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Abstract: A lesson utilizing a
coarse-grained (CG) G�oo-like model
has been implemented into the
CHARMM INterface and Graphics
(CHARMMing) web portal (www.
charmming.org) to the Chemistry at
HARvard Macromolecular Mechanics
(CHARMM) molecular simulation
package. While widely used to model
various biophysical processes, such
as protein folding and aggregation,
CG models can also serve as an
educational tool because they can
provide qualitative descriptions of
complex biophysical phenomena for
a relatively cheap computational
cost. As a proof of concept, this
lesson demonstrates the construc-
tion of a CG model of a small globular
protein, its simulation via Langevin
dynamics, and the analysis of the
resulting data. This lesson makes
connections between modern mo-
lecular simulation techniques and
topics commonly presented in an
advanced undergraduate lecture on
physical chemistry. It culminates in a
straightforward analysis of a short
dynamics trajectory of a small fast
folding globular protein; we briefly
describe the thermodynamic proper-
ties that can be calculated from this
analysis. The assumptions inherent in
the model and the data analysis are
laid out in a clear, concise manner,
and the techniques used are consis-
tent with those employed by spe-
cialists in the field of CG modeling.
One of the major tasks in building the
G�oo-like model is determining the
relative strength of the nonbonded
interactions between coarse-grained
sites. New functionality has been
added to CHARMMing to facilitate
this process. The implementation of
these features into CHARMMing
helps automate many of the tedious
aspects of constructing a CG G�oo
model. The CG model builder and
its accompanying lesson should be a
valuable tool to chemistry students,
teachers, and modelers in the field.

Introduction

To function properly, most proteins

must fold [1]. Determining the structure

and understanding the mechanisms re-

sponsible for folding are active areas of

biophysical research, as gleaning this

information may provide critical insights

towards fighting diseases that have been

linked to protein structure, such as Alzhei-

mer’s [2,3]. Experimental determinations

of protein structure are typically per-

formed using X-ray diffraction of crystal-

lized proteins or using NMR spectroscopy.

Both techniques provide important infor-

mation about a protein’s native folded

structure, yet both methods are not

without their drawbacks. The process of

crystallizing a protein is labor intensive,

and structural information from a crystal-

lized sample comes from a nonbiological

environment. NMR studies on an aqueous

sample yield time-averaged results and are

unable to resolve many important dynam-

ic details. Considering the limitations of

these techniques, computer simulations

are an important tool to supplement and

interpret information provided through

direct experiment. One way theoretical

studies may lead to a better understanding

of experimental results is by providing

simple models with verifiable results.

Computer models can be constructed at

a variety of scales or resolutions (Figure 1).

Many simulation techniques represent

each atom as a single interaction center.

The interactions between beads can then

be evaluated using a force field. However,

it is possible to construct a coarse-grained

(CG) model, in which multiple atoms are

represented by a single center (as in the

right-hand panel of Figure 1). These types

of models can be useful theoretical tools

because they can be specifically designed

for a system or process of interest. By

providing a simplified view of a complex

molecular process, important physical

details are retained in the model, while

superfluous details are ignored. The re-

sulting CG model distills the essence of the

biophysical process into its most important

physical details, allowing the computation-

al scientist a fundamental understanding

of the process.

The success of CG models in represent-

ing a variety of biological phenomena is

widely acknowledged. Starting from the

earliest protein folding simulations [4], to

more recent studies on membranes [5]

and transmembrane proteins [6], CG

models have been applied to diverse

phenomena such as protein aggregation

[7], vesicle fusion [8], protein structure

refinement [9], and the thermodynamics

of RNA folding [10], among many other

topics. For a thorough discussion of the

many diverse applications of CG models,

please see the recent review literature [11–

13].

Besides their simplification of complex

biological phenomena, another attractive

feature of CG models is their inexpensive-

ness relative to all-atom (AA) models. The

computational cost of performing a classi-
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cal molecular mechanics simulation is

typically dominated by the calculation of

nonbonded forces (electrostatic and van

der Waals interactions), as the number of

interaction pairs is proportional to the

square of the number of particles present

in the model system. For example, one of

the most widely-used AA water models,

TIP3P [14], represents a water molecule

as three interaction sites. By comparison,

the MARTINI model [5] represents four

water molecules using a single CG site, an

effective reduction of 12 sites into one. If a

ten-to-one mapping is assumed for an

entire CG model, the number of required

nonbonded interactions to be computed is

reduced by roughly two orders of magni-

tude.

One commonly used CG model is the

G�oo-like model [15]. In this type of model,

an AA crystal structure is used not only to

build the coordinates and topology of the

CG model (as is the case with most CG

models) but also to build the parameters

for the non-bonded interactions. The

assumption underlying the G�oo model is

that the native state below the melting

temperature (Tm) is the global free energy

minimum. We know that the protein folds

into a given crystal structure; therefore, we

assign parameters to always reproduce the

experimentally known fold. Because we

know the native state is stable, we know

that native contacts are more stable than

non-native contacts. Therefore we assign

an attractive interaction potential to native

contacts, and a short range repulsive

interaction potential to non-native con-

tacts. While the G�oo model is not based on

first principles, nor is it transferable (like

the AA protein CHARMM force field)

[16], these simulations reach equilibrium

(for small globular proteins), allowing for

direct comparison between simulation and

experiment [17–20].

G�oo-like models have been used to

describe the kinetic features of protein

folding [21]. Among the systems studied

are the Trp-cage fast folder [22], the Villin

headpiece [23], ribosomal protein S6 [24],

and c-src SH3 and CI2 [25]. Various

physical insights have been gained from

these studies; however, the performance of

a particular model depends upon how

accurately it can reproduce AA kinetics.

Some investigation of optimal parameters

has been made [26]. An accurate G�oo-like

model can provide these insights at a

much smaller computational cost than its

AA counterpart at the expense of trans-

ferability and fine-grained insights into

structural behavior.

A consequence of coarse-graining the

molecular model is the smoothing of the

interaction potential. This CG potential has

two important implications: larger integra-

tion time step and accelerated dynamics. In

the reductive mapping process, many

lighter particles are lumped together to

form massive interaction centers; this

effectively integrates out the fastest moving

degrees of freedom, allowing the usage of a

longer integration time without incurring

integration errors (phantom heating). For

example, in AA simulations the hydrogen

stretching motions occur at *3000cm{1,

dictating an integration time step of 1 or 2

fs. By removing this high-frequency mo-

tion, one may safely use a longer time step.

This allows a total dynamics simulation

time one order of magnitude longer than

that of an AA model over the same number

of energy and force evaluations. The

smoother interaction potential also indi-

rectly accelerates MD by removing degrees

of freedom, causing energetic barriers

between conformations to disappear. This

effect can accelerate the rate of biophysical

processes by another factor of two [12].

Taken together, these effects can facilitate

the simulation of many biological processes,

such as protein folding, that would be

impossible to rapidly simulate using AA

dynamics. CG models are therefore very

attractive in an educational environment,

as they retain the qualitative features of

their AA counterparts and can be per-

formed cheaply and rapidly, leading to a far

more interactive experience with the stu-

dents.

In this lesson, we will use a G�oo-like

model in which each amino acid is

mapped into two CG sites, one located

at the alpha carbon (Ca) and one located

at the side-chain center of mass (SC).

Many G�oo-like models only provide for one

interaction site per residue. One such

popular model has been developed by

Karanicolas and Brooks [27,28]. A web

server that generates CHARMM input

files for this model is available. Users are

not able to perform test runs of their

models through the server itself, and there

are no interactive lessons, making it less

comprehensive than the current

CHARMMing implementation. However,

some tutorial materials are available from

the Multiscale Modeling Tools for Struc-

tural Biology (MMTSB) website [29].

In the remainder of this work we

describe some of the details underlying

both the bonded and non-bonded forces in

the G�oo model potential. We also discuss

the details of the dynamics simulations

performed by CHARMMing [30] (www.

charmming.org) using the CHARMM

simulation package [31]. A procedure for

extracting thermochemical values from the

raw dynamic trajectories is also given. We

then outline step-by-step directions for

setting up, performing, and analyzing the

dynamics simulation using CHARMMing.

This manuscript will give a basic descrip-

tion of the procedure suitable for under-

graduate students. New sections have been

added to the CHARMM tutorial available

at www.charmmtutorial.org with more in-

depth descriptions of the methodology,

and these are referenced within this work.

Finally, we discuss the utility of this lesson

both as an educational tool and as a

research aid.

Methods

Two CG protein models have been

implemented into CHARMMing [30].

The one described in this manuscript is a

two-site G�oo model based on the work of

Klimov and Thirumalai and described

further in this section [18]. The second

model characterizes the chemical proper-

ties of residues and defines interactions

accordingly. For the G�oo model, the

bonded and nonbonded parameters are

explicitly constructed to bias the protein

towards the experimental crystal structure.

However, the inclusion of a SC particle

Figure 1. The native structure of the GA module of an albumin binding domain. Three
representations of the structure are shown. The left panel shows the backbone of the native fold
as a ribbon, which highlights the helical nature of the secondary structure. The center panel
shows the AA structure, which is used to build the KT G�oo model (right panel).
doi:10.1371/journal.pcbi.1003738.g001
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serves to hinder the progress down the

folding funnel and frustrate the folding

process. This creates a better balance

between the folded and unfolded states

than is typical in one-site G�oo models such

as the model of Karanicolas and Brooks

referenced above, allowing for a more

accurate description of folding thermody-

namics. Further modifications to the

standard G�oo model allow the CG model

to incorporate hydrogen bonding and

secondary structure into the parameteri-

zation process.

The bonded and nonbonded force field

terms of the two-site G�oo model use the

same functional form as those used in the

AA CHARMM force field [16]. However,

the model must be re-parameterized to

account for the fact that each amino acid

is only represented by two CG beads. This

parameterization exploits the nontransfer-

ability of the model; parameters are

designed to reproduce the secondary and

tertiary structure of the AA system. The

default parameters for the model are

described in detail on charmmtutorial.org;

interested readers are encouraged to con-

sult this page (http://charmmtutorial.org/

index.php/Coarse_Grained_Go_Models)

for more information and default values of

these parameters. Those readers wishing

to learn about the functional form of

the CHARMM force field may visit

http://charmmtutorial.org/index.php/The_

Energy_Function.

The bonded parameters for adjacent

backbone atoms are modified based on the

secondary structure (as determined by the

STRIDE program [32]) of the AA model.

However, the bond strength is somewhat

weaker than would be found between

backbone atoms of an AA model since these

‘‘bonds’’ actually represent more flexible

linkages between residues. In addition,

because the entirety of the backbone is

represented by a single bead per amino acid,

there is little to prevent 180 degree rotations

of the side-chain that, in an AA representa-

tion, would correspond to a chiral flip. This

is a rare occurrence in nature because of the

energy barrier involved, and therefore, the

model adds a strong improper dihedral term

to mimic this barrier.

All nonbonded interactions between

sites on non-adjacent amino acids are

described by a 12–6 Lennard-Jones (LJ)

potential. There are no direct electrostatic

components to the energy, however elec-

trostatic effects are incorporated indirectly

as will be discussed below. The LJ

parameters used for SC particles depend

on whether they form a native contact

within the crystal structure, defined as

occurring when their positions are within

4.5 Å of one another. The objective of any

G�oo-like model is to preserve such contacts

while discouraging others. So in this case

the LJ potential is attractive, with the

minimum energy occurring when the SC

beads are at the same distance as the SC

centers of mass in the original crystal

structure. The strength of the attraction is

determined by an experimentally derived

contact potential, the most widely used of

which was developed by Miyazawa and

Jernigan [33] (however, CHARMMing

supports other contact potentials as well).

This contact potential is how electrostatics

are taken indirectly into account. All other

SC–SC interactions are modeled with a

non-attractive LJ potential, following the

fundamental assumption of G�oo -like mod-

els that the native structure is most stable.

All Ca–Caand Ca–SC interactions are also

modeled non-attractively to account for

volume exclusion, unless they take part in

hydrogen bonding, in which case, the

potential is slightly attractive. This method

of simulating hydrogen bonds has been

shown to produce qualitatively correct

results for CG water [5].

One of the parameters of the Klimov-

Thirumalai G�oo-like model is the relative

strength of the nonbonded versus the

bonded interactions. The motivation be-

hind this parameter, as described in the

supporting information of [20], is that the

strength of the native contacts must be

scaled in order to provide a physiologically

realistic melting temperature; however,

the scale factor (nScale) is not known a

priori. In the CHARMMing implementa-

tion, the user may specify nScale or ask the

interface to estimate it. Our method of

estimating nScale is to run temperature

replica exchange [34], which gives a

Boltzmann ensemble of the structure at a

range of different temperatures. From

these ensembles, a fraction of native

contacts can be calculated, which can be

used to plot a melting curve (see below),

allowing the melting temperature (Tm) to

be estimated. If Tm is close to a physio-

logical value for the system of interest,

then nScale is considered correct. Other-

wise, it is strengthened or weakened

depending on whether Tm is too low or

too high. A full discussion of temperature

replica exchange is beyond the scope of

this manuscript, but interested readers

may consult http://charmmtutorial.org/

index.php/Temperature_replica_exchange.

If a user asks CHARMMing to deter-

mine nScale for them, the software

takes an initial guess (the default being

1, no scaling), runs a brief temperature

replica exchange simulation, and ad-

justs nScale upwards or downwards

based on the Tm calculated from that

simulation. The process is repeated

until an nScale is found that yields a

physiological Tm.

Electrostatic interactions are not explic-

itly present in this model (they are

accounted for implicitly through the LJ

potential); commonly used implicit solvent

schemes (e.g., Generalized Born) are

fundamentally incompatible with this im-

plementation of the G�oo model. Solvation

effects are incorporated into this model via

Langevin Dynamics (LD) [35]. Both

friction and knocking effects are approxi-

mately accounted for in this manner.

CHARMMing allows the user to specify

a collision frequency (damping coefficient),

but 5ps{1 is employed in our lesson so

as not to inhibit conformational transi-

tions. The parameter files produced by

CHARMMing set nonbonded cutoffs to

23 Å, with the standard CHARMM

switching function operating beyond

18 Å [36].

Data Analysis

When analyzing trajectory data, an

important consideration is the choice of

reaction coordinate employed in data

analysis. As illustrated in Table 1, the

choice of reaction coordinate can have an

Table 1. 1PRB thermochemistry.

coord. Tm DH DCp

Rg 356:5 177:0 2:50

D 356:0 171:2 2:73

Q 355:2 170:0 2:94

Expt. [44] 345:3 170 1:1+0:1

Expt. [45] 366:2 269 3:35

A comparison of three reaction coordinates, radius of gyration (Rg), backbone root mean squared deviation
(D), and fraction of native contacts (Q), with experimental results [44,45]. All results computed using
nScale~0:91.
doi:10.1371/journal.pcbi.1003738.t001
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uncomfortably large effect upon the

computed properties of the simulation.

The choice of a reaction coordinate is

very complex and depends heavily on

what scientific questions are being asked

about the system under study. Users are

encouraged to consult the literature

broadly when choosing a reaction coor-

dinate for a new system. In this lesson, we

will consider the fraction of native con-

tacts (Q), a reaction coordinate which has

been shown to be robust [37]. This

reaction coordinate is often used when

mapping the thermodynamic landscape of

various folding pathways of a protein.

When 0:5ƒQƒ1, a protein is considered

folded; when 0ƒQv0:5, a protein is

considered unfolded. The Tm of a protein

occurs when it is equally likely to be

folded as unfolded. Figure 2 shows an

example trajectory of a protein below its

melting point. From the relative frequen-

cies of folded versus unfolded structures,

we can calculate DGfold. Furthermore, by

considering how DGfold changes with

respect to temperature, we can plot a

melting curve and apply the Gibbs-

Helmholtz equation to determine the

protein’s heat capacity (Cp) and enthalpy

of fusion (DH ) (see equation below).

Figure 3 gives an illustrative example of

a computed melting curve.

DG~ DHm(1{
T

Tm
)

� �

{DCp (Tm{T)zT ln (
T

Tm
)

� �

The Coarse-Grained Lesson

In this lesson, we consider the protein G

related albumin-binding domain (PDB

code: 1PRB). This is a small globular

protein that has been extensively studied,

both experimentally and theoretically [37–

39]. Experiment has shown that this

protein folds near the semi-empirical speed

limit of *1ms [40]. In solution, 1PRB

forms a three-helix bundle (Figure 1); it

readily interconverts between its folded and

unfolded states, allowing rapid convergence

of its thermodynamic properties. These

features, taken together, make it an ideal

candidate to demonstrate the efficacy of

CG methodologies in an educational envi-

ronment. The sequence of steps that are

carried out by the lesson, along with their

inputs and outputs, are shown in Figure 4.

Steps 1 and 2: Upload a Protein to
CHARMMing and Build the CG
Structure

First CHARMMing must be directed to

obtain an AA crystal structure for our

protein of interest. The user must navigate

to the ‘‘Submit Structure’’ page from the

main menu. He or she selects ‘‘Retrieve a

PDB using a PDB ID’’, and enters the

PDB code ‘‘1PRB’’ into the text box. For

‘‘What Lesson is this structure associated

with?’’, ‘‘Lesson 5’’ should be selected

from the drop-down menu. The user then

submits the structure. CHARMMing will

now redirect to the page entitled ‘‘Build/

Select Working Structure.’’

Figure 2. An example trajectory. The fraction of native contacts are plotted as a function of time. By inspecting the histogram at the right, we
observe that this trajectory was simulated below Tm, as the protein is folded for 62% of the simulation.
doi:10.1371/journal.pcbi.1003738.g002

Figure 3. An example melting curve. Each point on the plot represents DGfold calculated
from a full trajectory. Tm occurs when DGfold~0, and the curvature of the plot is related to Cp.
doi:10.1371/journal.pcbi.1003738.g003
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On the ‘‘Build/Select Working Struc-

ture’’ page, an arbitrary name may be

provided at the user’s discretion to label the

working structure. Next, the user must

select what type of structure CHARMMing

should build, select the radio button next to

‘‘A Klimov-Thirumalai style G�oo model’’

and indicate that the ‘‘a-pro’’ segment

should be used to build the model by

selecting the appropriate box. These op-

tions tell CHARMMing to construct a G�oo
model with the appropriate CG topology,

representing 1PRB. Also on this page, the

user must tell CHARMMing how to

generate parameters for the model system.

We will use the Miyazawa-Jernigan statis-

tical potential as the basis for generating the

strengths of the native contact interactions.

Under the ‘‘Contact types’’ heading, the

‘‘MJ’’ radio button should be selected.

Next, the nScale parameter must be

assigned; for 1PRB the optimal value is

0.91. It is important to note that the user

would normally need to tune this value

manually, as described above. The user can

leave all other parameters at their default

values and click ‘‘Submit.’’

Step 3: Light Minimization
Although the native crystal structure is

determined to be at the free-energy

minimum, we still ask the user to do a

short energy minimization. This serves

two purposes: firstly, it removes any minor

issues with the geometry of the constructed

structure, such as suboptimal non-native

contacts or imperfect secondary structure,

and secondly, it allows the user to verify

that the model has been successfully built.

In order to accomplish this, the user must

go to the ‘‘Minimization’’ page and

request ten steps of steepest descent

minimization and 100 steps of adopted

basis Newton-Raphson minimization. The

process of minimization is described more

extensively in the first article of this series

and on charmmtutorial.org. Because a

coarse-grained model has no high fre-

quency motions, SHAKE, an algorithm

used to constrain rapid bond and angle

vibration [41], may be turned off.

Step 4: Run the Langevin Dynamics
Simulation

Once minimization is done, the user

must go to the ‘‘Langevin Dynamics’’

page. As described above, Langevin dy-

namics mimics the frictional effects of

solvent. CHARMMing is limited to

1,000 steps of dynamics, as described in

the first article of this series. However,

users have the option of downloading all

generated inputs and running them local-

ly, assuming that they have a CHARMM

license. When submitting the Langevin

dynamics calculation, the user is instructed

to set the ‘‘FBETA’’ value to five. This

controls the simulated collision frequency

used in the dynamics, which simulates the

jostling effects of solvent and also serves to

couple the system to a heat bath (in

CHARMMing, this is always set at

300 K). CHARMMing uses a 1 fs time

step for all dynamics calculations; for a

production run this may be increased for

the reasons given above.

Figure 4. The workflow of the KT G�oo model lesson. Blue boxes represent the steps
described in the text. Yellow boxes show the inputs and outputs of each step. Note that the
CHARMM protein structure file is only built when a calculation is performed (minimization, in this
case). Q is the fraction of native contacts as defined in the text.
doi:10.1371/journal.pcbi.1003738.g004
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Step 5: Perform Data Analysis
One of the most reliable metrics for

gauging whether a protein is in a folded or

unfolded state is the fraction of native

contacts that are present (Q—see above

for details). We have developed a native

contacts calculator for G�oo models in

CHARMMing, and as the final step of

the lesson, the user must use it to see how

the fraction changes. Because the simula-

tion is so short, native contacts are unlikely

to change much, if at all; however, this is

still a useful exercise since the same

analysis can be applied to production

simulations. The user is directed to visit

the ‘‘KT-Go Native Contacts’’ page. Once

he or she navigates to it, a table showing Q
every 50 steps is displayed immediately; in

the present version, no form needs to be

filled in and submitted. At this point, all

calculations for the lesson have been

completed, and the user should have

gained a very basic understanding of the

methods and results.

Discussion and Conclusion

CG models are widely used in the study

of biophysics because of their ability to

efficiently simulate biomolecules and qual-

itatively test hypotheses. The same attri-

butes that make them suitable as research

tools (their speed and their qualitative

nature) also make them suitable as an

education tool. While building and run-

ning CG models in simulation software

previously required the expertise of a

specialist in the field, this is no longer

true, as the CHARMMing web portal to

CHARMM now automates many of the

tasks required to build a G�oo model,

allowing this class of CG models to be

used in the classroom.

CG G�oo models and other reduced

lattice models also have tremendous

applications for research into the folding

of small globular proteins, as they can

correctly predict their thermodynamic

properties [37], qualitative folding path-

ways [42], and ensembles of partially

folded structures in the presence of

various denaturing agents such as heat

and chemicals [20]. The current work

allows for the automation of the tedious

process of parameter generation and

model building for G�oo models. Analo-

gous tools for AA simulation have proven

very valuable to the modeling community

[43].
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coarse-grained Gōmodels for protein folding and

dynamics. Int J Mol Sci 10: 889–905.

22. Linhananta A, Boer J, MacKay I (2005) The

equilibrium properties and folding kinetics of an
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