Wallace et al., 2005; Crosnier et al., 2006).
Recovery after DSS intestinal injury has also been shown to be
dependent on Myd88 signaling in myeloid cells (Malvin et al.,
2012). Adult zebrafish are also showing great promise as a model
to study gut inflammation and repair in health and disease
(Marjoram and Bagnat, 2015 Brugman, 2016), including ageing
(Henriques et al., 2013; Carneiro et al., 2016, Martins et al.,
2018). These works have shown that, similarly to humans, critical
aspects of gut homeostasis become compromised with ageing
in zebrafish, namely increased permeability, inflammation and
telomere-dependent cellular senescence.

Thanks to the development of key transgenic reporter lines
and antibodies (Table 1), adult zebrafish gut has been shown to be
populated by abundant T-cells, B cells, mast cells, macrophages,
and dendritic cells in the normal steady-state context (CMH
unpublished data and others) (Wittamer et al., 2011; Lewis
et al., 2014), similarly to mammalian vertebrates (Figure 1).
Importantly, macrophage M1 and M2-like subsets have also
been identified in zebrafish, thanks to the development of
mpeg-mcherry-TNFα-GFP double transgenic line. Using this
line, M1 macrophages were characterized by high TNFα-GFP
expression (mpeg+TNFα+), as well as expression of TNFβ,
IL-1β, and IL-6 (Nguyen-Chi et al., 2015), which are well-
known markers of M1-like macrophages in mammals. Moreover,
these subsets were shown to respond to injury similarly to
human macrophage subsets. Additionally, Il-1β reporter lines
have recently been developed allowing visualization of cells
expressing this pro-inflammatory cytokine (Hasegawa et al.,
2017; Ogryzko et al., 2018). What is very different in the zebrafish
gut, however, is the absence, as far as reported, of defined
intestinal crypts and Peyer’s patches (Ng et al., 2005; Cheng et al.,
2016). Despite the absence of Peyer’s patches there is a clear
distribution of leukocytes along the adult zebrafish gut, lining the
enterocytes, which could be considered analogous to the mucosal
associated lymphoid tissue (MALT). The apparent absence of
secondary lymphoid structures though, means that we still do
not understand fully how antigen presentation occurs in zebrafish
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FIGURE 1 | Imaging tissue immunity in adult Zebrafish. (a) CMH unpublished images showing examples of cryo/paraffin sections of adult Zebrafish gut, followed by
immune fluorescence of selected antigens (see table 1 for antibody details), all counterstained with DAPI for cell nuclei detection and imaged in a Deltavision light
microscope. (a1) T-cells are stained with anti-TCR alpha antibody (a2) macrophages in Tg(fms-GFP) animals (Dee et al., 2016) are detected with an anti-GFP
antibody; (a3) multiple leukocyte lineages can be detected using anti-RFP and anti-GFP antibodies in a double transgenic line for CD45-DSRED and mhcIIdab-GFP
respectively (Wittamer et al., 2011). Single red cells are neutrophils/T-cells, double green and red cells are macrophages/dendritic cells, single green cells are B-cells,
since, in this line, the CD45 promoter used is not active in B-cells; (a4) and (a5) Adult Zebrafish gut can be imaged in Light sheet microscopy for short durations,
following dissection and gentle embedding in low percentage agarose in E3 media; (a6) macrophages are detected with an anti-RFP antibody in Tg(mpeg1:
mCherryCAAX ) (Ellett et al., 2011; Ogryzko et al., 2018) animals; (a7) leukocytes are stained with L-plastin (aka LCP-1) and these can n = be seen lining the gut
epithelia cells (enterocytes). (b) RBM unpublished images showing selected cryosections of adult Zebrafish retina, imaged by confocal microscopy followed by
immune fluorescence of selected antigens (see table 1 for antibody details), all counterstained with DAPI for cell nuclei detection. (b1) Microglia are detected with an
anti-4c4 antibody and can be seen dispersed throughout the tissue, displaying a simple ramified state. Upon insult these microglia rapidly migrate and engulf
damaged cells or debris. (b2) Muller Glia can also be detected in the retina using an anti-glutamine synthetase antibody. (c) RJR unpublished images of adult
zebrafish skin where macrophages can be live-imaged, shown here using the Tg(c-fms-GFP) line and using second harmonic generation microscopy to identify

(Continued)
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FIGURE 1 | Continued

the scale surface. (d) RRM unpublished images showing paraffin sections of adult Zebrafish brain, imaged using a Deltavision light microscope or by confocal
microscopy; (d1) multiple-panel reconstitution of a whole adult brain, imaged by confocal microscopy, stained with anti-L-plastin, which marks all microglia in the
brain. Microglia in the adult brain can also be detected for example using the (d1) Tg(mpeg1:mCherryCAAX ) line (Ellett et al., 2011; Ogryzko et al., 2018) or (d2) the
Tg(fms-GFP) line (Dee et al., 2016). Sections (d1) and (d2) show the diencephalon. (e) RJR unpublished images showing whole mount immunostaining of an entire
heart (e1) or the surface of the ventricle (e2) with an anti-L plastin antibody and imaged with confocal microscopy. Live imaging using confocal microscopy of an
unwounded adult zebrafish heart reveals cardiac macrophages using a Tg(mpeg1:YFP) line (e3).

(Lewis et al., 2014). MHC class II-expressing, antigen presenting
cells (APCs), namely macrophages, dendritics (DCs) and B-cells
are, however, described and appear to function similarly to their
mammalian counterparts (Lugo-Villarino et al., 2010; Wittamer
et al., 2011, Lewis et al., 2014; Dee et al., 2016). See Table 1 for
further details and references.

Nevertheless, and importantly, the protective immune status
of the gut has also been shown to occur in zebrafish, and
this has been largely attributed to the secretion of IL-10 by
CD41+foxp3+ Treg-like T-cells in the gut, once again showing
that these sophisticated immune-regulatory elements are already
evolved in teleost fish (Dee et al., 2016; Hui et al., 2017). It
has also been shown that in adult zebrafish, the gut is rapidly
populated by eosinophils upon parasitic infections (Balla et al.,
2010), highlighting another conserved response to infection in
the gut.

Brain
The neuro-immunology field has been growing in recent years,
highlighting the complex crosstalk between the immune system
and the central nervous system (CNS) and how this plays a key
role in maintaining brain homeostasis, reviewed in (Oosterhof
et al., 2015). Although mammalian models are more prominent
at the moment, the zebrafish model is starting to gain traction,
particularly due to its genetic and imaging amenity, small size and
relatively low maintenance costs (de Abreu et al., 2018).

As in mammals (Cuadros and Navascues, 1998; Ginhoux
et al., 2010), microglia are the tissue-resident immune cells in the
zebrafish brain (Xu et al., 2015). In zebrafish, primitive microglia
originate from yolk sac-derived macrophages that migrate to the
cephalic mesenchyme and then invade the brain, being detectable
from 60 h post-fertilization (hpf) (Herbomel et al., 2001). Only
more recently it was recognized that these are not the definitive
microglia observed in adulthood. As described above, an elegant
recent study (Ferrero et al., 2018), showed the existence of a
second wave of re-population of the brain’s microglia, which
originate from HSCs – a process that occurs between 2 weeks
and 3 months of age. Microglia can be detected by L-plastin
(or LCP-1), a pan-leukocyte marker (Redd et al., 2006; Cvejic
et al., 2008; Mathias et al., 2010; Van Houcke et al., 2017), by
macrophage-expressed gene 1 (mpeg1), labeling all mononuclear
phagocytes (Ellett et al., 2011; Wittamer et al., 2011), by the 4c4
antibody (Becker and Becker, 2001)as well as Apolipoprotein E
(ApoE) [Oosterhof et al. (2015), see Table 1; Figure 1]. Note that,
although ApoE specifically labels microglia if compared with the
other markers mentioned, it has also been shown to be expressed
astrocytes (Boyles et al., 1985; Poirier et al., 1991; Xu et al.,
2006), oligodendrocytes (Stoll et al., 1989), as well as by some

neurons albeit at lower levels (Han et al., 1994; Achariyar et al.,
2016). Additionally, cells in the choroid plexus as well as smooth
muscle cells in blood vessels also seem to express ApoE (Xu et al.,
2006). Thus, in order to ensure specific labeling of microglia,
ApoE should be used in combination with another leukocyte or
macrophage marker.

Microglia have been described as ramified cells that constantly
sense the environment searching for physiological disturbances
in the surroundings (Oosterhof et al., 2015). Like in mammals
(Lucin and Wyss-Coray, 2009), adult zebrafish microglia
proliferate and migrate to the injury or inflammation site
(‘gliosis’), upon activation in response to a stab lesion (Kroehne
et al., 2011; Kyritsis et al., 2012), excitotoxin injection (Skaggs
et al., 2014) or nitroreductase (NTR)-mediated neuronal ablation
(Oosterhof et al., 2017). Also, there is an increased number
of L-plastin+ cells in response to optic nerve injury in both
young (5 months) and older (22–24 months) zebrafish, but this
is decelerated in the old fish, suggesting age-related dysfunctional
immune response in ageing (Van Houcke et al., 2017). Once
activated, microglia change their appearance from a ramified
to an amoeboid shape (Svahn et al., 2013). These immune
cells have the important function of clearing cellular debris,
such as dead or damaged neurons, by phagocytosis (Peri and
Nusslein-Volhard, 2008); and, when activated can release anti-
and pro- inflammatory cytokines, at least in mice primary
microglia cultures (Cai et al., 2017). To our knowledge, microglia
inflammatory cytokine release remains to described for zebrafish,
despite extensive characterization of other aspects of zebrafish
microglia (van Ham et al., 2014). Peripheral immune cells
can infiltrate the CNS in cases of Blood Brain Barrier (BBB)
alterations, such as those observed in Multiple Sclerosis (MS)
or cerebral ischemia (Holtmaat and Caroni, 2016), in particular,
infiltration of monocytes or perivascular macrophages has
been described in mammals (Lucin and Wyss-Coray, 2009).
Similarly, upon NTR-induced cell death, peripheral macrophage-
like cells infiltrate the embryonic zebrafish brain, contributing
to the first inflammatory response (van Ham et al., 2014).
In opposition, it has been reported that no major infiltration
of periphery macrophages occurs in the brain after neuronal
ablation (Oosterhof et al., 2017). Thus, more studies are needed
to address this question. More surprisingly, T cells were reported
to infiltrate the brain in a mouse model of ALS (SOD1G93A)
during progression of the disease (Chiu et al., 2008) and to invade
the human brain in Parkinson’s Disease (PD) (Brochard et al.,
2009). Also, CD4+ T cells and B cells have been detected in the
brain of patients with MS, and this is thought to contribute to
inflammation in the CNS (Jelcic et al., 2018). To our knowledge,
so far, there are no studies reporting the presence of T cells or B
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cells in zebrafish brain. Zebrafish Treg-like (zTreg) cells seem to
move towards damaged sites in CNS, such as retina and spinal
cord, contributing to regeneration; however, the brain was not
explored in this study (Hui et al., 2017). Moreover, it remains
unknown whether neutrophils invade the adult zebrafish brain
in contexts of severe inflammation. Neutrophils were found in
the brain of a nlrc3-like mutant model zebrafish embryo, where
there is a systemic inflammation (Shiau et al., 2013). However,
no recruitment of neutrophils was observed after injury either in
the embryo brain (van Ham et al., 2014) or peripheral nervous
system (Pope and Voigt, 2014). Additionally, Goldshmit et al.
reported to rarely find neutrophils at the injury site after spinal
cord transection in adult zebrafish (Goldshmit et al., 2012).
Unfortunately, though, other studies have yet to be reported for
adult zebrafish to help clarify this matter.

Retina
The retina is viewed as a unique “window” into the brain and is
one of the most established systems to study neural development
and disease processes in the CNS (London et al., 2013). The
zebrafish retina is a true vertebrate retina as it has the same
organisation and contains largely the same types of neurons
and glial cells as the human eye. The innate immune system
in the zebrafish retina is composed of two major types of glial
cell, the Müller glia (MG) and the microglia (Figure 1). The
mammalian retina also houses astrocytes that will contribute
to immunity. However, their presence in the zebrafish CNS,
including the retina, remains unclear (Lyons and Talbot, 2014).
The MG and microglia will contribute to the maintenance of
homeostasis, phagocytose debris and are critical for tissue repair
(Reichenbach and Bringmann, 2013). MG are the most abundant
glial cell in the tissue, have a fixed radial morphology which
allows them to contact surrounding neurons (Jadhav et al.,
2009) and can modulate innate retinal immunity (Kumar et al.,
2013; Vecino et al., 2016). Retina microglia are migratory, as
in the brain, and survey the tissue for damage and debris
(Silverman and Wong, 2018). Crosstalk between these two glial
cell types may mediate their response to damage and injury by
coordinating inflammation (Wang et al., 2011, 2014). Activated
MG and microglia are associated with almost every pathological
condition in the retina (Bringmann et al., 2006; Silverman and
Wong, 2018). This includes retinal degenerative conditions, such
as age related macular degeneration and diabetic retinopathies
(Ramirez et al., 2017). The zebrafish is an established model for
studying cellular and molecular mechanisms underlying many
ocular diseases (Gestri et al., 2012). However, linking immunity
with confounding factors for disease, such as ageing, remain
challenging in many models. A recent study in zebrafish has
shown that there is progressive degeneration of photoreceptors
with age when interfering with Crumbs, a gene family linked
with human retinal degeneration (Fu et al., 2018). However, the
contribution of the innate immune system to degeneration and
pathologies of disease remains largely unknown.

After damage the innate immune systems plays a key role
in the phagocytosis of debris and removal of dead or dying
cells (Kumar et al., 2013). However, in the zebrafish retina after
damage or disease the MG will generate neurons to restore vision

(Hitchcock and Raymond, 2004). This is an area of intense study
and the molecular mechanisms regulating it are beginning to be
identified (Goldman, 2014), yet the role of microglia in these
processes is not clear (Mitchell et al., 2018). By imaging the glial
dynamics in real time in vivo in the zebrafish retina, microglia
have been shown to change their morphology to the activated
state and maintain this activation after regeneration is complete,
potentially to ensure correct retinal function is re-established
(Mitchell et al., 2018). Further, by pairing the imaging capacity
of the zebrafish with the ease to which they can be treated with
pharmacological inhibitors a recent study investigated roles of the
innate immune system during rod photoreceptor regeneration
(White et al., 2017). They show that the role of microglia is to
regulate MG responsiveness to cell death, and thereby control
neuronal regeneration kinetics. Further, immunosuppression can
either inhibit or accelerate photoreceptor regeneration kinetics
depending on the timing of treatment (White et al., 2017). Thus,
utilizing the precise advantages of the zebrafish, paired with the
well-characterized retina, makes this an exciting model to study
the resident immune system in retinal disease and regeneration.

CONCLUDING REMARKS

Despite multiple advances in developing reporter transgenic lines
marking different types of immune cell lineages in zebrafish, there
are still multiple sub-types of immune cells we have no markers
for or antibodies available e.g., mast cells. Nevertheless, advances
in single-cell sequencing technology have already enabled the
identification of specific immune subsets, such as different
subtypes of NK cells (Carmona et al., 2017; Tang et al., 2017)
and innate lymphoid cells (ILCs) (Hernandez et al., 2018),
which have contributed to the understanding of the similarities
and differences between zebrafish and human immune subsets.
Despite the overall similarity between human and zebrafish
immune subsets, highlighted here, there are key differences,
which are important to keep in mind, reviewed elsewhere (Trede
et al., 2004; Renshaw and Trede, 2012, Kanwal et al., 2014).
The first obvious difference is that during the first week of
zebrafish development, this organism relies entirely on an innate
immune system (Lam et al., 2004), a difference which has been
extensively used to understand the relative contribution of innate
versus adaptive immunity in response to different bacterial,
viral, and fungal pathogens (Meijer and Spaink, 2011; Meijer
et al., 2014). Another key difference is the absence, at least not
reported thus far, of secondary lymphoid organs in zebrafish.
Moreover, the zebrafish does not have a bone marrow, and
instead, T-, B- as well as myeloid cells are present in the spleen
and head kidney, which act as the zebrafish equivalent of bone
marrow. There are also key differences in zebrafish immune
receptors and/or response to specific ligands reviewed in (Kanwal
et al., 2014) and this is contributed to by the gene duplication
detected in many of the zebrafish genes (Lu et al., 2012) An
example are the novel immune-type receptors (NITRs), which
appear to be homologues of mammalian NK-like receptors and
seem to also have homologous functions (Yoder et al., 2010).
Additionally, despite the fact that most of Toll Like receptors
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have been described in zebrafish, there are key differences such
as the fact that Tlr4 is not involved in sensing LPS. Indeed,
in zebrafish, LPS signals via a Tlr4- and MyD88-independent
manner (Sepulcre et al., 2009). Nevertheless, zebrafish still
respond to lipopolysaccharide (LPS), and careful analysis has
shown that the overall response to LPS stimulation at the level
of gene transcription is highly conserved with that of mammals
(Forn-Cuni et al., 2017).

We have highlighted in Table 1 the working tools available
as well as some antibodies that we have tested but have failed
to get to work. We believe this will be a valuable starting point
for future researchers wanting to use zebrafish to study tissue
immunity.

In summary, we can clearly identify microglia, macrophages
(including distinguishing a pro-inflammatory phenotype),
T-cells, B-cells, and neutrophils in tissues using a combination of
transgenic lines and antibodies. It will be particularly important
to develop these techniques further if we are to improve our
live imaging capability, but also the ability to detect multiple
immune lineages in the same tissue without requiring crossing
multiple transgenic lines, which dramatically increases the time
and cost of experiments. Unfortunately, we are still missing
transgenic reporters and/or antibodies for some sub-types of
T-cells (e.g., Th1, Th2, cytotoxic, and NKT), NK-cells and mast
cells.

We hope that the studies highlighted here show how zebrafish
can offer an incredible tool to study immunity and its role in
tissue repair and maintenance, across the lifecourse, in a time
and cost-efficient manner, and how it can improve so much
more with the continuous investment, not only of this scientific
community, which is growing, but also of commercial companies,
particularly in the development and validation of zebrafish-
specific antibodies.

ETHICS STATEMENT

This study complied with the Animals (Scientific Procedures)
Act 1986 using Home Office approved licenses [PPL numbers:
30/3318 (RJR), 70/8681 (CMH), and 40/3727 (RBM)]. The
licenses and protocols were ethically reviewed and approved
by each local Animal Welfare and Ethical Review Body
(AWERB) (University of Sheffield and University of Bristol).
Both Universities are signatories of the Understanding Animal
Research Concordat on Openness and as Signatories to the
Concordat have agreed to be more open about their use of
animals in research, and to abide by the four commitments.

AUTHOR CONTRIBUTIONS

CMH, RRM, RBM, and RJR contributed equally to the writing
of the manuscript, figure, and table. PSE contributed to the
development of key techniques illustrated in Figure 1 and
contributed to Table 1.

FUNDING

CMH was funded by a Sheffield University Vice Chancellor’s
Research Fellowship and the Sir. Henry Dale Fellowship by
the Welcome Trust and Royal Society. RRM was funded by
a University of Sheffield, United Kingdom, Ph.D. studentship.
PSE was funded by a PDRA salary included in CMH Sir Henry
Dale Fellowship (The Welcome Trust and Royal Society). RBM
was funded by a JG Graves Medical Research Fellowship and a
Welcome Trust Seed Award. RJR was funded by the British Heart
Foundation (Intermediate Fellowship).

REFERENCES
Achariyar, T. M., Li, B., Peng, W., Verghese, P. B., Shi, Y., McConnell, E., et al.

(2016). Glymphatic distribution of CSF-derived apoE into brain is isoform
specific and suppressed during sleep deprivation. Mol. Neurodegener. 11:74.
doi: 10.1186/s13024-016-0138-8

Alemany, A., Florescu, M., Baron, C. S., Peterson-Maduro, J., and van
Oudenaarden, A. (2018). Whole-organism clone tracing using single-cell
sequencing. Nature 556, 108–112. doi: 10.1038/nature25969

Andrews, C., McLean, M. H., and Durum, S. K. (2018). Cytokine tuning of
intestinal epithelial function. Front. Immunol. 9:1270. doi: 10.3389/fimmu.2018.
01270

Aurora, A. B., and Olson, E. N. (2014). Immune modulation of stem cells and
regeneration. Cell Stem Cell 15, 14–25. doi: 10.1016/j.stem.2014.06.009

Bain, C. C., Bravo-Blas, A., Scott, C. L., Perdiguero, E. G., Geissmann, F., Henri, S.,
et al. (2014). Constant replenishment from circulating monocytes maintains the
macrophage pool in the intestine of adult mice. Nat. Immunol. 15, 929–937.
doi: 10.1038/ni.2967

Bain, C. C., and Mowat, A. M. (2014a). Macrophages in intestinal homeostasis and
inflammation. Immunol. Rev. 260, 102–117. doi: 10.1111/imr.12192

Bain, C. C., and Mowat, A. M. (2014b). The monocyte-macrophage axis in the
intestine. Cell. Immunol. 291, 41–48. doi: 10.1016/j.cellimm.2014.03.012

Balla, K. M., Lugo-Villarino, G., Spitsbergen, J. M., Stachura, D. L., Hu, Y.,
Bañuelos, K., et al. (2010). Eosinophils in the zebrafish: prospective isolation,
characterization, and eosinophilia induction by helminth determinants. Blood
116, 3944–3954. doi: 10.1182/blood-2010-03-267419

Becker, T., and Becker, C. G. (2001). Regenerating descending axons preferentially
reroute to the gray matter in the presence of a general macrophage/microglial
reaction caudal to a spinal transection in adult zebrafish. J. Comp. Neurol. 433,
131–147. doi: 10.1002/cne.1131

Boyles, J. K., Pitas, R. E., Wilson, E., Mahley, R. W., and Taylor, J. M. (1985).
Apolipoprotein E associated with astrocytic glia of the central nervous system
and with nonmyelinating glia of the peripheral nervous system. J. Clin. Invest.
76, 1501–1513. doi: 10.1172/JCI112130

Bringmann, A., Pannicke, T., Grosche, J., Francke, M., Wiedemann, P.,
Skatchkov, S. N., et al. (2006). Muller cells in the healthy and diseased
retina. Prog. Retin. Eye Res. 25, 397–424. doi: 10.1016/j.preteyeres.2006.
05.003

Brochard, V., Combadiere, B., Prigent, A., Laouar, Y., Perrin, A., Beray-Berthat, V.,
et al. (2009). Infiltration of CD4+ lymphocytes into the brain contributes to
neurodegeneration in a mouse model of Parkinson disease. J. Clin. Invest. 119,
182–192. doi: 10.1172/JCI36470

Brugman, S. (2016). The zebrafish as a model to study intestinal inflammation. Dev.
Comp. Immunol. 64, 82–92. doi: 10.1016/j.dci.2016.02.020

Cai, Q., Li, Y., and Pei, G. (2017). Polysaccharides from Ganoderma lucidum
attenuate microglia-mediated neuroinflammation and modulate microglial
phagocytosis and behavioural response. J. Neuroinflammation 14:63. doi: 10.
1186/s12974-017-0839-0

Carmona, S. J., Teichmann, S. A., Ferreira, L., Macaulay, I. C., Stubbington, M. J.,
Cvejic, A., et al. (2017). Single-cell transcriptome analysis of fish immune cells
provides insight into the evolution of vertebrate immune cell types. Genome
Res. 27, 451–461. doi: 10.1101/gr.207704.116

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 February 2019 | Volume 7 | Article 12

https://doi.org/10.1186/s13024-016-0138-8
https://doi.org/10.1038/nature25969
https://doi.org/10.3389/fimmu.2018.01270
https://doi.org/10.3389/fimmu.2018.01270
https://doi.org/10.1016/j.stem.2014.06.009
https://doi.org/10.1038/ni.2967
https://doi.org/10.1111/imr.12192
https://doi.org/10.1016/j.cellimm.2014.03.012
https://doi.org/10.1182/blood-2010-03-267419
https://doi.org/10.1002/cne.1131
https://doi.org/10.1172/JCI112130
https://doi.org/10.1016/j.preteyeres.2006.05.003
https://doi.org/10.1016/j.preteyeres.2006.05.003
https://doi.org/10.1172/JCI36470
https://doi.org/10.1016/j.dci.2016.02.020
https://doi.org/10.1186/s12974-017-0839-0
https://doi.org/10.1186/s12974-017-0839-0
https://doi.org/10.1101/gr.207704.116
https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00012 February 4, 2019 Time: 15:57 # 9

Martins et al. Tissue Resident Immunity in Adult Zebrafish

Carneiro, M. C., Henriques, C. M., Nabais, J., Ferreira, T., Carvalho, T., and
Ferreira, M. G. (2016). Short telomeres in key tissues initiate local and systemic
aging in zebrafish. PLoS Genet. 12:e1005798. doi: 10.1371/journal.pgen.1005798

Cheng, D., Shami, G. J., Morsch, M., Chung, R. S., and Braet, F. (2016).
Ultrastructural mapping of the zebrafish gastrointestinal system as a basis for
experimental drug studies. Biomed Res. Int. 2016:8758460. doi: 10.1155/2016/
8758460

Chiu, I. M., Chen, A., Zheng, Y., Kosaras, B., Tsiftsoglou, S. A., Vartanian,
T. K., et al. (2008). T lymphocytes potentiate endogenous neuroprotective
inflammation in a mouse model of ALS. Proc. Natl. Acad. Sci. U.S.A. 105,
17913–17918. doi: 10.1073/pnas.0804610105

Corridoni, D., Chapman, T., Ambrose, T., and Simmons, A. (2018). Emerging
mechanisms of innate immunity and their translational potential in
inflammatory bowel disease. Front. Med. 5:32. doi: 10.3389/fmed.2018.00032

Crosnier, C., Stamataki, D., and Lewis, J. (2006). Organizing cell renewal in the
intestine: stem cells, signals and combinatorial control. Nat. Rev. Genet. 7,
349–359. doi: 10.1038/nrg1840

Cuadros, M. A., and Navascues, J. (1998). The origin and differentiation of
microglial cells during development. Prog. Neurobiol. 56, 173–189. doi: 10.1016/
S0301-0082(98)00035-5

Cvejic, A., Hall, C., Bak-Maier, M., Flores, M. V., Crosier, P., Redd, M. J., et al.
(2008). Analysis of WASp function during the wound inflammatory response–
live-imaging studies in zebrafish larvae. J. Cell Sci. 121(Pt 19), 3196–3206.
doi: 10.1242/jcs.032235

de Abreu, M. S., Giacomini, A. C. V. V., Zanandrea, R., Dos Santos, B. E.,
Genario, R., de Oliveira, G. G., et al. (2018). Psychoneuroimmunology and
immunopsychiatry of zebrafish. Psychoneuroendocrinology 92, 1–12. doi: 10.
1016/j.psyneuen.2018.03.014

de Preux Charles, A. S., Bise, T., Baier, F., Marro, J., and Jazwinska, A. (2016).
Distinct effects of inflammation on preconditioning and regeneration of the
adult zebrafish heart. Open Biol. 6:160102. doi: 10.1098/rsob.160102

Dee, C. T., Nagaraju, R. T., Athanasiadis, E. I., Gray, C., Fernandez Del
Ama, L., Johnston, S. A., et al. (2016). CD4-transgenic zebrafish reveal
tissue-resident Th2- and regulatory T cell-like populations and diverse
mononuclear phagocytes. J. Immunol. 197, 3520–3530. doi: 10.4049/jimmunol.
1600959

Ellett, F., Pase, L., Hayman, J. W., Andrianopoulos, A., and Lieschke, G. J. (2011).
mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish.
Blood 117, e49–e56. doi: 10.1182/blood-2010-10-314120

Ferrero, G., Mahony, C. B., Dupuis, E., Yvernogeau, L., Di Ruggiero, E.,
Miserocchi, M., et al. (2018). Embryonic microglia derive from primitive
macrophages and are replaced by cmyb-dependent definitive microglia in
zebrafish. Cell Rep. 24, 130–141. doi: 10.1016/j.celrep.2018.05.066

Forn-Cuni, G., Varela, M., Pereiro, P., Novoa, B., and Figueras, A. (2017).
Conserved gene regulation during acute inflammation between zebrafish and
mammals. Sci. Rep. 7:41905. doi: 10.1038/srep41905

Fu, J., Nagashima, M., Guo, C., Raymond, P. A., and Wei, X. (2018). Novel
animal model of crumbs-dependent progressive retinal degeneration that
targets specific cone subtypes. Invest. Ophthalmol. Vis. Sci. 59, 505–518. doi:
10.1167/iovs.17-22572

Gestri, G., Link, B. A., and Neuhauss, S. C. (2012). The visual system of zebrafish
and its use to model human ocular diseases. Dev. Neurobiol. 72, 302–327.
doi: 10.1002/dneu.20919

Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., et al. (2010).
Fate mapping analysis reveals that adult microglia derive from primitive
macrophages. Science 330, 841–845. doi: 10.1126/science.1194637

Ginhoux, F., and Guilliams, M. (2016). Tissue-resident macrophage ontogeny and
homeostasis. Immunity 44, 439–449. doi: 10.1016/j.immuni.2016.02.024

Goldman, D. (2014). Muller glial cell reprogramming and retina regeneration. Nat.
Rev. Neurosci. 15, 431–442. doi: 10.1038/nrn3723

Goldshmit, Y., Sztal, T. E., Jusuf, P. R., Hall, T. E., Nguyen-Chi, M., and Currie,
P. D. (2012). Fgf-dependent glial cell bridges facilitate spinal cord regeneration
in zebrafish. J. Neurosci. 32, 7477–7492. doi: 10.1523/JNEUROSCI.0758-12.
2012

Gramage, E., D’Cruz, T., Taylor, S., Thummel, R., and Hitchcock, P. F. (2015).
Midkine-a protein localization in the developing and adult retina of the
zebrafish and its function during photoreceptor regeneration. PLoS One
10:e0121789. doi: 10.1371/journal.pone.0121789

Hall, C., Flores, M. V., Storm, T., Crosier, K., and Crosier, P. (2007). The zebrafish
lysozyme C promoter drives myeloid-specific expression in transgenic fish.
BMC Dev. Biol. 7:42. doi: 10.1186/1471-213X-7-42

Han, S. H., Einstein, G., Weisgraber, K. H., Strittmatter, W. J., Saunders,
A. M., Pericak-Vance, M., et al. (1994). Apolipoprotein E is localized to the
cytoplasm of human cortical neurons: a light and electron microscopic study.
J. Neuropathol. Exp. Neurol. 53, 535–544. doi: 10.1097/00005072-199409000-
00013

Hasegawa, T., Hall, C. J., Crosier, P. S., Abe, G., Kawakami, K., Kudo, A., et al.
(2017). Transient inflammatory response mediated by interleukin-1beta is
required for proper regeneration in zebrafish fin fold. eLife 6:e22716. doi: 10.
7554/eLife.22716

Hashimoto, D., Chow, A., Noizat, C., Teo, P., Beasley, M. B., Leboeuf, M., et al.
(2013). Tissue-resident macrophages self-maintain locally throughout adult life
with minimal contribution from circulating monocytes. Immunity 38, 792–804.
doi: 10.1016/j.immuni.2013.04.004

He, S., Chen, J., Jiang, Y., Wu, Y., Zhu, L., Jin, W., et al. (2018). Adult zebrafish
Langerhans cells arise from hematopoietic stem/progenitor cells. eLife 7:e36131.
doi: 10.7554/eLife.36131

Henriques, C. M., Carneiro, M. C., Tenente, I. M., Jacinto, A., and Ferreira, M. G.
(2013). Telomerase is required for zebrafish lifespan. PLoS Genet. 9:e1003214.
doi: 10.1371/journal.pgen.1003214

Herbomel, P., Thisse, B., and Thisse, C. (2001). Zebrafish early macrophages
colonize cephalic mesenchyme and developing brain, retina, and epidermis
through a M-CSF receptor-dependent invasive process. Dev. Biol. 238, 274–288.
doi: 10.1006/dbio.2001.0393

Hernandez, P. P., Strzelecka, P. M., Athanasiadis, E. I., Hall, D., Robalo, A. F.,
Collins, C. M., et al. (2018). Single-cell transcriptional analysis reveals ILC-
like cells in zebrafish. Sci. Immunol. 3:eaau5265. doi: 10.1126/sciimmunol.
aau5265

Hitchcock, P. F., and Raymond, P. A. (2004). The teleost retina as a model for
developmental and regeneration biology. Zebrafish 1, 257–271. doi: 10.1089/
zeb.2004.1.257

Hoeffel, G., and Ginhoux, F. (2015). Ontogeny of tissue-resident macrophages.
Front. Immunol. 6:486. doi: 10.3389/fimmu.2015.00486

Hoeffel, G., Wang, Y., Greter, M., See, P., Teo, P., Malleret, B., et al. (2012). Adult
Langerhans cells derive predominantly from embryonic fetal liver monocytes
with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209,
1167–1181. doi: 10.1084/jem.20120340

Holtmaat, A., and Caroni, P. (2016). Functional and structural underpinnings of
neuronal assembly formation in learning. Nat. Neurosci. 19, 1553–1562. doi:
10.1038/nn.4418

Hsu, K., Traver, D., Kutok, J. L., Hagen, A., Liu, T. X., Paw, B. H., et al. (2004).
The pu.1 promoter drives myeloid gene expression in zebrafish. Blood 104,
1291–1297. doi: 10.1182/blood-2003-09-3105

Hui, S. P., Sheng, D. Z., Sugimoto, K., Gonzalez-Rajal, A., Nakagawa, S.,
Hesselson, D., et al. (2017). Zebrafish regulatory T cells mediate organ-specific
regenerative programs. Dev. Cell 43, 659–672.e5. doi: 10.1016/j.devcel.2017.
11.010

Hulsmans, M., Clauss, S., Xiao, L., Aguirre, A. D., King, K. R., Hanley, A., et al.
(2017). Macrophages facilitate electrical conduction in the heart. Cell 169,
510–522.e20. doi: 10.1016/j.cell.2017.03.050

Jadhav, A. P., Roesch, K., and Cepko, C. L. (2009). Development and neurogenic
potential of Muller glial cells in the vertebrate retina. Prog. Retin. Eye Res. 28,
249–262. doi: 10.1016/j.preteyeres.2009.05.002

Jelcic, I., Nimer, F. A. L., Wang, J., Lentsch, V., Planas, R., Jelcic, I., et al. (2018).
Memory B cells activate brain-homing, autoreactive CD4+ T cells in multiple
sclerosis. Cell 175, 85–100.e23. doi: 10.1016/j.cell.2018.08.011

Kanwal, Z., Wiegertjes, G. F., Veneman, W. J., Meijer, A. H., and Spaink, H. P.
(2014). Comparative studies of Toll-like receptor signalling using zebrafish.
Dev. Comp. Immunol. 46, 35–52. doi: 10.1016/j.dci.2014.02.003

Kroehne, V., Freudenreich, D., Hans, S., Kaslin, J., and Brand, M. (2011).
Regeneration of the adult zebrafish brain from neurogenic radial glia-type
progenitors. Development 138, 4831–4841. doi: 10.1242/dev.072587

Kumar, A., Pandey, R. K., Miller, L. J., Singh, P. K., and Kanwar, M. (2013). Muller
glia in retinal innate immunity: a perspective on their roles in endophthalmitis.
Crit. Rev. Immunol. 33, 119–135. doi: 10.1615/CritRevImmunol.201300
6618

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 February 2019 | Volume 7 | Article 12

https://doi.org/10.1371/journal.pgen.1005798
https://doi.org/10.1155/2016/8758460
https://doi.org/10.1155/2016/8758460
https://doi.org/10.1073/pnas.0804610105
https://doi.org/10.3389/fmed.2018.00032
https://doi.org/10.1038/nrg1840
https://doi.org/10.1016/S0301-0082(98)00035-5
https://doi.org/10.1016/S0301-0082(98)00035-5
https://doi.org/10.1242/jcs.032235
https://doi.org/10.1016/j.psyneuen.2018.03.014
https://doi.org/10.1016/j.psyneuen.2018.03.014
https://doi.org/10.1098/rsob.160102
https://doi.org/10.4049/jimmunol.1600959
https://doi.org/10.4049/jimmunol.1600959
https://doi.org/10.1182/blood-2010-10-314120
https://doi.org/10.1016/j.celrep.2018.05.066
https://doi.org/10.1038/srep41905
https://doi.org/10.1167/iovs.17-22572
https://doi.org/10.1167/iovs.17-22572
https://doi.org/10.1002/dneu.20919
https://doi.org/10.1126/science.1194637
https://doi.org/10.1016/j.immuni.2016.02.024
https://doi.org/10.1038/nrn3723
https://doi.org/10.1523/JNEUROSCI.0758-12.2012
https://doi.org/10.1523/JNEUROSCI.0758-12.2012
https://doi.org/10.1371/journal.pone.0121789
https://doi.org/10.1186/1471-213X-7-42
https://doi.org/10.1097/00005072-199409000-00013
https://doi.org/10.1097/00005072-199409000-00013
https://doi.org/10.7554/eLife.22716
https://doi.org/10.7554/eLife.22716
https://doi.org/10.1016/j.immuni.2013.04.004
https://doi.org/10.7554/eLife.36131
https://doi.org/10.1371/journal.pgen.1003214
https://doi.org/10.1006/dbio.2001.0393
https://doi.org/10.1126/sciimmunol.aau5265
https://doi.org/10.1126/sciimmunol.aau5265
https://doi.org/10.1089/zeb.2004.1.257
https://doi.org/10.1089/zeb.2004.1.257
https://doi.org/10.3389/fimmu.2015.00486
https://doi.org/10.1084/jem.20120340
https://doi.org/10.1038/nn.4418
https://doi.org/10.1038/nn.4418
https://doi.org/10.1182/blood-2003-09-3105
https://doi.org/10.1016/j.devcel.2017.11.010
https://doi.org/10.1016/j.devcel.2017.11.010
https://doi.org/10.1016/j.cell.2017.03.050
https://doi.org/10.1016/j.preteyeres.2009.05.002
https://doi.org/10.1016/j.cell.2018.08.011
https://doi.org/10.1016/j.dci.2014.02.003
https://doi.org/10.1242/dev.072587
https://doi.org/10.1615/CritRevImmunol.2013006618
https://doi.org/10.1615/CritRevImmunol.2013006618
https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00012 February 4, 2019 Time: 15:57 # 10

Martins et al. Tissue Resident Immunity in Adult Zebrafish

Kyritsis, N., Kizil, C., Zocher, S., Kroehne, V., Kaslin, J., Freudenreich, D., et al.
(2012). Acute inflammation initiates the regenerative response in the adult
zebrafish brain. Science 338, 1353–1356. doi: 10.1126/science.1228773

Lai, S. L., Marin-Juez, R., Moura, P. L., Kuenne, C., Lai, J. K. H., Tsedeke, A. T., et al.
(2017). Reciprocal analyses in zebrafish and medaka reveal that harnessing the
immune response promotes cardiac regeneration. eLife 6:e25605. doi: 10.7554/
eLife.25605

Lam, S. H., Chua, H. L., Gong, Z., Lam, T. J., and Sin, Y. M. (2004). Development
and maturation of the immune system in zebrafish, Danio rerio: a gene
expression profiling, in situ hybridization and immunological study. Dev.
Comp. Immunol. 28, 9–28. doi: 10.1016/S0145-305X(03)00103-4

Langenau, D. M., Ferrando, A. A., Traver, D., Kutok, J. L., Hezel, J. P., Kanki, J. P.,
et al. (2004). In vivo tracking of T cell development, ablation, and engraftment
in transgenic zebrafish. Proc. Natl. Acad. Sci. U.S.A. 101, 7369–7374. doi: 10.
1073/pnas.0402248101

Langenau, D. M., Traver, D., Ferrando, A. A., Kutok, J., Aster, J. C., Kanki, J. P.,
et al. (2003). Myc-induced T-Cell leukemia in transgenic zebrafish. Science 299,
887–890. doi: 10.1126/science.1080280

Lavine, K. J., Epelman, S., Uchida, K., Weber, K. J., Nichols, C. G., Schilling, J. D.,
et al. (2014). Distinct macrophage lineages contribute to disparate patterns of
cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl.
Acad. Sci. U.S.A. 111, 16029–16034. doi: 10.1073/pnas.1406508111

Lewis, K. L., Del Cid, N., and Traver, D. (2014). Perspectives on antigen presenting
cells in zebrafish. Dev. Comp. Immunol. 46, 63–73. doi: 10.1016/j.dci.2014.
03.010

Liu, X., Li, Y. S., Shinton, S. A., Rhodes, J., Tang, L., Feng, H., et al. (2017).
Zebrafish B cell development without a pre-b cell stage, revealed by CD79
fluorescence reporter transgenes. J. Immunol. 199, 1706–1715. doi: 10.4049/
jimmunol.1700552

Liu, Y. H., Ding, Y., Gao, C. C., Li, L. S., Wang, X. Y., and Xu, J. D. (2018).
Functional macrophages and gastrointestinal disorders. World J. Gastroenterol.
24, 1181–1195. doi: 10.3748/wjg.v24.i11.1181

London, A., Benhar, I., and Schwartz, M. (2013). The retina as a window to the
brain-from eye research to CNS disorders. Nat. Rev. Neurol. 9, 44–53. doi:
10.1038/nrneurol.2012.227

Lu, J., Peatman, E., Tang, H., Lewis, J., and Liu, Z. (2012). Profiling of gene
duplication patterns of sequenced teleost genomes: evidence for rapid lineage-
specific genome expansion mediated by recent tandem duplications. BMC
Genomics 13:246. doi: 10.1186/1471-2164-13-246

Lucin, K. M., and Wyss-Coray, T. (2009). Immune activation in brain aging and
neurodegeneration: too much or too little? Neuron 64, 110–122. doi: 10.1016/j.
neuron.2009.08.039

Lugo-Villarino, G., Balla, K. M., Stachura, D. L., Banuelos, K., Werneck, M. B.,
and Traver, D. (2010). Identification of dendritic antigen-presenting cells in
the zebrafish. Proc. Natl. Acad. Sci. U.S.A. 107, 15850–15855. doi: 10.1073/pnas.
1000494107

Lyons, D. A., and Talbot, W. S. (2014). Glial cell development and function in
zebrafish. Cold Spring Harb. Perspect. Biol. 7:a020586. doi: 10.1101/cshperspect.
a020586

Malvin, N. P., Seno, H., and Stappenbeck, T. S. (2012). Colonic epithelial response
to injury requires Myd88 signaling in myeloid cells. Mucosal Immunol. 5,
194–206. doi: 10.1038/mi.2011.65

Man, A. L., Gicheva, N., and Nicoletti, C. (2014). The impact of ageing on the
intestinal epithelial barrier and immune system. Cell. Immunol. 289, 112–118.
doi: 10.1016/j.cellimm.2014.04.001

Marjoram, L., Alvers, A., Deerhake, M. E., Bagwell, J., Mankiewicz, J., Cocchiaro,
J. L., et al. (2015). Epigenetic control of intestinal barrier function and
inflammation in zebrafish. Proc. Natl. Acad. Sci. U.S.A. 112, 2770–2775. doi:
10.1073/pnas.1424089112

Marjoram, L., and Bagnat, M. (2015). Infection, inflammation and healing in
zebrafish: intestinal inflammation. Curr. Pathobiol. Rep. 3, 147–153. doi: 10.
1007/s40139-015-0079-x

Martins, R. R., McCracken, A. W., Simons, M. J. P., Henriques, C. M., and Rera, M.
(2018). How to catch a Smurf? in vivo assessment of intestinal permeability in
multiple model organisms. Bio Protoc. 8:e2722. doi: 10.21769/BioProtoc.2722

Mathias, J. R., Dodd, M. E., Walters, K. B., Yoo, S. K., Erik, A., and
Huttenlocher, A. (2010). Characterization of zebrafish larval inflammatory

macrophages Jonathan. Dev. Comp. Immunol. 33, 1212–1217. doi: 10.1016/j.
dci.2009.07.003

Mathias, J. R., Perrin, B. J., Liu, T. X., Kanki, J., Look, A. T., and Huttenlocher, A. J.
(2006). Resolution of inflammation by retrograde chemotaxis of neutrophils in
transgenic zebrafish. J. Leukoc. Biol. 80, 1281–1288. doi: 10.1189/jlb.0506346

Meijer, A. H., and Spaink, H. (2011). Host-pathogen interactions made transparent
with the zebrafish model. Curr. Drug Targets 12, 1000–1017. doi: 10.2174/
138945011795677809

Meijer, A. H., van der Vaart, M., and Spaink, H. P. (2014). Real-time imaging and
genetic dissection of host-microbe interactions in zebrafish. Cell. Microbiol. 16,
39–49. doi: 10.1111/cmi.12236

Mitchell, D. M., Lovel, A. G., and Stenkamp, D. L. (2018). Dynamic changes
in microglial and macrophage characteristics during degeneration and
regeneration of the zebrafish retina. J. Neuroinflammation 15:163. doi: 10.1186/
s12974-018-1185-6

Moss, L. D., Monette, M. M., Jaso-Friedmann, L., Leary, J. H. III, Dougan, S. T.,
Krunkosky, T., et al. (2009). Identification of phagocytic cells, NK-like cytotoxic
cell activity and the production of cellular exudates in the coelomic cavity of
adult zebrafish. Dev. Comp. Immunol. 33, 1077–1087. doi: 10.1016/j.dci.2009.
05.009

Mowat, A. M. (2018). To respond or not to respond - a personal perspective of
intestinal tolerance. Nat. Rev. Immunol. 18, 405–415. doi: 10.1038/s41577-018-
0002-x

Mowat, A. M., Scott, C. L., and Bain, C. C. (2017). Barrier-tissue macrophages:
functional adaptation to environmental challenges. Nat. Med. 23, 1258–1270.
doi: 10.1038/nm.4430

Ng, A. N., de Jong-Curtain, T. A., Mawdsley, D. J., White, S. J., Shin, J., Appel, B.,
et al. (2005). Formation of the digestive system in zebrafish: III. Intestinal
epithelium morphogenesis. Dev. Biol. 286, 114–135. doi: 10.1016/j.ydbio.2005.
07.013

Nguyen-Chi, M., Laplace-Builhe, B., Travnickova, J., Luz-Crawford, P., Tejedor, G.,
Phan, Q. T., et al. (2015). Identification of polarized macrophage subsets in
zebrafish. eLife 4:e07288. doi: 10.7554/eLife.07288

Ogryzko, N. V., Lewis, A., Wilson, H. L., Meijer, A. H., Renshaw, S. A., and Elks,
P. M. (2018). Hif-1α-induced expression of Il-1β protects against mycobacterial
infection in zebrafish. J. Immunol. 202, 494–502. doi: 10.4049/jimmunol.
1801139

Oosterhof, N., Boddeke, E., and van Ham, T. J. (2015). Immune cell dynamics in
the CNS: learning from the zebrafish. Glia 63, 719–735. doi: 10.1002/glia.22780

Oosterhof, N., Holtman, I. R., Kuil, L. E., van der Linde, H. C., Boddeke,
E. W., Eggen, B. J., et al. (2017). Identification of a conserved and acute
neurodegeneration-specific microglial transcriptome in the zebrafish. Glia 65,
138–149. doi: 10.1002/glia.23083

Page, D. M., Wittamer, V., Bertrand, J. Y., Lewis, K. L., Pratt, D. N., Delgado, N.,
et al. (2013). An evolutionarily conserved program of B-cell development
and activation in zebrafish. Blood 122, e1–e11. doi: 10.1182/blood-2012-12-
471029

Perdiguero, E. G., Klapproth, K., Schulz, C., Busch, K., de Bruijn, M., Rodewald,
H. R., et al. (2015). The origin of tissue-resident macrophages: when an erythro-
myeloid progenitor is an erythro-myeloid progenitor. Immunity 43, 1023–1024.
doi: 10.1016/j.immuni.2015.11.022

Pereiro, P., Varela, M., Diaz-Rosales, P., Romero, A., Dios, S., Figueras, A., et al.
(2015). Zebrafish Nk-lysins: first insights about their cellular and functional
diversification. Dev. Comp. Immunol. 51, 148–159. doi: 10.1016/j.dci.2015.
03.009

Peri, F., and Nusslein-Volhard, C. (2008). Live imaging of neuronal degradation by
microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133,
916–927. doi: 10.1016/j.cell.2008.04.037

Poirier, J., Hess, M., May, P. C., and Finch, C. E. (1991). Astrocytic apolipoprotein
E mRNA and GFAP mRNA in hippocampus after entorhinal cortex lesioning.
Brain Res. Mol. Brain Res. 11, 97–106. doi: 10.1016/0169-328X(91)90111-A

Pope, H., and Voigt, M. M. (2014). Peripheral glia have a pivotal role in the initial
response to axon degeneration of peripheral sensory neurons in zebrafish. PLoS
One 9:e103283. doi: 10.1371/journal.pone.0103283

Pott, J., and Hornef, M. (2012). Innate immune signalling at the intestinal
epithelium in homeostasis and disease. EMBO Rep. 13, 684–698. doi: 10.1038/
embor.2012.96

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 February 2019 | Volume 7 | Article 12

https://doi.org/10.1126/science.1228773
https://doi.org/10.7554/eLife.25605
https://doi.org/10.7554/eLife.25605
https://doi.org/10.1016/S0145-305X(03)00103-4
https://doi.org/10.1073/pnas.0402248101
https://doi.org/10.1073/pnas.0402248101
https://doi.org/10.1126/science.1080280
https://doi.org/10.1073/pnas.1406508111
https://doi.org/10.1016/j.dci.2014.03.010
https://doi.org/10.1016/j.dci.2014.03.010
https://doi.org/10.4049/jimmunol.1700552
https://doi.org/10.4049/jimmunol.1700552
https://doi.org/10.3748/wjg.v24.i11.1181
https://doi.org/10.1038/nrneurol.2012.227
https://doi.org/10.1038/nrneurol.2012.227
https://doi.org/10.1186/1471-2164-13-246
https://doi.org/10.1016/j.neuron.2009.08.039
https://doi.org/10.1016/j.neuron.2009.08.039
https://doi.org/10.1073/pnas.1000494107
https://doi.org/10.1073/pnas.1000494107
https://doi.org/10.1101/cshperspect.a020586
https://doi.org/10.1101/cshperspect.a020586
https://doi.org/10.1038/mi.2011.65
https://doi.org/10.1016/j.cellimm.2014.04.001
https://doi.org/10.1073/pnas.1424089112
https://doi.org/10.1073/pnas.1424089112
https://doi.org/10.1007/s40139-015-0079-x
https://doi.org/10.1007/s40139-015-0079-x
https://doi.org/10.21769/BioProtoc.2722
https://doi.org/10.1016/j.dci.2009.07.003
https://doi.org/10.1016/j.dci.2009.07.003
https://doi.org/10.1189/jlb.0506346
https://doi.org/10.2174/138945011795677809
https://doi.org/10.2174/138945011795677809
https://doi.org/10.1111/cmi.12236
https://doi.org/10.1186/s12974-018-1185-6
https://doi.org/10.1186/s12974-018-1185-6
https://doi.org/10.1016/j.dci.2009.05.009
https://doi.org/10.1016/j.dci.2009.05.009
https://doi.org/10.1038/s41577-018-0002-x
https://doi.org/10.1038/s41577-018-0002-x
https://doi.org/10.1038/nm.4430
https://doi.org/10.1016/j.ydbio.2005.07.013
https://doi.org/10.1016/j.ydbio.2005.07.013
https://doi.org/10.7554/eLife.07288
https://doi.org/10.4049/jimmunol.1801139
https://doi.org/10.4049/jimmunol.1801139
https://doi.org/10.1002/glia.22780
https://doi.org/10.1002/glia.23083
https://doi.org/10.1182/blood-2012-12-471029
https://doi.org/10.1182/blood-2012-12-471029
https://doi.org/10.1016/j.immuni.2015.11.022
https://doi.org/10.1016/j.dci.2015.03.009
https://doi.org/10.1016/j.dci.2015.03.009
https://doi.org/10.1016/j.cell.2008.04.037
https://doi.org/10.1016/0169-328X(91)90111-A
https://doi.org/10.1371/journal.pone.0103283
https://doi.org/10.1038/embor.2012.96
https://doi.org/10.1038/embor.2012.96
https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00012 February 4, 2019 Time: 15:57 # 11

Martins et al. Tissue Resident Immunity in Adult Zebrafish

Ramirez, A. I., de Hoz, R., Salobrar-Garcia, E., Salazar, J. J., Rojas, B., Ajoy, D., et al.
(2017). The role of microglia in retinal neurodegeneration: Alzheimer’s disease,
Parkinson, and glaucoma. Front. Aging Neurosci. 9:214. doi: 10.3389/fnagi.2017.
00214

Redd, M. J., Kelly, G., Dunn, G., Way, M., and Martin, P. (2006). Imaging
macrophage chemotaxis in vivo: studies of microtubule function in zebrafish
wound inflammation. Cell Motil. Cytoskeleton 63, 415–422. doi: 10.1002/cm.
20133

Reichenbach, A., and Bringmann, A. (2013). New functions of Muller cells. Glia 61,
651–678. doi: 10.1002/glia.22477

Renshaw, S. A., Loynes, C. A., Trushell, D. M., Elworthy, S., Ingham,
P. W., and Whyte, M. K. (2006). A transgenic zebrafish model of
neutrophilic inflammation. Blood 108, 3976–3978. doi: 10.1182/blood-2006-05-
024075

Renshaw, S. A., and Trede, N. S. (2012). A model 450 million years in the making:
zebrafish and vertebrate immunity. Dis. Model. Mech. 5, 38–47. doi: 10.1242/
dmm.007138

Sato, S., Kiyono, H., and Fujihashi, K. (2015). Mucosal immunosenescence in the
gastrointestinal tract: a mini-review. Gerontology 61, 336–342. doi: 10.1159/
000368897

Schnabel, K., Wu, C. C., Kurth, T., and Weidinger, G. (2011). Regeneration
of cryoinjury induced necrotic heart lesions in zebrafish is associated with
epicardial activation and cardiomyocyte proliferation. PLoS One 6:e18503. doi:
10.1371/journal.pone.0018503

Sepulcre, M. P., Alcaraz-Perez, F., Lopez-Munoz, A., Roca, F. J., Meseguer, J.,
Cayuela, M. L., et al. (2009). Evolution of lipopolysaccharide (LPS) recognition
and signaling: fish TLR4 does not recognize LPS and negatively regulates
NF-kappaB activation. J. Immunol. 182, 1836–1845. doi: 10.4049/jimmunol.
0801755

Sheng, J., Ruedl, C., and Karjalainen, K. (2015). Most tissue-resident macrophages
except microglia are derived from fetal hematopoietic stem cells. Immunity 43,
382–393. doi: 10.1016/j.immuni.2015.07.016

Shiau, C. E., Monk, K. R., Joo, W., and Talbot, W. S. (2013). An anti-inflammatory
NOD-like receptor is required for microglia development. Cell Rep. 5, 1342–
1352. doi: 10.1016/j.celrep.2013.11.004

Silverman, S. M., and Wong, W. T. (2018). Microglia in the retina: roles in
development, maturity, and disease. Annu. Rev. Vis. Sci. 4, 45–77. doi: 10.1146/
annurev-vision-091517-034425

Skaggs, K., Goldman, D., and Parent, J. M. (2014). Excitotoxic brain injury in adult
zebrafish stimulates neurogenesis and long-distance neuronal integration. Glia
62, 2061–2079. doi: 10.1002/glia.22726

Soenen, S., Rayner, C. K., Jones, K. L., and Horowitz, M. (2016). The ageing
gastrointestinal tract. Curr. Opin. Clin. Nutr. Metab. Care 19, 12–18. doi: 10.
1097/MCO.0000000000000238

Stoll, G., Meuller, H. W., Trapp, B. D., and Griffin, J. W. (1989). Oligodendrocytes
but not astrocytes express apolipoprotein E after injury of rat optic nerve. Glia
2, 170–176. doi: 10.1002/glia.440020306

Svahn, A. J., Graeber, M. B., Ellett, F., Lieschke, G. J., Rinkwitz, S., Bennett, M. R.,
et al. (2013). Development of ramified microglia from early macrophages in the
zebrafish optic tectum. Dev. Neurobiol. 73, 60–71. doi: 10.1002/dneu.22039

Tang, Q., Iyer, S., Lobbardi, R., Moore, J. C., Chen, H., Lareau, C., et al. (2017).
Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at
single-cell resolution using RNA sequencing. J. Exp. Med. 214, 2875–2887.
doi: 10.1084/jem.20170976

Traver, D., Paw, B. H., Poss, K. D., Penberthy, W. T., Lin, S., and Zon, L. I. (2003).
Transplantation and in vivo imaging of multilineage engraftment in zebrafish
bloodless mutants. Nat. Immunol. 4, 1238–1246. doi: 10.1038/ni1007

Trede, N. S., Langenau, D. M., Traver, D., Look, A. T., and Zon, L. I. (2004).
The use of zebrafish to understand immunity. Immunity 20, 367–379. doi:
10.1016/S1074-7613(04)00084-6

van Ham, T. J., Brady, C. A., Kalicharan, R. D., Oosterhof, N., Kuipers, J., Veenstra-
Algra, A., et al. (2014). Intravital correlated microscopy reveals differential

macrophage and microglial dynamics during resolution of neuroinflammation.
Dis. Model. Mech. 7, 857–869. doi: 10.1242/dmm.014886

Van Houcke, J., Bollaerts, I., Geeraerts, E., Davis, B., Beckers, A., Van Hove, I., et al.
(2017). Successful optic nerve regeneration in the senescent zebrafish despite
age-related decline of cell intrinsic and extrinsic response processes. Neurobiol.
Aging 60, 1–10. doi: 10.1016/j.neurobiolaging.2017.08.013

Vecino, E., Rodriguez, F. D., Ruzafa, N., Pereiro, X., and Sharma, S. C. (2016). Glia-
neuron interactions in the mammalian retina. Prog. Retin. Eye Res. 51, 1–40.
doi: 10.1016/j.preteyeres.2015.06.003

Wallace, K. N., Akhter, S., Smith, E. M., Lorent, K., and Pack, M. (2005). Intestinal
growth and differentiation in zebrafish. Mech. Dev. 122, 157–173. doi: 10.1016/
j.mod.2004.10.009

Walton, E. M., Cronan, M. R., Beerman, R. W., and Tobin, D. M. (2015).
The macrophage-specific promoter mfap4 allows live, long-term analysis of
macrophage behavior during mycobacterial infection in zebrafish. PLoS One
10:e0138949. doi: 10.1371/journal.pone.0138949

Wang, M., Ma, W., Zhao, L., Fariss, R. N., and Wong, W. T. (2011). Adaptive
Muller cell responses to microglial activation mediate neuroprotection and
coordinate inflammation in the retina. J. Neuroinflammation 8:173. doi: 10.
1186/1742-2094-8-173

Wang, M., Wang, X., Zhao, L., Ma, W., Rodriguez, I. R., Fariss, R., et al. (2014).
Macroglia-microglia interactions via TSPO signaling regulates microglial
activation in the mouse retina. J. Neurosci. 34, 3793–3806. doi: 10.1523/
JNEUROSCI.3153-13.2014

White, D. T., Sengupta, S., Saxena, M. T., Xu, Q., Hanes, J., Ding, D., et al. (2017).
Immunomodulation-accelerated neuronal regeneration following selective rod
photoreceptor cell ablation in the zebrafish retina. Proc. Natl. Acad. Sci. U.S.A.
114, E3719–E3728. doi: 10.1073/pnas.1617721114

Wittamer, V., Bertrand, J. Y., Gutschow, P. W., and Traver, D. (2011).
Characterization of the mononuclear phagocyte system in zebrafish. Blood 117,
7126–7135. doi: 10.1182/blood-2010-11-321448

Xu, J., Zhu, L., He, S., Wu, Y., Jin, W., Yu, T., et al. (2015). Temporal-
spatial resolution fate mapping reveals distinct origins for embryonic and
adult microglia in zebrafish. Dev. Cell 34, 632–641. doi: 10.1016/j.devcel.2015.
08.018

Xu, Q., Bernardo, A., Walker, D., Kanegawa, T., Mahley, R. W., and Huang, Y.
(2006). Profile and regulation of apolipoprotein E (ApoE) expression in
the CNS in mice with targeting of green fluorescent protein gene to the
ApoE locus. J. Neurosci. 26, 4985–4994. doi: 10.1523/JNEUROSCI.5476-05.
2006

Yoder, J. A., Turner, P. M., Wright, P. D., Wittamer, V., Bertrand, J. Y.,
Traver, D., et al. (2010). Developmental and tissue-specific expression of NITRs.
Immunogenetics 62, 117–122. doi: 10.1007/s00251-009-0416-5

Yona, S., Kim, K.-W., Wolf, Y., Mildner, A., Varol, D., Breker, M., et al. (2013). Fate
mapping reveals origins and dynamics of monocytes and tissue macrophages
under homeostasis. Immunity 38, 79–91. doi: 10.1016/j.immuni.2012.
12.001

Zou, S., Tian, C., Ge, S., and Hu, B. (2013). Neurogenesis of retinal ganglion cells
is not essential to visual functional recovery after optic nerve injury in adult
zebrafish. PLoS One 8:e57280. doi: 10.1371/journal.pone.0057280

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Martins, Ellis, MacDonald, Richardson and Henriques. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 February 2019 | Volume 7 | Article 12

https://doi.org/10.3389/fnagi.2017.00214
https://doi.org/10.3389/fnagi.2017.00214
https://doi.org/10.1002/cm.20133
https://doi.org/10.1002/cm.20133
https://doi.org/10.1002/glia.22477
https://doi.org/10.1182/blood-2006-05-024075
https://doi.org/10.1182/blood-2006-05-024075
https://doi.org/10.1242/dmm.007138
https://doi.org/10.1242/dmm.007138
https://doi.org/10.1159/000368897
https://doi.org/10.1159/000368897
https://doi.org/10.1371/journal.pone.0018503
https://doi.org/10.1371/journal.pone.0018503
https://doi.org/10.4049/jimmunol.0801755
https://doi.org/10.4049/jimmunol.0801755
https://doi.org/10.1016/j.immuni.2015.07.016
https://doi.org/10.1016/j.celrep.2013.11.004
https://doi.org/10.1146/annurev-vision-091517-034425
https://doi.org/10.1146/annurev-vision-091517-034425
https://doi.org/10.1002/glia.22726
https://doi.org/10.1097/MCO.0000000000000238
https://doi.org/10.1097/MCO.0000000000000238
https://doi.org/10.1002/glia.440020306
https://doi.org/10.1002/dneu.22039
https://doi.org/10.1084/jem.20170976
https://doi.org/10.1038/ni1007
https://doi.org/10.1016/S1074-7613(04)00084-6
https://doi.org/10.1016/S1074-7613(04)00084-6
https://doi.org/10.1242/dmm.014886
https://doi.org/10.1016/j.neurobiolaging.2017.08.013
https://doi.org/10.1016/j.preteyeres.2015.06.003
https://doi.org/10.1016/j.mod.2004.10.009
https://doi.org/10.1016/j.mod.2004.10.009
https://doi.org/10.1371/journal.pone.0138949
https://doi.org/10.1186/1742-2094-8-173
https://doi.org/10.1186/1742-2094-8-173
https://doi.org/10.1523/JNEUROSCI.3153-13.2014
https://doi.org/10.1523/JNEUROSCI.3153-13.2014
https://doi.org/10.1073/pnas.1617721114
https://doi.org/10.1182/blood-2010-11-321448
https://doi.org/10.1016/j.devcel.2015.08.018
https://doi.org/10.1016/j.devcel.2015.08.018
https://doi.org/10.1523/JNEUROSCI.5476-05.2006
https://doi.org/10.1523/JNEUROSCI.5476-05.2006
https://doi.org/10.1007/s00251-009-0416-5
https://doi.org/10.1016/j.immuni.2012.12.001
https://doi.org/10.1016/j.immuni.2012.12.001
https://doi.org/10.1371/journal.pone.0057280
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	Resident Immunity in Tissue Repair and Maintenance: The Zebrafish Model Coming of Age
	Introduction
	Ontogeny of Tissue Immunity in Zebrafish
	Selected Examples of Tissue Immunity in Adult Zebrafish
	Heart
	Gut
	Brain
	Retina


	Concluding Remarks
	Ethics Statement
	Author Contributions
	Funding
	References


