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Introduction
Cytomegalovirus (CMV) infection establishes latency within the host, thus ingraining a unique immunose-
nescent phenotype on the immune system (1). This includes expansion of  terminally differentiated T cells 
expressing CD57 and KLRG1 and lacking activation markers, including CD27 and CD28, and NK cells 
with an expanded profile of  CD57 and NKG2C type II integral membrane protein (CD159c, NKG2C) 
double positive. In Europe, seropositivity ranges between approximately 30% and 60% of  the adult popula-
tion (2). By contrast, 85% of  children in sub-Saharan Africa are infected by the time they are 1 year old (3, 
4), Globally, CMV seropositivity also increases with age (5).

Recently, the importance of  understanding the role of  CMV infection in vaccine immunogenicity has 
been highlighted in research conducted in both younger and older adults. In some studies, CMV seropositiv-
ity correlates with overall lower vaccine-specific T cell IFN-γ secretion and an increase in background levels 
of  inflammatory granzyme B, IL-6, or TNF (6–14). Other research demonstrates that humoral responses 
are also reduced in CMV-seropositive older adults vaccinated against influenza (10, 11, 15). Furthermore, 
NK cell functionality and cytotoxicity are reduced in some vaccinated individuals with CMV (16–19). In 
contrast, other research has shown increased humoral responses to influenza vaccination in adults with 
CMV (20–23) or no discernible correlation between CMV serostatus and vaccine response (8, 9, 24, 25).

Replication-deficient viral-vectored vaccines include chimpanzee adenovirus–vectored (ChAd-vectored) 
vaccines, e.g., ChAd developed by the University of  Oxford (ChAdOx1), ChAd serotype 3 (ChAd3), and 

Cytomegalovirus (CMV) is a globally ubiquitous pathogen with a seroprevalence of approximately 
50% in the United Kingdom. CMV infection induces expansion of immunosenescent T cell and NK 
cell populations, with these cells demonstrating lower responsiveness to activation and reduced 
functionality upon infection and vaccination. In this study, we found that CMV+ participants 
had normal T cell responses after a single-dose or homologous vaccination with the viral vector 
chimpanzee adenovirus developed by the University of Oxford (ChAdOx1). CMV seropositivity 
was associated with reduced induction of IFN-γ–secreting T cells in a ChAd-Modified Vaccinia 
Ankara (ChAd-MVA) viral vector vaccination trial. Analysis of participants receiving a single dose 
of ChAdOx1 demonstrated that T cells from CMV+ donors had a more terminally differentiated 
profile of CD57+PD1+CD4+ T cells and CD8+ T cells expressing less IL-2Rα (CD25) and fewer 
polyfunctional CD4+ T cells 14 days after vaccination. NK cells from CMV-seropositive individuals 
also had a reduced activation profile. Overall, our data suggest that although CMV infection 
enhances immunosenescence of T and NK populations, it does not affect antigen-specific T cell 
IFN-γ secretion or antibody IgG production after vaccination with the current ChAdOx1 nCoV-19 
vaccination regimen, which has important implications given the widespread use of this vaccine, 
particularly in low- and middle-income countries with high CMV seroprevalence.
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the poxvirus-derived vector Modified Vaccinia Ankara (MVA). Viral-vectored vaccines have been tested in 
clinical trials against multiple pathogens and have demonstrated significant cellular and humoral immu-
nogenicity of  the gene-insert product after a single vaccine dose (26–28) and when administered in prime-
boost regimens (29–34).

In this paper, we investigated the effect of  CMV infection on the immunogenicity of  single-dose and 
prime-boost ChAdOx1 and MVA viral vector vaccines across 3 clinical trials against outbreak or pan-
demic pathogens. There was no significant loss of  cellular cytotoxicity or antibody titers in single-dose 
or homologous prime-boost ChAdOx1 vaccination, which is of  importance considering the widespread 
use of  ChAdOx1 nCoV-19 in countries with high rates of  CMV seropositivity. However, antigen-specific 
T cell IFN-γ was lower following ChAdOx1-MVA prime-boost vaccination. Analysis of  the single-dose 
ChAdOx1 cohort revealed a reduced activation profile and more terminal differentiation in T cells and NK 
cells from CMV+ participants. Overall, these data demonstrate that T cell IFN-γ and antibody production 
following single-dose and homologous prime-boost ChAdOx1 vaccination is not affected by CMV serosta-
tus in young UK adults.

Results
Vaccine trials and CMV serotyping. This study includes an analysis of  a trial group receiving single-dose vacci-
nation with the SARS-CoV-2 vaccine ChAdOx1 nCoV-19 and a trial group receiving a homologous prime-
boost ChAdOx1 nCoV-19 vaccination regimen after 28 days. The ChAdOx1 nCoV-19 (AZD1222) vaccine 
encodes the spike glycoprotein from the original isolate of  SARS-CoV-2. Young adult participants (n = 44 
aged 18–55) received a single dose of  5 × 1010 viral particles (v.p.) ChAdOx1 nCoV-19 (group ChAdOx1 
S-D). A separate group of  27 participants (aged 18–55) received a homologous 5 × 1010 v.p. boost dose of  
ChAdOx1 nCoV-19 at an interval of  28 days (group ChAdOx1 P-B; Table 1).

We also analyzed 2 vaccine trials with heterologous viral vector vaccination for this study. Young adults 
(n = 16, aged 18–50) received a prime-boost regimen of  3.6 × 1010 v.p. ChAd3 Ebola virus-glycoprotein 
(EBOV-GP) and 1 × 108 PFU MVA EBOV-GP expressing the glycoprotein from the Zaire Ebola virus 
strain Mayinga (EBO-Z) administered at an interval of  7 days (group ChAd3-MVA) (31). The third trial 
included young adults aged 18–55 who were administered a prime-boost vaccination regimen of  2.5 × 
1010 v.p. ChAdOx1 and 2.5 × 108 PFU MVA expressing the nucleoprotein (NP) and matrix 1 (M1) fusion 
protein from influenza A (group ChAdOx1-MVA) administered at an interval of  8 weeks (group 1) or 52 
weeks (group 2; Table 1). All trials analyzed were conducted in the United Kingdom, and immunogenicity 
reports have been published previously (27, 29, 31, 35, 36).

Trial participants were screened for CMV using a commercially available anti-CMV IgG ELISA kit. 
The ChAdOx1 S-D group had a CMV seropositivity of  29.5% (13/44), and the ChAdOx1 P-B group had a 
seropositivity of  46.6% (20/49). In the ChAdOx1-MVA vaccine cohort, 26% (6/23) of  donors were CMV 
seropositive. Previous analysis of  the ChAd3-MVA cohort demonstrated seroprevalence of  cytomegalovi-
rus in 50% of  donors from the United Kingdom (8/16) (37).

Expansion of  terminally differentiated T cell populations with reduced activation in CMV-seropositive trial partici-
pants. We have previously shown within the heterologous ChAd3-MVA vaccine cohort that CMV-seropositive 
participants had a terminally differentiated T cell phenotype with an expanded population of  CD57+KLRG1+ 
T cells and reduced expression of  CD27 and CD28 (37). A cohort of  participants from the ChAdOx1 S-D  
group (n = 26, CMV seropositive = 6) and the ChAdOx1-MVA group (n = 19, CMV seropositive = 4) 
were selected for phenotyping by flow cytometry. We demonstrate here that CD4+ and CD8+ T cells from  
CMV-seropositive donors in both the ChAdOx1 S-D cohort and the ChAdOx1-MVA cohort have an 
expanded population expressing CD57 and KLRG1 at day 0 prevaccination (ChAdOx1 S-D, P < 0.0003; 
ChAdOx1-MVA, P < 0.048; Figure 1A). Within the CD45RA/CCR7 T cell memory compartment of  the 
ChAdOx1 S-D cohort, CD8+ T cells from CMV-seropositive donors had an expanded CD45RA+CCR7– 
effector memory RA T cell (TEMRA) population (P = 0.038, day 0), although this was not observed in the 
ChAdOx1-MVA cohort (Figure 1B). An expansion of  terminally differentiated memory T cells is consistent 
with our previous report describing a higher frequency of  CD8+CD45RA+ TEMRA cells in CMV-seropositive 
participants from the ChAd3-MVA trial cohort (37). We also observed significantly more CD57+PD1+CD4+ 
T cells in CMV-seropositive participants in both trials at day 0 (ChAdOx1 S-D, P < 0.0001; ChAdOx1-MVA, 
P = 0.0196; Figure 1C) and CD8+ T cells with reduced expression of  CD25 across measured time points 
(ChAdOx1 S-D, day 28, P = 0.035; pooled ChAdOx1 S-D and ChAdOx1-MVA, day 0, P = 0.04; Figure 1D).
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CMV infection reduces T cell immunogenicity following heterologous prime-boost vaccination. We have previous-
ly demonstrated that CMV infection is associated with significantly reduced antigen-specific IgG titers and 
T cell IFN-γ production after ChAd3-MVA vaccination (37). We investigated how a CMV-correlated reduc-
tion in cellular and humoral immunogenicity is affected by alternative prime-boost viral vector vaccination 
regimens. When stratified by CMV serostatus, there was no significant difference in total T cell IFN-γ when 
measured by ELISPOT in the ChAdOx1 S-D or ChAdOx1 P-B cohorts following vaccination (Figure 2A). 
Similarly after either ChAdOx1 S-D or ChAdOx1 P-B regimens, analysis of  total IgG antibody titers by 
ELISA assay did not demonstrate any reduction associated with CMV infection when measured up to day 
56 following vaccination (Figure 2B). The T cell ELISPOT and IgG ELISA response were stratified by sex 
of  participant. Within the ChAdOx1 S-D and ChAdOx1 P-B groups, there was no significant difference in 
the immune response between sexes. Furthermore, there was no significant difference between participant 
sex and immune response when further stratified by CMV serostatus. Within the ChAdOx1-MVA group, 
there was an overall significant difference when analyzed using mixed effects analysis on the sex of  partici-
pants and the ELISPOT response (P = 0.044). When stratified further by sex and CMV serostatus, we saw 
a similar trend toward the loss of  T cell ELISPOT responses in CMV-seropositive donors. This response 
was principally seen in men; however, the group sizes were too small for the difference to reach statistical 
significance (Supplemental Figure 2; supplemental material available online with this article; https://doi.
org/10.1172/jci.insight.154187DS1). However, within the ChAdOx1 S-D cohort, intracellular cytokine 
analysis of  T cell polyfunctionality demonstrated a significant decrease in the frequency of  CD4+ T cells 
expressing either 4 or 2 markers of  activation (among the 5 markers of  CD25, IFN-γ, TNF, CD107a, and 
IL-2) at day 14 after vaccination in CMV+ donors (4 markers, P = 0.026; 2 markers, P = 0.035; Figure 2C). 
Within the CD8+CD57+KLRG1+ population, there was no difference in the frequency of  total cytokine+ T 
cells following vaccination between CMV serostatus from day 0 to day 28. This was also replicated follow-
ing ChAdOx1 vaccination in the ChAdOx1-MVA vaccine cohort (Figure 2D).

We also analyzed T cell IFN-γ ELISPOT data from the ChAdOx1-MVA vaccine cohort. These data were 
stratified for CMV serostatus and groups 1 and 2 were pooled into “postprime” and “postboost” time points. 
Group 1 received the MVA boost dose at 8 weeks and group 2 at 52 weeks after the boost. Previous analysis 
shows no significant difference in the T cell IFN-γ response between these 2 groups (29). Although the number 
of CMV-seropositive donors was low within these groups, analysis of T cell IFN-γ ELISPOT data with regard 
to CMV serostatus demonstrated a significant association between CMV serostatus and the overall magnitude 
of the antigen-specific T cell response across time (P = 0.0038 time × CMV, fixed effects analysis; Figure 2E). 
This was also replicated by fold change analysis of ELISPOT response in comparison to day 0 (Figure 2F).

NK cells have distinct terminally differentiated populations with reduced activation in CMV+ participants. CMV infec-
tion has an established impact on the phenotype of NK cells with expansion of a CD57+NKG2C+ population 
(38). This was identified in the ChAdOx1 S-D, ChAdOx1-MVA, and ChAd3-MVA vaccination regimens at day 
0 (ChAdOx1 S-D, P = 0.0003; ChAdOx1-MVA, P = 0.06; ChAd3-MVA, P = 0.0006; Figure 3A). Further anal-
ysis of the ChAdOx1 S-D cohort identified NK cells with a significantly lower expression of CD69 in CMV+ 

Table 1. Trial groups, vaccination regimen, and CMV serostatus data

Group ChAdOx1 S-D ChAdOx1 P-B ChAd3-MVA ChAdOx1-MVA
Trial COV001 group 1 COV002 group 5d EBL04 group 2 FLU005 group 1 FLU005 group 2
n 44 49 16 12 11
Prime vaccine ChAdOx1 ChAdOx1 ChAd3 ChAdOx1 ChAdOx1
Prime dose 5.0 × 1010 i.u. 5.0 × 1010 i.u. 3.6 × 1010 v.p. 2.50 × 1010 v.p. 2.5 × 1010 v.p.
Boost vaccine N/A ChAdOx1 MVA MVA MVA
Boost dose N/A 5.0 × 1010 i.u. 1.0 × 108 PFU 1.5 × 108 PFU 1.5 × 108 PFU
Boost date N/A 28 days 7 days 8 weeks 52 weeks
Antigen SARS-CoV-2 spike 

glycoprotein
SARS-CoV-2 spike 

glycoprotein
Ebola virus 

glycoprotein
Influenza A NP and M1 Influenza A NP and M1

CMV+ (n) 13 20 8 4 2
Average age (range) CMV– 33.5 (18–54) 38 (19–55) 33 (21–50) 23.5 (21–26) 24.5 (19–38)
Average age (range) CMV+ 32.5 (22–51) 40 (21–55) 33 (21–50) 32 (22–46) 30.5 (22–39)

https://doi.org/10.1172/jci.insight.154187
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participants at day 7 after vaccination (P = 0.0011; Figure 3B). Within the ChAdOx1 S-D group, there was no 
significant reduction in CD25 expression across the total NK cell population; however, there was a significant 
reduction of CD25 expression within the most mature CD57+ NK cell population, which is increased in fre-
quency with CMV seropositivity (39) (days 14 and 28, P < 0.03; Figure 3C). t-Distributed stochastic neighbor 
embedding (t-SNE) analysis was conducted on unstimulated NK cells from the ChAdOx1 S-D cohort across 
all 4 time points and highlighted regions of phenotypically immature, activated, and proliferating (Ki-67+, 
CD25+ CD56++, and CD107a+) NK cells, which were distinct from terminally differentiated CMV-associated 
CD57+NKG2C+ populations. There was also a separate region of CD69+KLRG1+ NK cells (Figure 3D).

Figure 1. T cell phenotype of trial participants when stratified by CMV serostatus. (A) CD57+KLRG1+ CD4+ and CD8+ T cells in CMV+ and CMV– donors from 
ChAdOx1 S-D and ChAdOx1-MVA trial cohorts. (B) CD45RA/CCR7 memory profile of CD8+ T cells. (C) CD4+CD57+PD1+ T cells in CMV+ and CMV– individuals. 
(D) CD25 expression on CD8+ T cells stratified by CMV serostatus and pooled day 0 CD8+CD25+ T cells. ChAdOx1 S-D: n = 20 CMV seronegative, n = 6 CMV 
seropositive. ChAdOx1-MVA: n = 15 CMV seronegative, n = 4 CMV seropositive. Open circles = CMV seronegative, closed circles = CMV seropositive. Statistics 
conducted using Mann-Whitney U test and mixed effects analysis with Holm-Šidák multiple comparisons. *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 
0.0001. Error bars shown as median ± IQR.
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Figure 2. T cell functionality in prime and prime-boost vaccine regimens when stratified by CMV serostatus. (A) 
T cell IFN-γ production from groups 1 and 2 of the ChAdOx1-MVA P-B vaccine regimen measured by ELISPOT and 
stratified for CMV serostatus. (B) tIgG from ChAdOx1 S-D and ChAdOx1 P-B trial participants. (C) Polyfunctionality 
of CD4+ T cells from ChAdOx1 S-D participants at day 14 postvaccination, measuring expression of CD25, CD107a, 
IFN-γ, IL-2, and TNF. (D) ChAdOx1 S-D cohort and ChAdOx1-MVA cohort: percentage of cytokine+ T cells within 
the CD8+CD57+KLRG1+ population following vaccination. (E) T cell IFN-γ production from groups 1 and 2 of the 
ChAdOx1-MVA P-B vaccine regimen measured by ELISPOT. (F) Fold change of ELISPOT response compared with 
day 0 from pooled groups 1 and 2 of the ChAdOx2-MVA P-B vaccine regimen and fold change of ELISPOT IFN-γ 
production when compared with day 0, both stratified for CMV serostatus. ChAdOx1 S-D: n = 31 CMV seronegative, 
n = 13 CMV seropositive. ChAdOx1 P-B: n = 28 CMV seronegative, n = 20 CMV seropositive. ChAdOx1-MVA: n = 15 
CMV seronegative, n = 4 CMV seropositive. Open circles = CMV seronegative, closed circles = CMV seropositive. 
Statistics conducted using mixed effects analysis with Holm-Šidák multiple comparisons. *P < 0.05, **P < 0.01. 
Error bars presented as median ± IQR. SFU, spot-forming units (per million cells).
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Total NK cells and NKG2C+ NK cells from CMV+ trial participants have lower activation and cytokine production 
after vaccination. Within the ChAdOx1 S-D cohort, there was no change in the expression of  NK cell IFN-γ 
or TNF between days 0, 7, 14, and 28 with regard to CMV serostatus following stimulation of  PBMCs 
with SARS-CoV-2 peptides. However, there was a significant increase in CD107a expression between day 
7 and day 28 in the CMV-seronegative, but not the CMV-seropositive, cohort (P = 0.029; Figure 4A). There 
was no change in the polyfunctionality of  NK cells following peptide stimulation when stratified by CMV 
serostatus (Supplemental Figure 3A).

Within the ChAdOx1 S-D group, we plotted correlations of  NK cell CD25 expression and prolifera-
tion (Ki-67) to investigate whether loss of  NK cell activation may be associated with the downregulation 
of  other markers of  activation; for example, antigen-specific CD4+ IL-2 has previously been demonstrated 
to activate NK cells (40, 41). There was some correlation within the CMV-seronegative cohort between 
antigen-specific CD4+ T cell IL-2 secretion and CD25 expression (goodness of  fit R2 = 0.52, P = 0.0003) or 
Ki-67 expression at 14 days after vaccination (goodness of  fit R2 = 0.43, P = 0.0024), but this was nonsignif-
icant in the CMV+ cohort (CD25 R2 = 0.035, P = 0.72; Ki-67 R2 = 0.16, P = 0.39) (Figure 4B).

Although the pooled group 1 and group 2 ChAdOx1-MVA cohorts had a smaller sample size, a similar 
NK cell response to peptide stimulation was seen within the total NK cell population. There was no change 
in the expression of  IFN-γ or TNF after vaccination when associated with CMV serostatus. Unlike the 
ChAdOx1 S-D cohort, only CMV-seropositive participants had an increase in CD107a expression at day 
14 following ChAdOx1 vaccination (P = 0.0072), and there was a positive association between CMV infec-
tion and NK cell CD107a expression after ChAdOx1 vaccination (fixed effects analysis, P = 0.015 when 
accounting for time point and CMV serostatus; Figure 4C).

In contrast, in the ChAd3-MVA trial group, there was no significant difference between IFN-γ, gran-
zyme B, or CD107a expression within the overall NK cell population between CMV serostatus at day 7 
after the MVA boost (Supplemental Figure 3B). However, the NKG2C+ NK cell population of  CMV-sero-
positive donors exhibited a differential response to peptide stimulation, producing significantly less IFN-γ 
(P = 0.015), a trend toward less granzyme B (P = 0.12), and significantly more CD107a than CMV-seroneg-
ative donors (P = 0.0044; Figure 4D).

Discussion
It is essential that vaccines developed against pandemic pathogens provide protection to populations 
across the globe. Previous research has demonstrated that CMV infection impairs vaccine immunogenicity 
through a reduction in antigen-specific IgG and T cell IFN-γ induced by influenza and Ebola virus vaccines 
(6, 10, 37). This effect is especially prevalent in some vaccines trialed in sub-Saharan Africa, where CMV 
seropositivity is detectable in virtually all participating adults (42) and in nearly 90% of  infants (4).

In this paper, we describe the phenotype and functionality of  T cells and NK cells following single-dose 
and heterologous prime-boost viral vector vaccination in participants with and without CMV. CMV-se-
ropositive participants had an expanded CD57+KLRG1+ and CD45RA+ TEMRA profile, and we further 
demonstrated that CD8+ T cells from CMV-seropositive participants had lower expression of  the activation 
marker CD25 (IL-2Rα) and expanded populations of  differentiated PD1+CD57+CD4+ T cells. These new 
profiles further support the evidence that CMV drives an immunosenescent phenotype with reduced activa-
tion, but in this study does not affect the antigen-specific T cell effector function or antibody secretion after 
single-dose ChAdOx1 vaccination.

The T cell immunogenicity following vaccination with either single-dose or homologous-boost ChA-
dOx1 was not reduced in CMV-seropositive individuals when measured by T cell IFN-γ ELISPOT. This 
is encouraging for the immunogenicity of  ChAdOx1-vectored vaccines in areas of  high CMV burden. 
However, in the ChAdOx1 S-D cohort, there was a significant reduction in the polyfunctionality of  CD4+ 
T cells in CMV-seropositive individuals at day 14. Although the sample size for the heterologous ChA-
dOx1-prime MVA-boost was small, there was a trend toward fewer antigen-specific IFN-γ–secreting Τ 
cells from CMV-seropositive donor T cells compared with CMV-seronegative donors. This corroborates 
post-MVA vaccination data from the ChAd3-MVA vaccine trial (37) and suggests that heterologous 
viral-vectored vaccine regimens that include MVA may drive the association of  lower vaccine immuno-
genicity with CMV serostatus. One hypothesis for why CMV serostatus affects the heterologous prime-
boost ChAd-MVA vaccination is that MVA can induce apoptosis in immune cell populations including 
dendritic cells (DCs), macrophages, and NK cells (43, 44). Apoptosis of  MVA-infected DCs has been 
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shown to enhance antigen cross-presentation to CD8+ T cells via uninfected DCs and secretion of  Th1-po-
larizing cytokines (43, 44). Potentially, CMV-seropositive donors do not elicit as robust a response due 
to CMV-mediated downregulation of  antigen presentation to CD4+ T cells during latent infection (45, 
46). This, combined with expanded CMV-specific T cell populations and terminally differentiated T cells 
that are less responsive to stimulation, may contribute to a loss of  antigen-specific vaccine response in 
CMV-seropositive participants following MVA vaccination. Unlike the ChAd3-MVA trial, we did not 
see reduced antigen-specific IgG titers with CMV seropositivity in the ChAdOx1 S-D, ChAdOx1 P-B, or 
ChAdOx1-MVA vaccine cohorts. This suggests that vaccine immunogenicity in low- to middle-income 
countries, where CMV seropositivity is high, will be equal to immunogenicity in UK trials.

Figure 3. NK cell phenotype with CMV serostatus. (A) CD57+NKG2C+ NK cell frequency with CMV serostatus. (B) CD69 expression on NK cells stratified by 
CMV serostatus. (C) Frequency of CD25+ NK cells and CD57+CD25+ NK cells. (D) t-SNE analysis conducted on 26 ChAdOx1 cohort samples across 4 time points 
(day 0, day 7, day 14, and day 28). t-SNE plot was created by downsampling and concatenation of 25,000 randomly selected NK cells from each time point 
and sample. ChAdOx1 S-D: n = 20 CMV seronegative, n = 6 CMV seropositive. ChAdOx1-MVA: n = 15 CMV seronegative, n = 4 CMV seropositive. ChAd3-MVA:  
n = 8 CMV seronegative, n = 8 CMV seropositive. Open circles = CMV seronegative, closed circles = CMV seropositive. Statistics conducted using Mann-Whitney 
U test and mixed effects analysis with Holm-Šidák multiple comparisons. *P < 0.05, **P < 0.01, ***P < 0.005. Error bars presented as median ± IQR.
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The NK cell response to vaccination was more heterogeneous than the T cell response. Within the 
CMV-seropositive donors, we identified a marked reduction of  total CD69 expression and CD25 (IL-2Rα) 
expression on CD57+ NK cells. Other research has previously demonstrated that CD57+ NK cells are 
expanded during CMV infection and that CD57+ NK cells have epigenetic modulation of  the IFNG locus 
(47) and reduced expression of  cytokine receptors for IL-2, IL-12, IL-15, and IL-18 (48, 49).

Figure 4. Changes in NK cell cytotoxicity profile with CMV positivity. PBMCs from trial participants stimulated with relevant antigen peptides and stained for 
cytokine production and cytotoxicity. (A) NK cell cytotoxicity and cytokine production (IFN-γ, TNF, and CD107a) from the ChAdOx1 S-D cohort participants. (B) 
Correlation of antigen-specific CD4+ IL-2 secretion and NK cell activation (CD25) and proliferation (Ki-67) at day 14 after vaccination stratified by CMV serostatus. 
(C) NK cell cytotoxicity and cytokine production (IFN-γ, TNF, and CD107a) from ChAdOx1-MVA group 1+2 participants. (D) ChAd3-MVA participant NKG2C+ NK cell 
cytotoxicity and cytokine production (IFN-γ, granzyme B, and CD107a). ChAdOx1 S-D: n = 20 CMV seronegative, n = 6 CMV seropositive. ChAdOx1-MVA: n = 15 CMV 
seronegative, n = 4 CMV seropositive. ChAd3-MVA: n = 8 CMV seronegative, n = 8 CMV seropositive. Open circles = CMV seronegative, closed circles = CMV sero-
positive. Statistics conducted using Mann-Whitney U test, linear regression, and mixed effects analysis with Holm-Šidák multiple comparisons. *P < 0.05, **P < 
0.01. Error bars shown as median ± IQR.

https://doi.org/10.1172/jci.insight.154187


9

R E S E A R C H  A R T I C L E

JCI Insight 2022;7(6):e154187  https://doi.org/10.1172/jci.insight.154187

NK cell activation following vaccination and infection can be modulated by antigen-specific CD4+ 
T cell IL-2 secretion (17, 40, 50, 51). We demonstrate a positive correlation between CD4+ T cell IL-2 
secretion and total NK cell activation and proliferation, measured by CD25 and Ki-67, respectively, in 
ChAdOx1 S-D CMV-seronegative participants but not in CMV-seropositive participants. Loss of  NK cell 
cytotoxicity to pertussis vaccination has previously been demonstrated to correlate with increased frequen-
cy of  CD57+ NK cells (48); thus, expansion of  the CD57+ NK cell population in CMV-seropositive donors 
may affect total NK cell activation to IL-2 secretion. However, further studies are needed to demonstrate if  
this phenomenon underpins the observations measured here.

NK cell cytokine secretion varied between vaccine cohorts. In the ChAdOx1 S-D cohort, we observed 
more CD107a expression in the CMV-seronegative participants following vaccination; however, in the ChA-
dOx1-MVA and ChAd3-MVA cohorts, CMV-seropositive individuals expressed more CD107a after vaccina-
tion. Previous studies have found either no effect of  CMV infection on NK cell CD107a expression (18, 52) 
or reduced expression with CMV seropositivity (19). Increased expression of  CD107a in our cohorts may be 
due to a proportional increase in CD57+ NK cells in CMV+ participants, which are less reactive to activation 
by cytokines and cytokine secretion but are still able to degranulate following stimulation (48). NK cells from 
CMV-seropositive donors may also exert a regulatory function on T cells through increased degranulation and 
IL-10 secretion, as previously demonstrated during murine CMV infection (53, 54). It is currently unknown 
whether these phenotypic and functional differences in NK cells have an impact on overall vaccine efficacy.

This study was limited to healthy UK adults aged 18–55 who were enrolled in clinical vaccine trials 
through the University of  Oxford. Analysis was conducted on vaccines with different antigen inserts due 
to sample availability and ongoing clinical trials. Therefore, we cannot rule out a potential effect of  the 
encoded vaccine antigen that may confound these data. The average age of  ChAdOx1 S-D, ChAdOx1 P-B, 
ChAdOx1-MVA, and ChAd3-MVA volunteers was 33 (range: 18–54), 39 (range: 19–55), 25 (range: 19–46), 
and 33 years (range: 21–50), respectively, thus limiting the possibility of  stratifying by age across trials. Due 
to the opportunistic nature of  sample collection, CMV serotyping was also conducted retrospectively after 
analysis, preventing even distribution of  CMV serostatus and cohort size and limiting sample size to the 
recruitment of  the trial group.

We have now demonstrated across 3 viral-vector vaccine trials against different pathogens that CMV 
contributes toward an immunosenescent change in T cell and NK cell phenotype and a reduction in 
effector function by cytotoxic leukocytes in healthy UK adults. However, these data suggest that the 
negative correlation between CMV IgG titers and vaccine immunogenicity may be less prevalent in sin-
gle-dose or homologous-boost ChAdOx1 vaccine regimens in UK adults and exacerbated following het-
erologous vaccination with MVA. Additional investigation will be required in other demographics with 
a higher burden of  CMV and endemic pathogens to further elucidate the interaction of  CMV infection 
and vaccination. Although we cannot determine if  CMV infection affects vaccine efficacy from these 
data, we would speculate that efficacy will not be affected following single-dose or homologous-boost 
ChAdOx1 vaccination as the overall humoral and cellular responses do not differ between CMV+ and 
CMV– cohorts. These results, therefore, are encouraging for ongoing global vaccination efforts and indi-
cate that homologous boosting with ChAdOx1 as used in the vaccine regimen may not be significantly 
affected by CMV-driven loss of  immunogenicity.

Methods

Clinical trials
ChAd3-MVA (EBL04). The EBL04 clinical trial (NCT02485912) was a phase Ia trial conducted in Oxford, 
United Kingdom, in healthy adults aged 18–50 years old. This trial used the replication-deficient ChAd3 
encoding the glycoprotein from EBO-Z administered at a dose of  1 × 108 PFU and the replication of  defi-
cient MVA-expressing EBO-Z glycoprotein at a dose of  1.5 × 108 PFU (31). Group 2 (n = 16, n = 8 CMV+ 
and n = 8 CMV–) included in this manuscript had a prime-boost regimen with an interval of  1 week. All 
clinically available data were included, and demographic data can be found in the original publication (31).

ChAdOx1-MVA (FLU005). The FLU005 clinical trial (NCT01818362) was a phase I trial conducted in 
Oxford, United Kingdom, in healthy adults aged 18–50 using used replication-deficient ChAdOx1 encoding 
the NP and M1 as a fused protein from influenza A H3N2/A/Panama/2007/99 at a dose of 2.5 × 1010 v.p. and 
MVA encoding NP+M1 at a dose of 1.5 × 108 PFU (29). Groups 1 and 2 (n = 19, n = 15 CMV–, n = 4 CMV+) 
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included in this manuscript had a prime-boost interval of 8 weeks and 52 weeks, respectively. All clinically avail-
able data were included, and demographic data can be found in the original publication (29).

ChAdOx1/ChAdOx1 P-B (COV001/COV002). The COV001 phase I clinical trial (NCT04324606) was 
conducted in Oxford, United Kingdom, in healthy adult volunteers aged 18–55 (group 1, n = 44, n = 31 
CMV–, n = 13 CMV+). Volunteers were vaccinated with 1 dose of  ChAdOx1 encoding the spike glycopro-
tein from SARS-CoV-2 (nCoV-19) at a dose of  5 × 1010 v.p.

The COV002 clinical trial (NCT04400838) was conducted on healthy UK volunteers aged 18–55 
(group 5d, n = 27, n = 14 CMV+, n = 13 CMV–) who were administered 2 doses of  ChAdOx1 nCoV-19 at 
a dose of  5 × 1010 v.p. and an interval of  28 days. Control group vaccine participants (none included in this 
analysis) were administered the MenACWY vaccine (35, 36, 55, 56). Cytometry analysis conducted on 
group 1 participants: n = 26 (n = 20 CMV–, n = 6 CMV+). All clinically available data were included, and 
demographic data can be found in the original publications (35, 36, 55, 56).

T cell ELISPOT and total IgG ELISA
T cell IFN-γ ELISPOT responses were assessed ex vivo using fresh PBMC as previously described for each 
clinical trial (29, 31, 35). Total antigen-specific IgG ELISA responses were calculated from standardized 
ELISA assays developed for each trial (31, 35, 36).

CMV serotyping
CMV seroprevalence was assessed in day 0 samples from clinical trial plasma. Anti-CMV IgG ELISA kits 
were used following manufacturer’s instructions (Abcam, ab108724). Briefly, serum was diluted 1:100 in 
dilution buffer, and 100 μL was plated in duplicate on ELISA plates coated with CMV antigens. Positive, 
negative, and cutoff  controls were also included. Plates were incubated at 37°C for 1 hour in the dark and 
then washed 3 times with 300 μL wash buffer. Wells were then incubated in the dark at room temperature 
with 100 μL CMV anti-IgG HRP conjugate from the kit for 30 minutes. Plates were developed with 100 μL 
TMB substrate solution for 15 minutes in the dark. The reaction was stopped with the addition of  100 μL 
stop solution. Plates were read at 405 nm within half  an hour of  development. Standardized ELISA units 
were calculated as (OD value × 10)/cutoff  value.
PBMC defrosting and stimulation
Vials with 1 mL of  PBMCs from vaccine trial donors were selected from –180°C or liquid nitrogen storage. 
Cells were kept on dry ice until defrosting. Vials were defrosted in 37°C water bath and transferred into 
9 mL prewarmed complete RPMI medium (Gibco) supplemented with FCS (Gibco), l-glutamine, and 
penicillin/streptomycin (R10) with 2 U/mL Benzonase (all from MilliporeSigma) and incubated for up to 
2 hours. Cells were then centrifuged at 400g at room temperature for 5 minutes and resuspended in 10 mL 
of  fresh R10. Cells were counted using trypan blue or a Casy counter and resuspended in a concentration 
of  2 × 107 cells/mL.

Then, 1 × 106 to 2 × 106 PBMCs per well were plated in a 96-well plate and stimulated with a final con-
centration of 1–2 μg/mL synthetic peptides. A total of 100 μL media was used as a negative control, and 0.1 
μL/well PMA-ionomycin was used as a positive control. For T cell analysis, PBMCs were costimulated in the 
presence of 0.2 μL/well anti-CD28 and anti-CD49d (Life Technologies). For T cell and NK cell analysis, cells 
were also incubated with anti-CD107a (Supplemental Table 1). Cells were incubated for 2 hours at 37°C, then 
incubated for a further 16 hours following the addition of 0.1 μL/well Brefeldin A and Monensin (BioLegend).

Flow cytometry
The panel and method for lymphocyte staining on the Cytek Aurora cytometer have been previously pub-
lished (27). Briefly, PBMCs were centrifuged at 400g for 3 minutes, supernatant was discarded, and cells 
were resuspended and washed in 200 μL FACS buffer (Gibco, Dulbecco’s PBS + 5% BSA). After removal 
of  supernatant, cells were resuspended in 100 μL of  surface cocktail antibody stain (Supplemental Table 1) 
and incubated in the dark for 30 minutes at 4°C. A total of  100 μL FACS buffer was added, and cells were 
washed twice by centrifugation at 400g for 5 minutes at room temperature and by discarding supernatant. 
For intracellular staining, PBMCs were incubated in CytoFix/CytoPerm solution (BD Biosciences) for 30 
minutes in the dark at 4°C. Cells were washed twice in 100–200 μL Perm/Wash buffer and incubated for 
30 minutes in the dark at 4°C in 100 μL of  intracellular antibody cocktail (Supplemental Table 1). Cells 
were then washed twice in Perm/Wash and once in FACS buffer and resuspended in 100–200 μL FACS 
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buffer for acquisition on the BD LSRFortessa using FACSDiva (BD Biosciences) or Cytek Aurora using 
SpectraFlo (Cytek Biosciences). Single-fluorochrome compensation was calculated from single-stained 
beads (BD Biosciences) or human PBMCs. Data analysis was conducted by hierarchical gating in FlowJo 
v10.7.1 and Prism 8 (GraphPad) (Supplemental Figure 1). Peptide-specific responses were calculated by 
subtracting unstimulated sample data from stimulated sample data.

Statistics
Normality testing of data was conducted using the Shapiro-Wilk test or the D’Agostino-Pearson test. For 
non-normally distributed data or small sample groups, analysis on single time point data was conducted using 
the Mann-Whitney U test. Across multiple time points, mixed effects analysis with Holm-Šidák multiple com-
parisons was used. All data analysis was conducted in GraphPad Prism v8. P values, where appropriate, are giv-
en within the text and figure legends. Data are presented as median ± IQR. Statistical significance was defined as 
*P < 0.05, **P < 0.01, ***P < 0.005, and ****P < 0.0001. A P value of less than 0.05 was considered significant.

The t-SNE plot analysis was conducted by downsampling in FlowJo v 10.7.1. A random sample of  
25,000 live NK cells were collected per donor and time point and concatenated into a single file. Relevant 
NK cell markers (CD56, CD57, CD16, NKG2C, CD107a, Ki-67, CD27), time point, and CMV serostatus 
were included as parameters. The t-SNE analysis was implemented with 1000 iterations and a perplexity of  
30 using the Barnes-Hut gradient algorithm.

Study approval
Participants provided written informed consent before inclusion in these trials. Trials were conducted 
according to the principles of  the Declaration of  Helsinki. The EBL04 clinical trial (ClinicalTrials.gov: 
NCT02485912) was reviewed and approved by the UK National Research Ethics Service (committee 
South Central — Oxford A, ref: 15/SC/0108) and the Medicines and Healthcare Products Regulatory 
Agency (ref: 21584/0341/001-0001). The COV001 clinical trial (ClinicalTrials.gov: NCT04324606) was 
approved in the United Kingdom by the Medicines and Healthcare Products Regulatory Agency (ref: 
21584/0424/001-0001) and the South Central Berkshire Research Ethics Committee (ref: 20/SC/0145). 
The COV002 clinical trial (ClinicalTrials.gov: NCT04400838) was approved in the United Kingdom by 
the Medicines and Healthcare Products Regulatory Agency (ref: 21584/0428/001-0001) and the South 
Central Berkshire Research Ethics Committee (ref: 20/SC/0179).
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