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Abstract: In order to overcome the challenges of low permeate flux (Jp) and the accompanying reverse
solute flux (JS) during the forward osmosis (FO) membrane separation process, we synthesized four
hybrid materials of polyacid-based organic compounds and incorporated them into the selective
polyamide (PA) layer to make novel thin-film nanocomposite (TFN) FO membranes. The Jp and JS of
each membrane were evaluated and used along with membrane selectivity (Jp/JS) as indicators of
membrane separation performance. The fabricated and modified membranes were also characterized
for ridge and valley surface morphologies with increasing hydrophilicity and finger-shaped parallel
channels in the PSf substrate. Moreover, two highly hydrophilic nanoparticles of graphene oxide (GO)
and titanium oxide (TiO2) were introduced with the hybrid materials for PA modification, which
can further enhance the Jp of the TFN membranes. The highest Jp of the TFN membranes achieved
12.1 L/m2-h using 0.1% curcumin-acetoguanamine @ cerium polyacid (CATCP) and 0.0175% GO.
The characteristic peaks of the hybrid materials were detected on the membrane surface using atten-
uated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, evidencing successful
incorporation of the hybrid materials during membrane modification. Here, we present the novel
TFN membranes using hybrid materials for separation applications. The reactions for synthesizing
the hybrid materials and for incorporating them with PA layer are proposed.

Keywords: forward osmosis (FO); hybrid material; organic compound; polyacid; polyamide modifi-
cation; thin-film nanocomposite (TFN) membrane

1. Introduction

Forward osmosis (FO) has been a promising technique in the last few decades due to
the water scarcity caused by the rapid growth of the global population and environmental
changes [1]. FO plays a prominent role in the field of freshwater supply and salt rejection
thanks to its extremely low energy requirements and high recovery water quality, for which
it uses thin-film composite (TFC)-FO membranes [2]. However, the major challenges of
FO technology are low permeate flux and the accompanying reverse solute flux during
the osmosis process s because FO applies a high salinity draw solution to provide osmotic
pressure as a driving force for the separation process. These challenges need to be overcome
before wide application of this technology [3]. In recent years, much effort has been devoted
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to developing new types of membranes by incorporating emerging nanomaterials, such as
silica [4], graphene oxide (GO) [5], hybrid materials [6,7], and metal–organic frameworks
(MOFs) [8] to make thin-film nanocomposite (TFN) membranes, which have shown great
promise for applications in wastewater treatment [9,10], water recovery [11], and energy
production [12]. The common principle of incorporating nanoparticles to modify FO
membranes is to achieve high hydrophilicity of the top selective layer, which is beneficial
for increasing water permeability.

Polyoxometalate, commonly called polyacid, exists in the form of nanosized inorganic
clusters and has much potential for the water treatment process, because of its shifting redox
properties and high stability in acidic conditions [13]. The application of transition metals,
such as cerium (Ce)-based composites, has been shown to be promising for wastewater
treatment and the enhancement of membrane validity [14]. Polyacid is hydrophilic in
nature and can be used as a nanofiller with high surface area and low synthetic cost [15].
Ce3+ and Ce4+ transformations can form superoxide anions and hydroxyl radicals [8,16],
and Cen+-based polyacid tends to have increased compound stability and solubility in
acidic conditions [8,17]. The chemical properties and mechanical strength of the hybrid
materials can be controlled by varying the synthesizing factors, such as the ratio of organic
and inorganic compounds and reaction time during the hybridization process, to evenly
disperse the nanosized inorganic particles in an organic species [18,19].

Curcumin diketimine (CDT) is a hybrid organic compound with antioxidant prop-
erties at neutral and acidic conditions [17,20]. It is also used in membrane bioreactors
for antibacterial purposes in wastewater treatment [20,21]. The surface modification of
TFC membranes using hybrid materials such as CDT may exhibit better performance
without further surface modification of the hybrid materials [22,23]. To the authors’ best
knowledge, there is no literature adopting this kind of hybrid material for modifying TFN
membranes. Therefore, in this study, we synthesized and modified the selective layer
polyamide (PA) of a TFC-FO membrane using the prepared materials based on cerium
polyacid (CP), including (1) CP–benzoguanamine (CPB), (2) CP-acetoguanamine (CPA), (3)
curcumin-benzoguanamine-CP (CBTCP), and (4) curcumin-acetoguanamine-CP (CATCP)
as nanofillers to make TFN membranes. Acetoguanamine refers to 2,4-diamino-6-methyl-
1,3,5-triazine and benzoguanamine refers to 2,4-diamino-6-phenyl-1,3,5-triazine. Factors
including the dosage of organic-inorganic hybrid materials and dose of additional nanopar-
ticles (GO and TiO2) were evaluated for enhancing the performance of TFN membranes.

2. Materials and Methods
2.1. Chemicals and Reagents

All chemicals were purchased in analytical grade and used as received. Polysulfone
(PSf) beads (UDEL P-3500 LCD MB7, Solvay advanced polymers, L.L.C) and N-methyl-2-
pyrrolidone (NMP, Macron, USA) were used to prepare the support layer. Polyvinyl pyrroli-
done (PVP, Acros, Pittsburgh, PA, USA) and lithium chloride (LiCl, anhydrous > 99%) were
employed as additives in the PSf casting solution. Sodium dodecyl sulfate (SDS, Showa,
Japan), 1,3,5-benzenetricarbonyl trichloride (TMC, 98%, Tokyo Chemicals Industry Co.,
Ltd., Tokyo, Japan), and m-Phenylenediamine (MPD, >99%, Acros, New York, NY, USA)
were used to prepare the PA-selective layer. Sodium chloride (NaCl) was purchased from
Taiwan Biotech. HNO3, disodium hydrogen phosphate, ammonium molybdate, ammo-
nium ceric sulphate, benzoguanamine, and acetoguanamine were all purchased from Alfa
Aesar (Ward Hill, MA, USA). The nanoparticles of graphene oxide (GO, diameter: 90 nm)
and titanium dioxide (TiO2, Degussa P-25, diameter: 20 nm) were purchased from UniRe-
gion Bio-Tech (Taiwan) and Showa (Tokyo, Japan) for modifying the active layer of the
FO membranes.

2.2. Preparation of Hybrid Materials

CP was prepared by mixing ammonium ceric sulphate (molecular weight (MW)
332.24 Da) (1 g, 1 mmol) in 10 mL of DI and ammonium molybdate (MW 1235.86 Da) (2 g,
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2 mmol) in 10 mL of DI, and stirring at 50 ◦C for 10 min [17]. A few drops of 4 N HNO3 was
added to maintain the pH at 4–5. Then, the solution was vigorously stirred at 400–500 rpm
for another 1 h. The precipitates were filtered and washed using DI water, and dried at
50–60 ◦C in an oven overnight.

Cerium polyacid–benzoguanamine (CPB) was prepared by using the same steps for
preparing CP except the solution of benzoguanamine (MW 125.02 Da) (0.125 g, 1 mmol)
in 15 mL of ethanol was added dropwise in 1 h of vigorously stirring at 400–500 rpm.
The product of a yellowish color was filtered and dried at 50 ◦C in an oven overnight.
Cerium polyacid–acetoguanamine (CPA) was prepared by using the same procedure of
preparing CPB, but instead used acetoguanamine (MW 125.13 Da) (0.125 g, 1 mmol) in
15 mL of ethanol.

For preparing curcumin–benzoguanamine cerium polyacid (CBTCP), a mixture of
curcumin (MW 368.38 Da) (0.368 g, 1 mmol) and benzoguanamine (MW 187.206) (0.50 g,
2 mmol) with 15 mL of ethanol solution was stirred at room temperature in the presence of
two drops of piperidine for 6 h. The solution was concentrated through rotavapour, and the
resulting residue was refrigerated overnight. The reddish-yellow products are curcumin–
benzoguanamine (CBT), which were filtered and washed with DI water [24]. Then, CBT
(0.5 g, 1 mmol) in 15 mL of ethanol was added dropwise for the next 1 h with vigorous
stirring at 400–500 rpm. The product was filtered using DI water and dried at 80 ◦C in an
oven overnight to get CBPCP. Curcumin–acetoguanamine cerium polyacid (CATCP) was
prepared using a similar procedure for preparing CPA, except that benzoguanamine was
replaced with acetoguanamine (MW 125.13) (0.250 g, 2 mmol) in 15 mL of ethanol. The
formed precipitate was collected and dried at 80 ◦C in an oven overnight.

The schematic synthetic procedures and structures of the hybrid materials are pre-
sented in Figure 1.

2.3. Preparation of FO Membranes

The factors for preparing the virgin TFC membrane were explored in detail in our
previous study [25].

2.3.1. Preparation of the PSf Substrate

A polymer solution containing PSf beads (15.5 wt.%), LiCl (3.0 wt.%) and PVP
(0.5 wt.%) was dissolved in NMP (81.0 wt.%), stirred for 24 h at 70 ◦C until it became
a smooth and transparent solution, and then degassed for 24 h to remove gases from the
liquid and to prevent bubble formation during the process of casting the PSf membrane.

To fabricate the PSf membrane, the solution was poured onto a glass plate at a casting
speed of approximately 15 cm/s using a ZUA 2000 Zehntner Universal Film Applicator
(Zehntner GmbH Testing Instruments) with the casting height of 300 µm. The glass plate
was then immediately immersed into a deionized (DI) water bath (23 ◦C). The nonsolvent
induced phase inversion (PI) method was adopted to form the PSf membranes. The
membranes were cleaned using DI water, to remove the excess solvent and additives,
and then stored in DI water in the refrigeration (4 ◦C) for further formation of the PA
active layer.
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Figure 1. The schematic synthetic procedures and structures of the hybrid materials. (a) CP, (b) CPA, (c) CPB, (d) CATCP,
and (e) CBTCP.

2.3.2. Preparation of the PA Selective Layer

The PA layers, with differing incorporation of the hybrid materials, were formed
on the PSf substrates using the interfacial polymerization (IP) approach. The CPA, CPB,
CBTCP, and CATCP nanoparticles were separately dosed at different weight ratios (0.05,
0.1, and 0.2 wt.%), in a solution containing 2 wt.% MPD monomer and sodium dodecyl
sulphate (SDS) (0.5 wt.%) in DI water, and the solutions were sonicated for 1 h for an even
distribution. The PSf substrate was dried at first, then immersed in the MPD solution for
2 min, and taken out to remove excess MPD solution on the membrane surface using a
rubber knife. Then, the MPD-saturated substrate was immediately immersed in the TMC
solution (0.15 wt.% in n-hexane) for 3 min. The experimental conditions of the PA layer, to
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prepare the TFN membranes with different hybrid materials, are listed in Table 1. To further
modify the PA layer, high hydrophilic GO (0.0175 wt.%) and TiO2 (0.1 wt.%) nanoparticles
were dosed with hybrid materials in the experimental conditions summarized in Table 2.

Table 1. Experimental conditions of the PA layer of the TFN membranes.

Hybrid
Material

Dosage
(wt.%)

Aqueous Solution n-Hexane

MPD
(wt.%)

SDS
(wt.%)

DI Water
(wt.%)

TMC
(w/v.%)

CPA, CPB,
CBTCP
CATCP

0 2.0 0.1 97.90 0.15
0.05 2.0 0.1 98.85 0.15
0.10 2.0 0.1 97.80 0.15
0.20 2.0 0.1 97.70 0.15

Table 2. Experimental conditions of the PA layer of the TFN membranes with additional dosage of
GO or TiO2.

Hybrid
Material

Nanoparticle
(wt.%)

Aqueous Solution n-Hexane

MPD
(wt.%)

SDS
(wt.%)

DI Water
(wt.%)

TMC
(w/v.%)

CBTCP GO: 0.0175 2.0 0.1 97.68 0.15
(0.2 wt.%) TiO2: 0.1 2.0 0.1 97.60 0.15

CATCP GO: 0.0175 2.0 0.1 97.78 0.15
(0.1 wt.%) TiO2: 0.1 2.0 0.1 97.70 0.15

2.4. FO Filtration Experiments

The virgin (TFC) and modified (TFN) membranes were installed in a self-designed
crossflow FO filtration model [26] to evaluate the performance of FO membranes in terms of
permeate flux (Jp; L/m2-h, LMH) and reverse salt flux (Js; mole/m2-h, nMH) at room tem-
perature (25 ◦C). DI water and 1 M NaCl solution were used as the feed solution (FS) and
draw solution (DS), respectively. JP and JS were calculated using the following Equations (1)
and (2), respectively. The reverse salt flux was measured using the volumetric and concen-
tration changes of the solution depending on the conductivity measurement [22].

Jp =
∆V

Am∆t
(1)

Js =
Cf,t × Jf,t −Cf,o ×Vf,o

Am × ∆t
(2)

where ∆V (L) is the volume of the permeated DI water from FS to DS during the experi-
mental time period ∆t (h); Am is the effective surface area of the membrane; Cf,t and Jf,t are
the concentration and permeate flux of FS at time t, respectively; Cf,o and Vf,o are the initial
concentration and volume of FS, respectively.

2.5. Analytical Methods

All the samples were completely dried before conducting the following analyses. The
functional groups of the hybrid materials were analyzed using a Fourier transform infrared
spectrometer (FTIR, Spectrum 100, PerkinElmer, Waltham, MA, USA), and those of the
TFC and TFN membranes were analyzed using an attenuated total reflectance FTIR (ATR-
FTIR) (Spectrum 100, PerkinElmer). FTIR and ATR-FTIR analyses were both performed
at room temperature over the wave number range of 450–3500 cm−1 with a resolution of
4 cm−1, and the spectrum of the averaged results of 40 scans of each sample was reported.
Contact angles were measured to represent membrane surface hydrophilicity, according
to the standard sessile drop method, by using a contact angle meter (Phx mini, Phoenix,
Korea). The contact angles of each membrane sample were reported as the average of
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at least five droplets of Milli-Q water applied at random sites. The morphology and
chemical compositions of the synthesized hybrid materials and membrane surfaces were
investigated using a scanning electron microscope (SEM; SU-5000, Hitachi, Japan) and
energy dispersive X-ray spectroscopy (EDS), respectively, after sputtering a thin layer of
Au on the sample surface to enhance conductivity. The particle size of each hybrid material
was measured using a laser particle size analyzer (90 Plus, Brookhaven Instruments Co.,
New York, NY, USA).

3. Results and Discussion
3.1. Characterization of the Hybrid Materials

The morphology and chemical compositions of the synthesized hybrid materials are
displayed in Figure 2 and Table 3, respectively. SEM images revealed that the different
hybrid materials were composed of agglomerate nanoparticles with approximate diameters
of 105–155 nm, measured using Image J software (Version 1.53k), and elemental mapping
shows the presence of elements of the organic and inorganic compounds of the hybrid
materials. The intensive peaks of the carbon (C), nitrogen (N), and oxygen (O) elements
indicate the possible presence of CDT. The analyzed EDS spectra indicate the presence
of molybdenum (Mo) and O that constitute CP, as summarized in Table 3. Moreover, the
elemental composition of CPA was analyzed as O: 29.89%, N: 0.38%, Mo: 63.84%, and
C: 5.89% (Table 3), which corresponds well to the theoretical gravimetric value of Mo
(57.02%) [17]. The elemental composition of CPB was analyzed as O: 22.31%, N: 2.12%, Mo:
54.37%, and C: 21.18% (Table 3), which corresponds well to the theoretical gravimetric value
of Mo (55.59%) [17,27]. The elemental composition of CATCP was analyzed using EDS as
O: 27.47%, N: 0.24%, Mo: 61.85%, and C: 10.43% (Table 3), which corresponds well to the
theoretical gravimetric value of Mo (60.63%) [17,28]. The elemental composition of CBPCP
was analyzed using EDS as O: 22.77%, N: 2.35%, Mo: 55.55%, and C: 19.33% (Table 3),
which corresponds well to the theoretical gravimetric value of Mo (54.85%) [17,23]. The
above analytical results validate the successful synthesis of the hybrid materials.
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Table 3. EDS analysis of the hybrid materials (powder samples).

Hybrid
Material

Carbon
(wt.%/at.%)

Nitrogen
(wt.%/at.%)

Oxygen
(wt.%/at.%)

Molybdenum
(wt.%/at.%)

CPA 5.89/16.05 0.38/0.89 29.89/61.24 63.84/21.81
CPB 21.18/45.49 2.12/3.91 22.31/35.97 54.37/14.62

CATCP 10.43/26.74 0.24/0.52 27.47/52.87 61.85/19.85
CBTCP 19.33/36.4 2.35/0.57 22.77/52.80 55.55/19.50

The FTIR spectra of CPA, CPB, CATCP, and CBTCP are presented in Figure 3. The
band at 1138 → 1192 cm−1 indicates the presence of Mo–Ot1, and the one at 1100 →
1110 cm−1 represents the stretching vibration of Mo–Ot2.The stretching frequency at 1063
→ 1076 cm−1 is observed in the band of Mo–Ob (intra), and a Mo–Ob (inter) band is
observed at 954→ 960 cm−1. Those at 798→ 822 cm−1 and 547→ 590 cm−1 indicate the
bands of M–O–M and M–N (N = transition metal) [17]. The tentative assignments of the
hybrid materials are as follows; the bands of 3146, 1653, 1542, and 1409 cm−1 indicate a ν

(C–H) aromatic ring, ν (N–H) 1◦ vibration, ν (N–H) 3◦ vibration, and C–C aromatic ring,
respectively. The band at 641→ 697 cm−1 indicates the ν (N–H) out of plane [24]. The
stretching vibration of ν (C–H) causes the band at 2914 cm−1. The frequencies at 1505, 1273,
and 1014 cm−1 display ν (C=O, C=C), ν (C=O) phenolic, and ν (OCH3) groups. A band of
CPB at 1280 cm−1 indicates the stretching vibration of ν (C–N) aromatic rings [23,29]. The
positive shift in the vibrations of polyacid over the organic compound benzoguanamine
may be due the structural modification of adding triazine ring on the guest molecule. CPB
has bands at 1542, 1653 and 690 cm−1 that are attributed towards three amine functional
groups, and N-H was constructed via N3+−H3· · ·O2– with charge interaction. The bands at
822 and 1414 cm−1 are attributed to (C-N) and (C=N) of characteristic groups of s-triazine
(benzoguanamine) in CBTCP [30]. All hybrid material exhibits the presence of bands
around 3400 cm−1, which are O–H vibrations. The peak at 2927 cm−1 is corresponding to
the aliphatic C-H stretching band of the acetoguanamine in the CPA and CATCP hybrid
materials [27].
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3.2. Performance of the TFC and TFN Membranes

The performance of the virgin modified FO membrane are presented in Figure 4. An
enhancement in water flux occurred upon the addition of CPA (0.05–0.20 wt.%), CPB
(0.2 wt.%), CATCP (0.05–0.10 wt.%), and CBTCP (0.05–0.20 wt.%), which can be explained
by the increased surface hydrophilicity on the TFN membranes [10,13,20] with results pre-
sented and discussed in the following Section 3.4.3. Moradi et al. prepared a polyethersul-
fone membrane by incorporating curcumin functionalized boethmite (B-Cur) nanoparticles,
which also exhibited enhanced water flux, metal rejection, and antifouling properties [20].
The relatively higher permeate flux for the TFN membranes modified using CATCP and
CBTCP, as compared to those using CPA and CPB, may be due to the presence of hy-
drophilic hydroxyl groups in the structures of CATCP and CBTCP (Figure 1). However,
for several TFN membranes with PA modified using CPA and CPB, the increase in Jp is
accompanied by an increase in Js, resulting in a decrease in membrane selectivity (Jp/Js).
This phenomenon may be due to improper or loose binding of the hybrid materials with the
PA polymer that became a defect on the membrane surface for water and salt penetration.
Among the evaluated membranes, the incorporation of 0.10 wt.% CATCP in PA forma-
tion resulted in the membrane with the highest permeate flux (4.6 LMH) and moderate
selectivity (5.1), and the incorporation of 0.20 wt.% CBTCP in PA formation resulted in the
membrane with the second highest permeate flux (4.5 LMH) and the highest selectivity
(15.0) [20]. Compared to the performance of the other TFN membranes—prepared using
exactly the same materials of PA and PSf but different nonfilters, namely, fumed silica
(SiO2), dried SiO2, and 3-aminopropyltriethoxysilane (APTES)-modified SiO2—the TFN
membranes modified using CPA and CPB exhibited similar separation performance to
those modified using SiO2 nanofillers, and the TFN membranes modified using CATCP
and CBTCP exhibited superior separation performance [31].
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Figure 4. FO performance of the TFC and TFN membranes using hybrid materials with different dosages (%). The
experimental conditions are presented in Table 1.

On the other hand, Ghorbani et al. [13] reported significantly enhanced FO perfor-
mance by embedding supramolecular star polymers into the GO-active layer of an FO
membrane. After considering that the incorporation of additional nanoparticles in the
cross-linking of the selective layer may further enhance separation performance [13], the
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two better-performing hybrid materials (CATCP and CBTCP) were selected to be studied
with further incorporation of other hydrophilic compounds, namely GO and TiO2, which
aimed to enhance the performance of the TFN membranes. The results will be discussed in
the following Section 3.3.

3.3. Performance of the TFN Membranes with Additional Incorporation of GO and TiO2

Figure 5 presents the performance of the TFN membranes (with the better-performing
hybrid materials, CATCP and CBTCP) with additional incorporation of 0.0175 wt.% GO
and 0.10 wt.% TiO2. The addition of highly hydrophilic GO and TiO2 may enhance the
surface hydrophilicity of the TFN membranes so as to increase permeate flux; the results
in Figure 5 revealed a significant increase and validated this speculation. However, the
addition of GO and TiO2 also caused a moderate increase in the reverse solute flux, resulting
in a slight-to-considerable decrease in membrane selectivity (blue dots in Figure 5). This
phenomenon may be explained by the fact that the dose of GO and TiO2 along with CATCP
and CBTCP nanoparticles may interfere with the interfacial polymerization of PA, leading
to the formation of defects on the membrane surface which cause easier penetration of salt
and water. This has been reported for PA modification of other TFC membranes [32,33].
Moreover, the aggregation of nanoparticles may occur on the membrane surface, which
has been suggested to have considerable effects on membrane performance [34] and will
be discussed in Section 3.4.1. It is worth noting that the dosage of GO is less than one-fifth
of that of TiO2, but also exhibits a remarkable increase in permeate flux. The reason is
that dosing GO into membranes can create additional capillaries which allow the quick
passage of water molecules [35]. After considering that the TFN membranes incorporating
CATCP and CBTCP along with TiO2 both exhibited higher permeate flux and selectivity
than those along with GO, the membranes with TiO2 addition were selected for surface
characterization using ATR-FTIR, SEM, EDS, and contact angle measurements. The results
will be presented in the following Section 3.4.
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3.4. Characterization of the TFN Membranes
3.4.1. Surface Morphology and Composition

The surface morphology of the TFN membranes is presented in Figure 6. SEM images
in Figure 6 reveal that the top surface of the TFN membranes has the peak-and-valley
characteristic structures of the PA layer, created through the IP reaction of TMC and MPD
monomers at the organic–inorganic solvent interface [36]. However, some aggregation
of nanoparticles can be observed in the valley area of TFN membranes, leading to a
smooth membrane surface with decreasing surface roughness. Although the structures of
CPA and CPB are similar (Figure 1a,b), their dispersion on the PA layer varied obviously.
CPA nanoparticles aggregated considerably on the membrane surface (Figure 6a) while
CPB nanoparticles dispersed evenly (Figure 6b), which explains the higher permeate flux
and selectivity of the TFN membrane as modified using CPB, rather than using CPA, as
shown in Figure 4. Similar correlations between the surface morphology and membrane
performance of the TFN membranes using CATCP and CBTCP nanoparticles with similar
structures (Figure 1d,e) are also observed. Although the dosage of CATCP is a half of
that of CBTCP for preparing TFN membranes (0.1 vs. 0.2 wt.%), significant particle
aggregation of CATCP was observed on the membrane surface (Figure 6c), which may
explain its lower selectivity than the TFN membrane using CBTCP (Figure 4). As for the
TFN membrane with further addition of TiO2, considerably less particle aggregation was
observed on the surface of the CATCP-TiO2 membrane (Figure 6e) as compared to that
of the CBTCP-TiO2 membrane (Figure 6f), which corresponded to the higher permeate
flux and selectivity of the TFN membrane using CATCP-TiO2 (Figure 4). Overall, it
can be concluded that particle aggregation on the PA layer has a significant effect on
membrane performance, regardless of the physico-chemical characteristics of the dosed
nanoparticles. Therefore, a proper preparation procedure, and adjustments to increase the
even dispersion of nanoparticles, are worthy of further exploration in order to continue to
enhance membrane separation performance.
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Figure 6. Top surface morphologies of the TFN membranes using (a) CPA (0.2 wt.%), (b) CPB (0.2 wt.%), (c) CATCP
(0.1 wt.%), (d) CBTCP (0.2 wt.%), (e) CATCP—TiO2 (0.1 and 0.1 wt.%, respectively), and (f) CBTCP—TiO2 (0.2 and 0.1 wt.%,
respectively).
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It has been reported that the structure and thickness of the PSf substrate can consider-
ably affect the performance of FO membranes [37]. Therefore, the cross-section of the TFN
membranes were observed using SEM, and the results are displayed in Figure 7. It can be
seen that each membrane substrate has a similar thickness (75–90 µm), with highly porous
and well-developed finger-shaped structures, which can provide fluent channels which
do not hinder water molecules, allowing them to achieve a high permeate flux and also to
avoid severe internal concentration polarization in the substrate [15,25].
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Figure 7. SEM morphologies of the cross sections of the TFN membranes using (a) CPA (0.2 wt.%), (b) CPB (0.2 wt.%),
(c) CATCP (0.1 wt.%), (d) CBTCP (0.2 wt.%), (e) CATCP—TiO2 (0.1 and 0.1 wt.%, respectively), and (f) CBTCP—TiO2 (0.2
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The TFN membranes were also analyzed using ESD to evaluate the composition of
characteristic elements of the hybrid materials and TiO2 nanoparticles, including C, N, O,
Mo, and Ti, and the results are summarized in Table 4. The detection of the characteristic
elements confirmed successful incorporation of the hybrid materials and TiO2 into the
TFN membranes.

Table 4. EDS analysis of TFN membranes.

Hybrid
Material

Carbon
(wt.%/at.%)

Nitrogen
(wt.%/at.%)

Oxygen
(wt.%/at.%)

Molybdenum
(wt.%/at.%)

Ti
(wt.%/at.%)

CPA 51.33/78.18 0.96/1.27 11.83/13.65 35.88/6.90 -
CPB 54.14/77.57 2.73/3.35 12.66/13.62 30.48/5.47 -

CATCP 51.30/74.20 5.22/6.47 12.53/13.60 30.27/5.48 0.68/0.25
CBTCP 52.51/74.34 6.02/7.31 12.40/13.18 28.96/5.13 0.12/0.04

3.4.2. Surface Functional Groups

The ATR-FTIR spectra of TFC and TFN membranes are depicted in Figure 8. The
tentative assignments of CP in different organic compounds can be referred to those
reported in a previous literature [38]. The band at 1151→ 1171 cm−1 indicates the presence
of Mo–Ot1, and that at 1104→ 1107 cm−1 shows the stretching vibration of Mo–Ot2. The
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tentative assignments of the hybrid materials are as follows: CDT bands of 1651→ 1654 and
1537→ 1544 cm−1 indicate the ν (C–H) aromatic ring and ν (N–H) vibration, respectively.
The bands at 1249→ 1254 cm−1 indicates the stretching vibrations of ν (C–H) aromatic
rings. The frequencies at 1491 and 1014→ 1017 cm−1 show the ν (C-C) and ν C=O (OCH3),
and that at 1317 → 1327 cm−1 indicate the stretching vibration of ν (S=O) of the PSf
substrate. Accordingly, successful incorporation of the hybrid materials in the PA layer can
be confirmed.
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3.4.3. Surface Hydrophilicity

The hydrophilicity of the membrane surface can be explained using the results of
contact angle measurements, and the results are displayed in Figure 9. It is obvious
that the hydrophilicity of the TFN membranes significantly increased as compared to the
virgin TFC membrane, especially those with an additional dose of highly hydrophilic TiO2
nanoparticles, which correlated well with increasing permeate flux of the TFN membranes
in Figures 4 and 5. Similar phenomena were reported for membrane modification using
hydrophilic materials such as polyoxometalates [11], GO [25], TiO2 [12,39], and B-Cur [20].
Therefore, the incorporation of the four synthesized hybrid materials in this study, along
with TiO2, can increase the wettability of FO membranes [11], maintain low reverse solute
flux, and conserve satisfactory membrane selectivity.

The possible reactions between CPA, CPB, CATCP, and CBTCP during the interfacial
polymerization of PA layer are proposed in Figure 10. Considering the sub-microscale of
the hybrid materials without an abundant amount of hydrophilic functional groups (such
as hydroxyl groups) in their structure (Figures 1 and 2), it is speculated that water molecules
can penetrate through the spaces between the synthesized polymer chains and those in the
structure of hybrid materials, which has been previously reported for membranes modified
using metal–organic frameworks [40,41].
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Figure 9. Contact angle measurements of the TFC and TFN membranes. The experimental conditions
of TFN membranes are the same as those in Figures 6 and 7.
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4. Conclusions

In this study, four hybrid materials were synthesized and used as novel nanofillers
for modifying the surface PA layer to make TFN-FO membranes. Successful incorporation
of the hybrid materials on the membrane surface was characterized using SEM, EDS,
ATR-FTIR, and contact angle measurements, and the possible reactions between CPA, CPB,
CATCP, and CBTCP during the interfacial polymerization of PA layer were proposed. It is
speculated that water molecules can penetrate through the spaces between the synthesized
polymer chains and those in the structure of the hybrid materials, resulting in an increased
permeate flux and surface hydrophilicity of the TFN membranes. The additional incor-
poration of hydrophilic GO and TiO2 nanoparticles further increased the permeate flux
of TFN membranes, while maintaining low reverse salt flux and satisfactory membrane
selectivity. The highest Jp of the TFN membranes achieved 12.1 LHM using 0.1% CATCP
and 0.0175% GO. Thus, we present these new TFN membranes, which use hybrid materials,
for separation applications.
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