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Network-based genetic 
investigation of virulence-
associated phenotypes in 
methicillin-resistant Staphylococcus 
aureus
Chan Yeong Kim1, Muyoung Lee1, Keehoon Lee2, Sang Sun Yoon2 & Insuk Lee1

Staphylococcus aureus is a gram-positive bacterium that causes a wide range of infections. Recently, 
the spread of methicillin-resistant S. aureus (MRSA) strains has seriously reduced antibiotic treatment 
options. Anti-virulence strategies, the objective of which is to target the virulence instead of the 
viability of the pathogen, have become widely accepted as a means of avoiding the emergence of new 
antibiotic-resistant strains. To increase the number of anti-virulence therapeutic options, it is necessary 
to identify as many novel virulence-associated genes as possible in MRSA. Co-functional networks have 
proved useful for mapping gene-to-phenotype associations in various organisms. Herein, we present 
StaphNet (www.inetbio.org/staphnet), a genome-scale co-functional network for an MRSA strain,  
S. aureus subsp. USA300_FPR3757. StaphNet, which was constructed by the integration of seven 
distinct types of genomics data within a Bayesian statistics framework, covers approximately 94% 
of the coding genome with a high degree of accuracy. We implemented a companion web server for 
network-based gene prioritization of the phenotypes of 31 different S. aureus strains. We demonstrated 
that StaphNet can effectively identify genes for virulence-associated phenotypes in MRSA. These 
results suggest that StaphNet can facilitate target discovery for the development of anti-virulence 
drugs to treat MRSA infection.

Staphylococcus aureus is an opportunistic human pathogen that can cause disorders ranging from minor skin 
infections to life-threatening invasive diseases1–4. In particular, its ability to develop resistance to antibiotic treat-
ments makes this bacterium a global medical concern5. To counteract antibiotic-resistant S. aureus, researchers 
have developed new antibiotics, and physicians administer high doses of multiple antibiotics. These approaches 
work in the short term, but eventually lead to the emergence of new antibiotic-resistant strains.

Recently, there has been wide acceptance of anti-virulence strategies for dealing with antibiotic-resistant bac-
teria6–8. By attenuating the virulence of bacteria, this strategy impedes disease progression in the host and buys 
the immune system sufficient time to fight the pathogen. At the same time, this strategy reduces the selective 
pressure experienced by the bacteria, thereby slowing the emergence of new antibiotic-resistant strains9. S. aureus 
has a wide variety of virulence factors such as host cell-destroying toxins10, and the ability to form biofilms11. The 
identification of virulence factors is necessary for the development of effective anti-virulence strategies against 
bacterial pathogens.

The more virulence genes are identified, the more opportunities there are for the development of therapeu-
tics. For example, according to the Virulence Factor Database (VFDB)12, as of August 2017, the major MRSA 
strain S. aureus subsp. USA300_FPR3757 has approximately 2,700 coding genes, 78 of which are responsible for 
virulence-associated phenotypes. This suggests that many more virulence genes remain to be discovered, and the 
efficient identification of such genes could facilitate the development of anti-virulence drugs. Network-based gene 
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prioritization for disease research has increased in popularity13, and co-functional networks of various organisms 
including hosts and pathogens can be constructed using a Bayesian statistics approach14. We previously con-
structed a co-functional network for the opportunistic fungal pathogen Cryptococcus neoformans, and demon-
strated its usefulness for identifying novel genes involved in fungal pathogenicity and drug resistance15.

To apply a similar network-based approach to identifying virulence genes in S. aureus, we constructed 
StaphNet, a genome-scale co-functional network for S. aureus subsp. aureus USA300_FPR3757, which is a pre-
dominantly community-acquired, methicillin-resistant (CA-MRSA) S. aureus strain found in the United States16. 
We mapped co-functional associations among USA300 genes from seven distinct types of genomic data, and 
integrated them using a Bayesian statistics framework into StaphNet, which contains 60,513 links and 2,674 genes 
(~94% of the coding genome). StaphNet proved to be highly accurate and network hubs tend to be essential genes 
or drug target genes. StaphNet effectively reconstructed various pathways involved in S. aureus virulence, and 
experimentally validated novel genes predicted for hemolysis and biofilm formation.

Results
Construction and assessment of StaphNet.  The construction of StaphNet is described in detail in the 
Methods section and is summarized in Fig. 1A. Briefly, we first constructed the seven component networks from 
diverse genomic data sources that implicated co-functional links between genes: co-expression between S. aureus 
genes (SA-CX) in RNA-seq and microarray data (Table 1); high-throughput protein complex pull-down assay data 
in S. aureus (SA-HT)17, gene neighborhood (SA-GN)18 and similarity of phylogenetic profiles (SA-PG)19 across 
reference genomes; similarity of domain profiles (SA-DP)20, orthologous functional associations transferred from 

Figure 1.  Construction and assessment of StaphNet. (A) Schematic overview of the process used to construct 
StaphNet. The functional associations were inferred from the seven distinct data types and integrated into 
StaphNet. (B) Methicillin-resistant Staphylococcus aureus (MRSA) and its component networks were assessed 
against UniProt-GO annotation. The graph represents the precision and its corresponding gene coverage for 
every 1,000 links. (C) The violin plots represent the distribution of betweenness centrality (left) and degree 
centrality (right) for each gene set. P-values were calculated using the Mann–Whitney U test.
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Escherichia coli gene co-expression (EC-CX); and E. coli high-throughput protein–protein interaction (EC-HT) 
networks21 (Table 2). We benchmarked and trained the seven component networks using gold-standard gene 
pairs compiled from the Kyoto Encyclopedia of Genes and Genomes (KEGG)22 and MetaCyc23 pathways. We 
then unified the intrinsic data scores using the log-likelihood score (LLS) scheme based on Bayesian statistics24. 
All these networks were then integrated into StaphNet using the weighted sum method24. The final network 
contains 60,513 co-functional links among 2,674 genes of S. aureus subsp. USA300_FPR3757, and covers 94% of 
the coding genome. To assess the accuracy of the network, we compiled validation gene pairs from UniProt-GO 
annotations25, and measured the proportion of gene pairs for the same GO terms. We found that the integrated 
network outperformed all the component networks (Fig. 1B), indicating the effectiveness of data integration in 
network construction.

To test the hypothesis that gene network hubs tend to comprise essential genes26, we investigated the distri-
bution of degree centrality and betweenness centrality of the genes for viability and drug targeting in StaphNet. 
We compiled 339 essential genes27 and 71 drug target genes17 in the USA300 strain of S. aureus. We found that 
drug targets and essential genes had significantly higher network centrality by both degree and betweenness 
(P-value < 1 × 10−10 for all comparisons, Mann–Whitney U test) (Fig. 1C). These results suggest that network 
centrality of genes in StaphNet can be used to predict novel genes for viability in S. aureus.

StaphNet effectively retrieves genes for virulence-associated phenotypes.  If StaphNet effectively 
retrieves genes for virulence-associated phenotypes, it should also be capable of identifying novel virulence genes. 
It is well known that S. aureus has various virulence factors. We compiled the genes associated with several viru-
lence phenotypes such as hemolysin production, protease activity, pigment formation, and mannitol fermenta-
tion from a previous large-scale mutant screening study using S. aureus strain USA30028. We also compiled genes 
for five distinct virulence phenotypes—adherence, capsule, exoenzyme, secretion system, and toxin—from the 
Virulence Factor Database (VFDB)12. Furthermore, we compiled genes for the toxicity-increasing loci from an S. 
aureus genome-wide association study (GWAS)29.

To form a predictive network, the genes for a phenotype need to be more closely connected to each other in 
the network than they would be by random chance. To determine whether the genes for the same virulence phe-
notypes were significantly interconnected in StaphNet, we compared the number of direct connections among 
the genes for the same virulence phenotype with the number of direct connections among the same number of 
random genes. For all the virulence-associated phenotypes in our analysis, we found that the genes for each phe-
notype were highly interconnected in StaphNet (P-value < 1 × 10−4 for all tested phenotypes except GWAS toxic-
ity, which had a P-value = 0.0067, according to a permutation test of 106 randomized samples) (Fig. 2A). We also 
visualized the modularity of virulence phenotype genes in StaphNet using SAFE software, which finds and visual-
izes local enrichment for function in a given network30. We found that 7 out of 11 virulence phenotypes—capsule, 

GSE Platform Description # gene # link

GSE26249 GPL10597 Gene expression analysis of daptomycin resistance in Staphylococcus aureus 
strains: 2818 and 2819 859 22,485

GSE10605 GPL1339 Microarray analysis of toxicogenomic effects of ortho-phenylphenol on S. aureus 882 19,510

GSE13424 GPL1339 Profiling downregulation of the mevalonate pathway in S. aureus 1,349 30,499

GSE14669 GPL1339 Transcriptional analysis of S. aureus response to ramoplanin 581 22,515

GSE15394 GPL1339 S. aureus treated with fosfomycin 945 23,492

GSE22233 GPL1339 Expression and mRNA half-life data for acid- and alkaline-shocked S. aureus 1,666 35,508

GSE3415 GPL1339 Global transcriptome analysis of S. aureus response to hydrogen peroxide 1,802 48,499

GSE39627 GPL1339 Comparison of the oxacillin stress response in vraS and vraT mutants 2,066 30,501

GSE40448 GPL1339 Microarray analysis of toxicogenomic effect of ortho-benzyl-para-chlorophenol 
(OBPCP) on S. aureus 1,913 58,496

GSE40450 GPL1339 Comparative analysis of the toxicogenomic effects of ortho-benzyl-para-
chlorophenol (OBPCP) and para-tertiary amylphenol (PTAP) on S. aureus 1,580 45,490

GSE50675 GPL1339 Global transcriptome analysis of S. aureus biofilms in response to innate immune 
cells 798 22,495

GSE58938 GPL1339 Phenotype and expression profile analysis of S. aureus biofilms and planktonic 
cells in response to licochalcone A 904 14,504

GSE20973 GPL1339 Direct targets of CodY in S. aureus 980 17,494

GSE70040 GPL20586 Whole-transcriptome analysis of S. aureus under laboratory and infection-
mimicking conditions 480 11,418

GSE25454 GPL8069 Global changes in S. aureus gene expression in human blood provide insight into 
mechanisms of immune evasion and virulence 1,863 44,494

GSE65827 GPL18484 SaeRS-dependent inhibition of biofilm formation in S. aureus Newman 249 9,507

GSE59851 GPL19006 Potential influence of S. aureus clonal complex 30 genotype and transcriptome on 
hematogenous infections 1,592 45,497

GSE68772 GPL19006
The C-terminal region of the RNA helicase CshA is required for the interaction 
with the degradosome and turnover of bulk RNA in the opportunistic pathogen 
S. aureus

1,687 18,506

Table 1.  Gene Expression Omnibus (GEO) expression data used to construct StaphNet.
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adherence, toxin, mannitol fermentation, protease activity, GWAS toxicity, and hemolysis production—showed 
significant region-specific enrichment (enrichment P-value < 0.05) in StaphNet (Fig. 2B).

StaphNet implementations for network-based identification of novel virulence genes.  To 
increase the utility of StaphNet, we implemented two network-based gene prioritization algorithms in a com-
panion web application (www.inetbio.org/staphnet): pathway-centric search and context-centric search. The 
pathway-centric search algorithm is an efficient tool for searching new candidate genes for a pathway or pheno-
type of interest. Users submit “guide genes”, which are known genes for a pathway or phenotype of interest, to the 
StaphNet network search page. StaphNet then propagates pathway or phenotype labels from the guide genes to 
the neighboring genes. The neighboring genes are then ranked according to the highest label score propagated 
from the guide genes (Fig. 3A). Neighbor genes that connect to more guide genes with stronger edge weights 
rank higher. StaphNet reports top 100 candidate genes based on sum of log likelihood scores (see the Methods) of 
edges that connect to all guide genes. It also reports contribution of each type of co-functional associations that 
support the total prediction score. The context-centric search algorithm initiates a network search of differentially 
expressed genes (DEGs) for a biological context of interest. When users submit DEGs for a certain context rele-
vant to a pathway or phenotype of interest, the algorithm looks for hub genes (degree ≥ 20) whose neighbors are 
significantly overlapped with the DEGs (Fig. 3B). Thus, the context-centric search algorithm suggests hub genes 
that are likely to be associated with the context.

StaphNet identified a novel gene for hemolysis activity.  We tested the feasibility of network-based 
identification of virulence-associated phenotype genes using the pathway-centric search algorithm of StaphNet. 
S. aureus produces alpha-hemolysins, which form pores in the membranes of the host erythrocytes. These 
pores induce unwanted ion exchange, which leads to cell death. Therefore, the hemolysis activity of bacteria is a 
promising target for attenuating virulence. There have been reports that knockout of the alpha-hemolysin gene 
(hla) leads to a reduction in the invasiveness and virulence of S. aureus31. Searching for novel genes for hemol-
ysis activity, we performed a pathway-centric search on the StaphNet web server using 71 previously reported 
hemolysis genes28 as guide genes. We prioritized S. aureus genes for hemolysis activity based on the sum of net-
work edge scores (log likelihood score as described in the Methods) to all connected guide genes. Among the 
predicted candidate genes, we selected the top 10 genes with available mutant strains from the Biodefense and 
Emerging Infections Research Resources Repository (BEI Resources) (https://www.beiresources.org/) (Table 3). 
We then investigated the hemolysis type of the mutant strains by streaking the bacteria on blood agar plates 
(see the Methods section for more details). Among the 10 tested genes, SAUSA300_RS06165, which encodes 
succinyl-CoA ligase subunit alpha, produced the gamma-hemolysis (non-hemolytic) phenotype in a mutant 
strain, whereas the wild-type strain exhibited the beta-hemolysis (complete hemolysis) phenotype (Fig. 4A). We 
also quantified hemolysis arising from SAUSA300_RS06165 (see the Methods section for more details) and found 
a significant reduction in hemolysis activity in the mutant strain (P-value = 0.0013, two-tailed t-test) (Fig. 4B). 
As expected, the novel hemolysis gene SAUSA300_RS06165 was highly connected to the guide genes, and the 
updated network of hemolysis genes showed significantly higher within-group edge count score than those for 
random gene sets (Fig. 4C). These results demonstrate that the pathway-centric search algorithm can identify 
novel genes for virulence-associated phenotypes in S. aureus.

StaphNet identified novel genes for biofilm formation.  Next, we investigated context-centric search-
ing for the identification of virulence-associated phenotype genes. When they form biofilms, bacterial cells are 
able to settle close to each other and cooperate in harsh host microenvironments32. Bacterial cells that reside in 
the inner part of a biofilm are physically separated from anti-microbial agents, and can, therefore, survive anti-
biotic treatments33. To predict novel candidate genes for biofilm formation in S. aureus, we compiled a list of 56 
genes with expression levels that increase by more than twofold in biofilms compared with in stationary-phase 
planktonic culture34, and submitted them as input data for a context-centric search of the web server. Then we 
prioritized S. aureus genes for biofilm formation based on significance of overlap between their neighboring 
genes in StaphNet and the 56 genes that were up-regulated in biofilms. We selected the top 10 predicted candi-
date genes with available mutant strains (Table 4). We then determined the biofilm-forming ability of the mutant 
and wild-type strains. Because the number of bacterial cells dictates the quantity of biofilm, we normalized the 
amount of biofilm to the number of bacterial cells (see the Methods section for more details). Notably, 5 of the 

Network 
code Description # gene # link

SA-CX Co-functional network inferred by co-expression analysis of Staphylococcus aureus genes 2,539 24,031

SA-GN Co-functional network inferred by gene neighborhood of S. aureus genes in prokaryotic genomes 2,031 21,803

SA-DP Co-functional network inferred by domain profile similarity between S. aureus genes 1,448 7,026

SA-HT Co-functional network derived from high-throughput protein–protein interaction assays for S. aureus genes 290 4,130

SA-PG Co-functional network inferred by phylogenetic profile similarity between S. aureus genes 910 8,407

EC-CX Co-functional network inferred by co-expression analysis of Escherichia coli genes 754 5,232

EC-HT Co-functional network derived from high-throughput protein–protein interaction assays for E. coli genes 479 2,626

StaphNet The integrated co-functional network for methicillin-resistant S. aureus (MRSA) 2,674 60,513

Table 2.  Summary of the seven component networks for distinct data types and the integrated StaphNet.

http://www.inetbio.org/staphnet
https://www.beiresources.org/
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10 tested candidate genes apparently had mutant strains with reduced biofilm-forming ability (P-value < 0.05 for 
SAUSA300_RS13325, and P-values < 0.01 for SAUSA300_RS01135, SAUSA300_RS01790, SAUSA300_RS01365, 
and SAUSA300_RS04930, according to a two-tailed t-test) (Fig. 4D). The five novel genes for biofilm formation 
are connected to many up-regulated genes in biofilms and their network has significantly higher within-group 
edge count score than those for random gene sets (Fig. 4E). These results indicate that the context-centric search 
algorithm is highly effective for the identification of phenotypic genes in S. aureus.

Availability of StaphNet data and web applications.  All edge information for StaphNet, component 
networks, and gold-standard gene pairs is freely available at www.inetbio.org/staphnet. Two network prediction 
algorithms—pathway-centric search and context-centric search—can be performed by the submission of guide 
genes and DEGs, respectively. Although StaphNet performs network searches based on a gene network of S. 
aureus subsp. aureus USA300_FPR3757, the network search is also compatible with another 30 S. aureus strains. 
For example, if users submit NCTC8325 genes known for virulence-associated phenotypes, the web server uses 

Figure 2.  Genes for virulence-associated phenotypes are interconnected in StaphNet. (A) For various 
virulence-associated phenotypes, the within-group edge count in StaphNet, which means the number of the 
edges between genes for the same phenotype, was compared with that of the same size of random gene sets. 
For each phenotype, a violin plot and an inner box plot represent the distribution of the within-group edge 
counts by a million random gene sets. Red stars represent the within-group edge counts for the given virulence-
associated phenotypes. (B) The SAFE algorithm was used to detect the local enrichment modules for seven 
virulence-associated phenotypes in StaphNet. The various phenotypes are represented by different colors.

http://www.inetbio.org/staphnet
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orthologous USA300 strain genes for the network search. All candidate genes are reported by both USA300 
genes and NCTC8325 genes. For orthologous gene mapping of major MRSA strains such as N315, MRSA252, 
NCTC8325, and TW20, we used bidirectional best hits according to BLASTP (BLASTP stands for the Basic Local 
Alignment Search Tool for Proteins). For all other strains, we adopted the orthologous relationships between 
locus tags of different strains from AureoWiki (http://aureowiki.med.uni-greifswald.de/). AureoWiki was used 
to assign orthologous relationships between genes having more than 50% DNA sequence identity and more than 
70% protein identity.

Discussion
In this study, we presented a network-based framework for genetic investigation of phenotypes in the 
gram-positive bacterial pathogen MRSA. Although we focused on virulence-associated phenotypes, the 
same method can be applied to other phenotypes. Effective network-based prediction requires two compo-
nents: an accurate network and a network analysis algorithm. StaphNet, which is an integrated co-functional 
network, exhibited high accuracy and predictive power for virulence phenotypes in computational assess-
ments. Experimental validation provided further support for the usefulness of StaphNet in genetic investi-
gations of virulence-associated phenotypes in MRSA. We tested two alternative network-based functional 
prediction algorithms in this study. The pathway-centric search algorithm relies on network connectivity among 
genes for the same pathway or phenotype. StaphNet had high predictive power for known genes for various 
virulence-associated phenotypes. However, we were only able to experimentally validate 1 out of 10 tested can-
didate genes for hemolysis activity. This can be attributed to the incomplete penetrance of mutations of the novel 
candidate genes for hemolysis, so the phenotypic effect was undetectable using a simple blood agar plate assay. It 
is possible that most of the core genes for hemolysis have been identified already, and only genes that are weakly 
associated with the phenotype remain undiscovered. We may conduct blood agar plate assays with double muta-
tions for the candidate genes to test this hypothesis. In contrast, we observed a high proportion of true positives 
for the prediction of biofilm formation using the context-centric search algorithm. This may have arisen because 
all the candidates for this algorithm were network hubs (degree ≥20), which are more likely to be functionally 
associated with many other genes. Given that hub genes tend to be essential, predictions with hub genes are more 
likely to exhibit the phenotypic effects of mutation. This suggests that the context-centric search algorithm could 
be more effective than the pathway-centric search algorithm in searching for genes with phenotypic effects.

We observed that StaphNet was very efficient at predicting GWAS candidate genes that increase toxic-
ity. Historically, the major forward-genetics method used for microbial species was random mutagenesis 
library screening. However, as more strains with completely sequenced genomes become available, another 
forward-genetics method, GWAS, is being used for several major human infectious microbes, including MRSA35. 
In human GWASs, the biological relevance of GWAS candidates has been tested by assessing the significance of 
network interactions between candidate genes36. We observed significant interconnectivity in candidate genes 
from GWAS that increase toxicity in StaphNet, which indicates that it may also be possible to use gene networks 
to test the biological relevance of GWAS candidates in microbes. Moreover, GWAS candidates can be prioritized37 
or augmented38 by functional gene networks. The development of similar network applications for microbial 
GWAS candidates may be warranted in the future.

Figure 3.  Schematic diagrams of network-based gene prioritization algorithms implemented in StaphNet 
server. (A) Pathway-centric search algorithm. (B) Context-centric search algorithm.

http://aureowiki.med.uni-greifswald.de/
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Methods
Construction of the StaphNet genome and gold-standard functional gene pairs of S. aureus 
subsp. aureus USA300_FPR3757.  We downloaded the genome sequence of MRSA subsp. aureus USA300_
FPR3757 from the National Center for Biotechnology Information (NCBI) genome database as of February 19, 
2016. We excluded pseudogenes from the list of downloaded genes. The final gene set used for the network 
construction contained 2,845 protein-coding genes. Coding genes for other major MRSA strains such as N315, 
MRSA252, NCTC8325, and TW20 were also downloaded from the NCBI genome database at the same time.

We constructed the StaphNet using a supervised machine learning approach. To train the network model, we 
compiled gold-standard co-functional gene pairs from molecular pathways annotated by KEGG22 (as of February, 
2016) and MetaCyc23 (as of February 2016) databases by pairing genes that were annotated using the same path-
way terms. For the KEGG database, we ignored “global pathways”, which may harbor multiple sub-pathways, 
resulting in many between-pathway gene pairs. The relatively large size of the global pathways may also result in 
biased gold-standard gene pairs owing to the exponential increase in the number of gene pairs as the number of 
genes increases. Using these pathway filtrations, we were able to generate 20,258 gold-standard gene pairs from 
930 genes.

Benchmarking and integrating co-functional networks.  We benchmarked and scored networks from 
distinct genomics data sets and integrated them using a log likelihood score (LLS) scheme based on Bayesian 
statistics24. We calculated the LLS score using the following equation:

LLS P L E P L E
P L P L

ln ( )/ ( )
( )/ ( )

=





| ¬ |
¬


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where P(L|E) represents the probability of positive gold-standard links for the given genomic evidence (E), and 
¬ |P L E( ) represents the probability of negative gold-standard links for the same genomic evidence. P(L) and 
¬P L( ) represent the probability of positive and negative gold-standard links, respectively.
Different genomics data may exhibit some correlation. Therefore, naïve Bayesian integration of multiple LLSs 

for each co-functional link would be suboptimal. We previously devised a weighted sum (WS) method for data 
integration, which can handle data correlation to some extent by applying different weights during summing-up 
of the multiple edge scores using the following equation:
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where S0 represents the highest LLS, Si represents the ith highest LLS after the second highest LLS, and D is a free 
parameter that adds a decrementing weight to each score. T indicates the threshold of the minimum LLS to be 
integrated. We chose the free parameters where the integrated network achieved the highest benchmarking score. 
All networks inferred from individual genomics data sets and from component networks of distinct data types 
(Table 2) were integrated using the benchmarking and integration pipeline described above. The final integrated 
network, StaphNet, contains 60,513 links and 2,674 genes (94% of the coding genes) in MRSA strain USA300.

Rank Gene ID (New locus tag)
Pathway-Centric 
Search Score

Mutant Strain Availability 
(Tested Rank)

Significant Change in 
Hemolysis Ability

1 SAUSA300_RS11335 24.58 TRUE (1) FALSE

2 SAUSA300_RS05175 22.24 TRUE (2) FALSE

3 SAUSA300_RS07105 22.04 TRUE (3) FALSE

4 SAUSA300_RS11410 20.84 FALSE Not tested

5 SAUSA300_RS11425 20.64 TRUE (4) FALSE

6 SAUSA300_RS07100 19.34 TRUE (5) FALSE

7 SAUSA300_RS11990 18.85 FALSE Not tested

8 SAUSA300_RS01250 18.38 TRUE (6) FALSE

9 SAUSA300_RS11355 18.36 TRUE (7) FALSE

10 SAUSA300_RS02850 18.23 FALSE Not tested

11 SAUSA300_RS07405 17.96 TRUE (8) FALSE

12 SAUSA300_RS07430 17.58 FALSE Not tested

13 SAUSA300_RS12145 17.27 FALSE Not tested

14 SAUSA300_RS11400 17.06 FALSE Not tested

15 SAUSA300_RS11380 16.85 TRUE (9) FALSE

16 SAUSA300_RS02805 16.66 FALSE Not tested

17 SAUSA300_RS09090 16.66 FALSE Not tested

18 SAUSA300_RS06220 16.59 FALSE Not tested

19 SAUSA300_RS06165 16.02 TRUE (10) Gamma type hemolysis, 
Quantitative assay p < 0.01

Table 3.  Candidate gene list for hemolysis activity by pathway-centric search.
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Co-functional networks inferred by co-expression analysis of S. aureus genes (SA-CX).  Genes 
that exhibit similar expression profiles across various conditions tend to be co-regulated for the same pathway. 
We measured the co-expression between two genes using the Pearson correlation coefficient. We obtained gene 
expression data from the Gene Expression Omnibus (GEO)39 database. We performed co-expression analysis 
for each GEO series (GSE) and generated a total of 24 co-expression networks, of which 20 GSEs were based on 
microarray platforms and four GSEs on RNA sequencing (Table 1). For the sequencing-based expression data, 
we performed a preprocess on short reads using an alignment-free quantification algorithm, kallisto40 (version 
0.42.4), which gives transcripts per million (TPM) values. We benchmarked and integrated the 24 co-expression 
networks into a single co-functional network by co-expression analysis.

Co-functional networks inferred by similarity of domain profiles (SA-DP).  Protein domains are 
the structural and functional units of proteins. Therefore, two protein-coding genes that share similar domains 
(i.e., similar domain profiles) are likely to have similar functions. We constructed the domain profiles of S. aureus 

Figure 4.  Network-based identification of novel genes for virulence-associated phenotypes. (A) The blood 
agar plate streaked with wild-type Staphylococcus aureus exhibited beta-type hemolysis, whereas the plate 
streaked with the mutant S. aureus with the SAUSA300_RS06165 gene exhibited gamma-type hemolysis. (B) 
Hemolysis activity (OD450) of the wild-type S. aureus and the mutant S. aureus with the SAUSA300_RS06165 
gene. Error bars represent the standard error, and the double asterisk signifies a P-value ≤ 0.01 (two-tailed 
t-test). (C) Hemolysis gene network including a novel hemolysis gene, RS06165 (red node) and its within-group 
connectivity score (red dot). Significance of the observed network connectivity was measured by using a null 
distribution based on 10000 random gene sets. (D) Biofilm-forming capability was normalized to the bacterial 
growth (OD550/OD600) of the wild-type and mutant S. aureus. Error bars represent the standard error, the single 
asterisk represents a P-value ≤ 0.05, and the double asterisks represent P-values ≤ 0.01 (two-tailed t-test). (E) 
Biofilm gene network including five novel biofilm genes (red nodes) identified in this study and its within-group 
connectivity score (red dot). Significance of the observed connectivity was tested as for (C).
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genes using domain information from the InterPro database41. We measured the similarity between domain 
profiles using weighted mutual information (WMI) scoring20, which takes account of the different information 
weights among domains during the mutual information (MI) calculation. We assigned greater weights to rarer 
domains, assuming there is more specific information on molecular pathways for rarer domains. After bench-
marking, we obtained a co-functional network according to domain profile similarity.

Co-functional networks inferred by similarity of phylogenetic profiles (SA-PG).  Organisms gain 
and lose genes during speciation. Genes for the same functional pathways tend to be co-inherited during speci-
ation. Therefore, similar phylogenetic profiles between two genes across diverse species implies their functional 
association. To measure phylogenetic profile similarity among S. aureus genes, we constructed phylogenetic pro-
files for each S. aureus gene based on the BLASTP hit score to reference genomes for other species. The profile 
similarity was measured by MI. We previously found that phylogenetic profiles for each of the three domains 
of life (Archaea, Bacteria, Eukarya) enabled the detection of co-inheritance patterns within each domain19. The 
three networks inferred from the domain-specific profiles are complementary, allowing network improvement by 
integration. We therefore inferred networks from three individual phylogenetic profiles based on 1,626 bacteria, 
122 archaea, and 396 eukaryotes. After benchmarking and integration of the three inferred networks, we obtained 
a single co-functional network according to phylogenetic profile similarity.

Co-functional networks inferred by gene neighborhood (SA-GN).  In the prokaryotic genome, 
functionally associated genes often exist in proximity, forming a co-transcriptional unit known as an operon. 
Therefore, we may infer functional coupling between genes if their orthologs reside in the same neighborhood 
in prokaryotic genomes. We used two complementary methods to infer gene neighborhood in 1,749 prokaryotic 
genomes: probability-based gene neighborhood (PGN) and distance-based gene neighborhood (DGN)18.

We extended the gene neighborhood approach to metagenome sequence data42. A massive amount of 
sequence data has recently become available as a result of metagenomic shotgun sequencing technology. The 
majority of the identified gene models in the database are not annotated bacterial genes, because there are many 
bacterial species that cannot be cultured under laboratory conditions. Therefore, metagenomes with novel gene 
models are a potential new resource for gene neighborhood analysis. We downloaded the metagenome contigs 
for the 16 human body sites from the Human Microbiome Project43, and global samples from the TARA Oceans 
project44. We aligned the S. aureus genes to the metagenome assemblies using the ultra-fast sequence alignment 
algorithm, DIAMOND45. Because PGN requires completely assembled genomes, we applied DGN for metagen-
ome data only. The gene neighborhood score for each gene pair (S) was calculated using the following equation:

Rank Gene ID (New locus tag)
Context-Centric 
Search p-value

Mutant Strain Availability 
(Tested Rank)

Significant Change in Biofilm 
Forming Ability (Significance)

1 SAUSA300_RS12890 1.73569E-08 FALSE Not tested

2 SAUSA300_RS12950 9.84818E-08 TRUE (1) FALSE

3 SAUSA300_RS12940 1.04527E-05 TRUE (2) FALSE

4 SAUSA300_RS12935 3.05251E-05 FALSE Not tested

5 SAUSA300_RS03540 3.89378E-05 FALSE Not tested

6 SAUSA300_RS04955 5.47043E-05 FALSE Not tested

7 SAUSA300_RS12930 0.000143066 FALSE Not tested

8 SAUSA300_RS13325 0.00019952 TRUE (3) TRUE (p < 0.05)

9 SAUSA300_RS12695 0.000271935 FALSE Not tested

10 SAUSA300_RS09310 0.000287212 TRUE (4) FALSE

11 SAUSA300_RS12380 0.000384348 FALSE Not tested

12 SAUSA300_RS07240 0.000402737 TRUE (5) FALSE

13 SAUSA300_RS00945 0.000498033 FALSE Not tested

14 SAUSA300_RS01135 0.000510171 TRUE (6) TRUE (p < 0.01)

15 SAUSA300_RS04750 0.000510171 FALSE Not tested

16 SAUSA300_RS01790 0.000673005 TRUE (7) TRUE (p < 0.01)

17 SAUSA300_RS04930 0.000754106 TRUE (8) TRUE (p < 0.01)

18 SAUSA300_RS14020 0.0014589 FALSE Not tested

19 SAUSA300_RS11780 0.001491269 FALSE Not tested

20 SAUSA300_RS06610 0.001493588 TRUE (9) FALSE

21 SAUSA300_RS13915 0.001493588 FALSE Not tested

22 SAUSA300_RS00475 0.001826731 FALSE Not tested

23 SAUSA300_RS00625 0.002214592 FALSE Not tested

24 SAUSA300_RS13275 0.002659488 FALSE Not tested

25 SAUSA300_RS01860 0.003166104 FALSE Not tested

26 SAUSA300_RS01365 0.003214458 TRUE (10) TRUE (p < 0.01)

Table 4.  Candidate gene list for biofilm forming ability by context-centric search.
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where n is the total number of contigs in which two genes co-occur and d is the median distance (bp) between 
them across all co-occurring contigs. Finally, three networks, the PGN, the DGN, and the metagenome-based 
gene neighborhood (MGN), were benchmarked and integrated into a single co-functional network according to 
gene neighborhood.

Co-functional networks based on high-throughput protein–protein interaction (PPI) assays 
(SA-HT).  We compiled 13,219 PPIs among 608 MRSA proteins based on a high-throughput protein complex 
pull-down assay17. We generated network links between prey and baits for each pull-down complex (i.e., the 
spoke-model). Using a binary score scheme (1 for interaction and 0 for no interaction), we generated PPI profiles 
for each MRSA gene. We then determined MI between genes using the PPI profiles. With the benchmarking 
method, we empirically determined that this link-scoring scheme gave the best co-functional network. We ulti-
mately found 6,480 PPIs among 355 genes that were likely to be functionally coupled.

Co-functional networks transferred from Escherichia coli (EC-CX and EC-HT).  We were able 
to infer co-functional links between S. aureus genes by orthology-based gene pair transfer from E. coli, which 
has a well-established co-functional network, EcoliNet21. We transferred individual component networks from 
EcoliNet by orthologous gene pairs (associalogs46) between S. aureus genes and E. coli genes detected using 
Inparanoid software47. We assigned Inparanoid-weighted LLSs (IWLLSs) to each associalog using the following 
equation:

− = ′ + ′ + ′ − ′IWLLS Inparanoid score Inparanoid score LLS(A B) ln[ (A, A )] ln[ (B, B )] (A B )

where A and B are S. aureus genes and A′ and B′ are their orthologs in E. coli.
With benchmarking analysis, we found that associalogs from the E. coli co-expression network and the E. coli 

high-throughput PPI network produced co-functional networks of MRSA genes.

Analysis of network centrality.  Degree centrality for the gene i represents the number of direct neighbors 
of gene i. For a given gene i, betweenness centrality represents the number of shortest paths among the genes in 
the network that pass through the gene i. We ignored the edge weight for the betweenness centrality calculation. 
We used the igraph R package (http://igraph.org/) for the centrality calculation.

Network visualization.  We employed SAFE30 for network visualization to find local enrichment patterns of 
virulence genes in the global network. We visualized the entire StaphNet using Cytoscape48 with “edge-weighted 
spring embedded” layout, neighborhoodRadiusType and groupDistanceThreshold options, and parameters of 7.5 
and 0.5 for diameter and neighborhoodRadius, respectively.

Hemolysis assay.  We determined the hemolysis types of 11 strains (10 candidate mutant strains and a 
wild-type control) by streaking the bacterial cells on sheep blood agar plates. We selected a strain with a posi-
tive result from the blood agar plate assay for further quantitative investigation of hemolysis. We measured the 
hemolysis capability of each strain using the method previously described49,50. Briefly, the bacterial cells were 
cultured overnight, then sub-cultured in 10 mL of tryptic soy broth (TSB) for 3 h at 37 °C (optical density at 
600 nm (OD600) ≈ 0.6). After centrifugation of the bacterial culture at 13,000 rpm for 1 min at 4 °C, a 100-μL ali-
quot of the supernatant was mixed with 900 μL of 8% sheep blood, which was subsequently washed three times 
in phosphate-buffered saline (PBS). The resultant mixtures were incubated at 37 °C for 3 h, then centrifuged at 
1,500 g for 10 min at 4 °C. We then measured the OD450 for each strain using a BioTek Epoch spectrometer.

Biofilm formation assay.  We measured the biofilm formation capability of each strain using the method 
previously described51. In brief, the strains were cultured overnight and diluted 1:100 with the TSB medium. 
Aliquots of the diluted culture (100 μL) were dispensed onto 96-well plates. We prepared two identical 96-well 
plates to normalize the growth rate of the bacteria. For one plate, we measured the OD600, and for the other plate, 
we removed the unattached bacteria by dumping and washing. We added 125 μL of 0.1% crystal violet (CV) 
solution and incubated at room temperature for 15 min. After dumping out the staining solution, we dried the 
plate for 24 h. We added 125 μL of acetic acid to the plate to solubilize the CV and incubated at room temperature 
for 15 min. We then measured the OD550 of each strain using a BioTek Epoch spectrometer. For each strain, we 
divided the OD550 by the OD600 to normalize the growth rate of each strain. We chose five strains to generate 
replicates.
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