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Random Volumetric MRI Trajectories via Genetic Algorithms
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A pseudorandom, velocity-insensitive, volumetric k-space sampling trajectory is designed for use with balanced steady-state
magnetic resonance imaging. Individual arcs are designed independently and do not fit together in the way that multishot spiral,
radial or echo-planar trajectories do. Previously, it was shown that second-order cone optimization problems can be defined for
each arc independent of the others, that nulling of zeroth and higher moments can be encoded as constraints, and that individual
arcs can be optimized in seconds. For use in steady-state imaging, sampling duty cycles are predicted to exceed 95 percent. Using
such pseudorandom trajectories, aliasing caused by under-sampling manifests itself as incoherent noise. In this paper, a genetic
algorithm (GA) is formulated and numerically evaluated. A large set of arcs is designed using previous methods, and the GA choses
particular fit subsets of a given size, corresponding to a desired acquisition time. Numerical simulations of 1 second acquisitions
show good detail and acceptable noise for large-volume imaging with 32 coils.

Copyright © 2008 A. T. Curtis and C. K. Anand. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

Reconstruction of magnetic resonance imaging (MRI) from
data sampled using noncartesian sampling has recently
received increasingly mathematically sophisticated treat-
ment, for example [1], with notable improvements in
reconstruction speed and accuracy. The application of novel
design techniques for noncartesian sampling trajectories,
however, has received less attention.

In [2], a novel pseudorandom volumetric k-space tra-
jectory design method was presented. This methodology,
henceforth referred to as Durga, combines a number of ideas
in trajectory design and general sampling design for the first
time, including randomness, [3, 4] constrained optimization
[5] to balance trajectories for steady-state imaging [6–9],
genetic algorithms [10], under-sampling to trade acquisition
time for (structured) noise [11–13], and target-oriented
design rather than patterns of symmetric interleaving [14,
15]. By combining these ideas, Durga achieves significantly
better efficiency as measured by sampling duty-cycle for a
balanced steady-state pulse sequence.

Flow-insensitive k-space trajectories are inherently more
efficient than trajectories requiring a rewinder to balance

first and possibly higher moments. Trajectories which sample
three dimensions in k-space, like Durga, can further increase
efficiency by not rewinding slice select gradients, and simply
starting and stopping sampling offset from the center of
k-space immediately after and before the excitation pulse.
This is summarized in Table 1 by a comparison of spiral
with velocity compensating rewinder [5], Teardrop [7]
which incorporates in-plane velocity compensation into the
readout, and Durga [2]. These numbers are relative to
gradient peak/slew limits of 40 mTm−1 and 150 Tm−1s−1 for
Spiral [5] and Durga [2] and 27 mTm−1 and 72 Tm−1s−1 for
Teardrop [7].

Volumetric imaging has several inherent advantages over
thin-slice imaging, including isotropic resolution, reduced
effect of in-flow, and the ability to completely correct for
distortions in gradients, main-field inhomogeneity, and eddy
currents. It is also easier to completely compensate for
velocity effects by nulling higher moments. Moment-nulled
planar trajectories are often only effectively nulled in one or
two dimensions, because they are used with slice select and
possibly phase encoding gradients which are difficult to null.

In the case of rapid imaging, however, the most impor-
tant property of sampling in more dimensions is the ability
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Figure 1: Tubes depicting the 178 selected trajectories.

Table 1: Duty-cycle comparison for three balanced k-space sam-
pling patterns.

Spiral Teardrop Durga

Readout (ms) 2.40 3.43 5.50

Excitation (ms) 1.20 1.47 0.10

Rewinder (ms) 1.40 — —

TR (ms) 5.00 4.93 5.60

Duty cycle 0.48 0.78 0.98

to under sample without introducing aliasing in the form
of ghosts [11, 16]. Using Durga, one can essentially trade
off under sampling for unstructured noise on a continuous
basis, breaking the dependence on Nyquist sampling. The
trajectories used in the illustrations to reconstruct 2563

volumes are 33× under sampled in time relative to perfect
Cartesian sampling (ignoring gradient limits, and only
considering sampling bandwidth).

This paper presents two innovations over [2].

(1) A genetic algorithm for choosing subsets of trajectory
arcs (Figure 1) corresponding to a TR, designed using
one of the methods in [2]. This significantly increases
the simplicity and flexibility of implementation and
improves the quality of the solution, as measured by
the point spread function.

(2) Multicoil numerical simulations, including the effect
of noise, showing low levels of aliasing artifacts with
extreme under-sampling.

Although this sampling strategy is compatible with and
benefits from multicoil imaging, the reduction in aliasing
possible by using an iterative SENSE reconstruction [17]
is much smaller than what could be expected based on
experience with other trajectories.

2. METHODS

2.1. Individual trajectory design

Sampling trajectories in 3D k-space are generated by solving
a second-order cone optimization problem (SOCP), origi-
nally formulated in [2]. An SOCP is a minimization problem
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Figure 2: Diagram showing a trajectory going through specified
goals at maximum resolution. δ is a gap in the sampling, chosen
to correspond with the rf excitation.

in which the variables are constrained to lie inside a set
defined by quadratic functions of the variables. Putting a
bound on the length of a vector is a common special case,
and the one exploited in this trajectory design problem:
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where the variables, ki ∈ R3, i = 1, . . . ,N − 1, are the
position in k-space at time i; τ controls the deviation from
the constraints (1); δT is the time step; Gmax and Smax are
peak (3) and slew (4) constraints on the gradients; R is the
maximum resolution used in the reconstruction (5); the sum
in (6) models the phase error caused by constant flow—
errors from nonconstant flow can be handled by adding
norms of higher moments; Gi are the targets near which the
trajectory should pass (7) at time t j , see Figure 2; and the
λs determine the relative priorities placed on meeting the
different goals.

In the trajectories designed for this paper, the goalsGj are
random points on the boundary sphere |k| = 1/R or at k = 0.
Multiple traversals of k = 0 are not optimal for sampling,
but included to facilitate calibration of gradient distortion
and main-field inhomogeneity. This problem nulls the first
moment at the center of the rf pulse. Higher moments,
nulling at different points in the trajectory, or bounding the
size of the moment with a tolerance could be encoded in the
same way. The trajectories in this paper are designed to begin
and end at k = 0, for steady-state imaging, but this is not a
limitation of the method. See [2] for a detailed description
of the software used to solve this optimization problem, and
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a discussion of variations in the design, including iterative
designs in which goals are placed at low-density points for
previous trajectories.

Note that the constraint on the first moment will cause
an optimal trajectory to traverse parts of k-space not near
a shortest path between the goals, Gi, which increases the
coverage of k-space, but there are no explicit objectives for
coverage, intertrajectory spacing, or trajectory length. In [2],
coverage is handled by pseudorandom assignment of goals
from the vertices of a regular triangulation of the limit sphere
in k-space.

2.2. Combining sets of trajectories

In this paper, coverage is assured by optimizing its effect on
the point spread function (psf), which captures sampling
artifacts (exactly for uniform coils, and approximately for
surface coils). The ratio of the L2 norm of the central point
in the psf and the L2 norm of the rest of the psf is maximized
over subsets of a large fixed set of trajectories, each optimized
as described above. Since the set of subsets of a fixed size
grows factorially with the number of trajectories, only a small
subset can be tested. A genetic algorithm uses information
about previous subsets to test only subsets likely to have
better psfs.

This approach differs from formulations, where the
variables (referred to as chromosomes in genetic algorithms)
are local or nonlocal control points on individual trajectories
[10]. Such approaches lead to a much larger search space, and
increased complexity of each search step, since the solution
of the SOCP problem is the most expensive part of the
optimization. In the present method, one SOCP problem is
solved per trajectory (and may be solved in parallel) before
application of the GA search.

Individual trajectories are 5.6 milliseconds, including 0.1
millisecond for rf excitation, and designed with gradient
limits typical of a whole body clinical imager (peak gradient
of 40 mTm−1 and a gradient slew rate 150 Tm−1s−1). For
ease of comparison, we will choose enough trajectories for
1 second of sampling (178 with the above parameters).

As a first step, many trajectories are designed by ran-
domly selecting goals on the boundary sphere (which are
interleaved with fixed goals at k = 0). Of these, many are
clearly less suitable than others. To filter out the least suitable,
a small number are designed to determine an approximate
threshold for the longest 20%, and the 20% closest to their
own goals. Only trajectories above the thresholds are used in
the initial set.

This initial large set is then partitioned into 400 sets of
the desired size (168) to seed the GA. These seed sets are
then evolved through 45 generations, using chromosomes
consisting of integer indices into the initial set. An additional
10 trajectories were added using a “density threading” [2],
whose aim is to increase sampling of voids along the kx − ky
plane by specifically creating trajectories to pass through
areas of low sampling density. Computation time refers to
a PowerMac G5 2.5, running a C program calling SOCP,
http://www.stanford.edu/∼boyd/socp, and the Genetic Algo-
rithm Utility Library, http://gaul.sourceforge.net.

The objective of the optimization is to improve the
quality of the psf, as measured by Fourier transforming the
(weighted) sampling density, and dividing the central value
in the psf by the total energy. The method of determining
the density must be the same as used in reconstructing
the images, since different methods can potentially produce
different artifacts even with the same trajectories [18].

To calculate the fractional sampling, both in k-space and
in time, nearest neighbour resampling was used to calculate
a sampling density, and the number of nonzero elements
in the k-space array was computed. For example, 1 second
trajectory set, 1.54% of the voxels in a 2563 k-space had
nonzero values, giving one measure of under-sampling. This
corresponds to 51.7% of the number of the samples that
would be collected in 1 second with a receiver bandwidth
of 500 kHz, giving a measure of the efficiency relative to the
(unrealizable) maximum sampling rate.

2.3. Image reconstruction

Numerical simulations were reconstructed by simulating
irregularly sampled data (500 kHz sampling) along the
trajectories. Solid phantoms were approximated by cubes.
Receiver coils were approximated by magnetic dipoles, with
sensitivities evaluated at the center of each phantom cube.
In this approximation, the signal in k-space corresponding
to each cube is a product of sinc functions, scaled by the
complex sensitivity value.

The irregular samples were then divided by the sampling
density in k-space and resampled to a regular grid using
convolution.

For multiple coils with sensitivities Si, the transformed
images ρi, were combined with two methods: weighting-by-
sensitivities

∑

coilsSi·ρi
∑

coilsSi·Si
(8)

and conjugate gradient reconstructions [17].
A lot of analysis has been done on resampling irregular

data with density variations, see [18–20] and references
therein. Convolution with a fixed kernel [21] is the simplest
resampling method to implement and to analyze. The
optimal piecewise-linear kernel described in [22] was used.
Estimating the density to use for correction was done by
resampling a constant set of data points using a width-
three triangular kernel. The key property of this triangular
function is that it is a partition of unity for samples spaced 1,
2, or 3 grid points apart.

3. RESULTS

When the described algorithm was used to generate the 168-
shot volume representing 1 second of imaging time, 12 hours
were taken to create a working base of 4000 trajectories using
randomly generated goals. An additional 13000 trajectories
were rejected by the threshold test. Another 72 hours were
required for the GA to select a fit subset.

Figure 3 compares the results of the GA to a histogram of
3000 randomly formed subsets. The GA set is 7.8 standard

http://www.stanford.edu/~boyd/socp
http://gaul.sourceforge.net
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Figure 3: Comparison of randomly selected trajectory sets versus
solutions from the GA. Note that the banded bars indicate
horizontal position not counts.

deviations better than the set, and is shown as a banded
bar. Also shown is the result of adding 10 density-threaded
trajectories [2].

The estimated sampling density used for density correc-
tion is shown in Figure 4. For display purposes, the corrected
sampling density is shown, in which the uniformity of the
bright pixels reflects the quality of the correction. Recall that
only 1.54% of grid points in k-space contain a sample point
at this reconstructed resolution.

A better measure of the quality of the set of trajectories,
together with the density correction, is given by the psf
(Figure 4), which predicts very little blurring and a low level
of noise-like aliasing.

Because it is difficult to inspect more than a planar
cross-section of the psf at a time, it is hard to appreciate
the extent to which the noise-like aliasing accumulates in
three dimensions. This is demonstrated using a numerical
phantom consisting of four rings of varying sizes, Figure 5.

The phantom was chosen to be readily identifiable in
cross-section, and in volume/surface rendering. The appar-
ent noise will increase as a function of the total signaling
volume; the phantom represents a midway point between
contrast-enhanced MR angiography (with a small blood
volume producing signal) and anatomical imaging. Four
different reconstructions of the central x-y cross-section are
shown in Figure 6.

The uniform reconstruction shows significantly more
alias noise in the periphery of the image than the 32
surface-coil reconstruction. For measurement noise, this is
as expected, since the coils are more sensitive near the
periphery. For the noise-like aliasing artifact, a similar
phenomenon is in operation. The true image is multiplied by
the coil sensitivity, which is then corrected when performing
multicoil combination. The artifacts are also modulated by
the sensitivity, but since they are delocalized (by definition),
they are not corrected during combination, and hence

(a)

(b)

Figure 4: Above: cross-section of the computed sampling density
used in reconstruction. (Below) cross-section of the psf, expanded
using 8X Fourier interpolation.

Figure 5: Surface rendering (OsiriX [23]) of solid rings recon-
structed with 178 arcs and 32 noisy coils.

partially cancel each other out. This is more apparent where
the sensitivities vary (the periphery) than where they are
relatively uniform (the center).

The noisy multiple and single surface coil images (lower
row) show typical loss of sensitivity by the center of the
phantom for a single channel, which is reduced in the
combined image. The 32-coil noisy image shows visually
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Figure 6: Four identical cross-sections showing, reconstruction
with a uniform coil (top left), with 32 dipole coils (top right), with
one dipole coil including noise (bottom right), and 32 dipole coils
including noise (bottom left).

Figure 7: Reconstruction of a cubic phantom using 178 trajectories.
(Left to right) Original 32-channel reconstruction, image showing
some edge enhancement after one gradient step, and the gradient
(not to scale).

equal noise levels to the first two images, but with different
(higher) frequency composition.

Iterative methods have been successfully used in planar
imaging to reduce spiral artifacts by using a priori infor-
mation about multiple coil sensitivities, notably using the
conjugate gradient method [17]. This does not produce
visible reductions in aliasing in this case. What it can
do is reducing the effect of blurring, as is visible in the
reconstruction of a 163 voxel uniform box. Figure 7 shows
the result of the first step common to steepest-descent and
the conjugate gradient method. Figure 8 shows the residual
decreasing for the first step, and starting to diverge thereafter,
with two coil configurations, and simple and complex
phantoms. This is not very surprising. Adapted methods
have been proposed for ill-posedness [24] and round-off
errors [25], but are beyond the scope of this paper.

A common cross-section is displayed of the original
solution, the result after one step, and a scaled version of the
gradient (using, in the electronic edition, different colors for
positive and negative pixel values). What aliasing artifact is
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Figure 8: L2 difference between true image and reconstruction
after conjugate gradient iterations.

present is either unchanged or enhanced by the gradient step,
while softening of the edges is clearly reduced.

4. DISCUSSION

The psf and numerical phantoms presented here show that
Durga is a very promising approach to designing trajectories
for volumetric imaging. Pseudorandom trajectory design
visibly eliminates coherent aliasing artifacts in numerical
simulations.

Using the GA increases the flexibility of this method and
increases the quality of the solutions. There is a marked
difference in quality between randomly generating subsets
and using the GA to improve a population. After filtering out
inferior individual trajectories, randomly selecting subsets
produced surprisingly little variation in the quality of the
psf. Initial attempts in using genetic algorithms based on
randomly chosen initial points and unfiltered trajectories
were not able to beat the heuristic in [2], so success of
the GA depends very much on a careful formulation, and
even then, it is unlikely that the global optimum will
be reached. Unfortunately, it is also considerably more
expensive. Additional work should focus on improving
individual trajectories before starting the GA.

The modest improvement produced by steepest descent
means that the sampling patterns are so efficient that little
additional information can be extracted by a parallel recon-
struction taking advantage of geometric coil information,
at least with the present coils. We conjecture that the
randomness optimized to make the psf flat produces a large
cluster of small eigenvalues in the operator being iterated in
the CG step, causing the CG to begin diverging after one
iteration.

We are planning modifications of the basic trajectory
design to quantify the first effect, and working with partners
to collect data to evaluate the second. In any case, multiple
coil reconstruction using coil sensitivities does reduce the
apparent noise, which is important to end users.

We will also investigate compressed sensing reconstruc-
tions [26] which require incoherent aliasing artifacts such
as those presented in this work, because in such cases
“randomness is too important to be left to chance” [26].



6 International Journal of Biomedical Imaging

REFERENCES

[1] T. Knopp, S. Kunis, and D. Potts, “A note on the iterative MRI
reconstruction from nonuniform k-space data,” International
Journal of Biomedical Imaging, vol. 2007, Article ID 24727, 9
pages, 2007.

[2] C. K. Anand, A. T. Curtis, and R. Kumar, “Durga: a
heuristically-optimized data collection strategy for volumetric
magnetic resonance imaging,” Engineering Optimization, vol.
40, no. 2, pp. 117–136, 2008.

[3] K. S. Nayak and D. G. Nishimura, “Randomized trajectories
for reduced aliasing artifact,” in Proceedings of the 6th Annual
Meeting of the International Society for Magnetic Resonance in
Medicine (ISMRM ’98), p. 670, Sydney, Australia, April 1998.

[4] R. Ahmad, Y. Deng, D. S. Vikram, et al., “Quasi Monte
Carlo-based isotropic distribution of gradient directions for
improved reconstruction quality of 3D EPR imaging,” Journal
of Magnetic Resonance, vol. 184, no. 2, pp. 236–245, 2007.

[5] B. A. Hargreaves, D. G. Nishimura, and S. M. Conolly, “Time-
optimal multidimensional gradient waveform design for rapid
imaging,” Magnetic Resonance in Medicine, vol. 51, no. 1, pp.
81–92, 2004.

[6] A. Oppelt, R. Graumann, H. Barfuss, H. Fischer, W. Hartl, and
W. Shajor, “Fisp—a new fast mri sequence,” Electromedica, vol.
54, no. 1, pp. 15–18, 1986.

[7] C. K. Anand, M. Thompson, D. Wu, and T. Cull, “Teardrop, a
novel trajectory for truefisp,” in Proceedings of the 9th Annual
Meeting of the International Society for Magnetic Resonance in
Medicine (ISMRM ’01), p. 1804, Glasgow, UK, April 2001.

[8] C. K. Anand, T. Ren, and T. Terlaky, “Optimizing Teardrop, an
MRI sampling trajectory,” Optimization Methods and Software.
In press.

[9] K. S. Nayak, B. A. Hargreaves, B. S. Hu, D. G. Nishimura, J.
M. Pauly, and C. H. Meyer, “Spiral balanced steady-state free
precession cardiac imaging,” Magnetic Resonance in Medicine,
vol. 53, no. 6, pp. 1468–1473, 2005.

[10] B. M. Dale, J. S. Lewin, and J. L. Duerk, “Optimal design of k-
space trajectories using a multi-objective genetic algorithm,”
Magnetic Resonance in Medicine, vol. 52, no. 4, pp. 831–841,
2004.

[11] K. K. Vigen, D. C. Peters, T. M. Grist, W. F. Block, and C. A.
Mistretta, “Undersampled projection-reconstruction imaging
for time-resolved contrast-enhanced imaging,” Magnetic Res-
onance in Medicine, vol. 43, no. 2, pp. 170–176, 2000.

[12] J. Du, S. B. Fain, F. R. Korosec, T. M. Grist, and C. A.
Mistretta, “Time-resolved contrast-enhanced carotid imaging
using undersampled projection reconstruction acquisition,”
Journal of Magnetic Resonance Imaging, vol. 25, no. 5, pp.
1093–1099, 2007.

[13] J. Du, F. J. Thornton, S. B. Fain, et al., “Artifact reduction in
undersampled projection reconstruction MRI of the periph-
eral vessels using selective excitation,” Magnetic Resonance in
Medicine, vol. 51, no. 5, pp. 1071–1076, 2004.

[14] R. Mir, A. Guesalaga, J. Spiniak, M. Guarini, and P. Irarrazaval,
“Fast three-dimensional k-space trajector design using missile
guidance ideas,” Magnetic Resonance in Medicine, vol. 52, no.
2, pp. 329–336, 2004.

[15] J. Spiniak, A. Guesalaga, R. Mir, M. Guarini, and P. Irarrazaval,
“Undersampling k-space using fast progressive 3D trajecto-
ries,” Magnetic Resonance in Medicine, vol. 54, no. 4, pp. 886–
892, 2005.

[16] A. V. Barger, W. F. Block, Y. Toropov, T. M. Grist, and
C. A. Mistretta, “Time-resolved contrast-enhanced imaging
with isotropic resolution and broad coverage using an under-

sampled 3D projection trajectory,” Magnetic Resonance in
Medicine, vol. 48, no. 2, pp. 297–305, 2002.

[17] K. P. Pruessmann, M. Weiger, P. Börnert, and P. Boesiger,
“Advances in sensitivity encoding with arbitrary k-space
trajectories,” Magnetic Resonance in Medicine, vol. 46, no. 4,
pp. 638–651, 2001.

[18] J. G. Pipe and P. Menon, “Sampling density compensation in
MRI: rationale and an iterative numerical solution,” Magnetic
Resonance in Medicine, vol. 41, no. 1, pp. 179–186, 1999.

[19] F. Wajer, R. Lethmate, J. van Osch, D. Graveron-Demilly,
and D. van Ormondt, “Simple formula for the accuracy
of gridding,” in Proceedings of the 9th Annual Meeting of
the International Society for Magnetic Resonance in Medicine
(ISMRM ’01), Glasgow, UK, April 2001.

[20] V. Rasche, R. Proksa, R. Sinkus, P. Börnert, and H. Eggers,
“Resampling of data between arbitrary grids using convolu-
tion interpolation,” IEEE Transactions on Medical Imaging, vol.
18, no. 5, pp. 385–392, 1999.

[21] J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski,
“Selection of a convolution function for Fourier inversion
using gridding,” IEEE Transactions on Medical Imaging, vol. 10,
no. 3, pp. 473–478, 1991.

[22] C. K. Anand, T. Terlaky, and B. Wang, “Rapid, embeddable
design method for spiral magnetic resonance image recon-
struction resampling kernels,” Optimization and Engineering,
vol. 5, no. 4, pp. 485–502, 2004.

[23] A. Rosset, L. Spadola, and O. Ratib, “OsiriX: an open-source
software for navigating in multidimensional DICOM images,”
Journal of Digital Imaging, vol. 17, no. 3, pp. 205–216, 2004.

[24] B. Eicke, A. K. Louis, and R. Plato, “The instability of
some gradient methods for ill-posed problems,” Numerische
Mathematik, vol. 58, no. 1, pp. 129–134, 1990.
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