
Since the first wave of whole genome sequencing in the 
early 2000s [1-7], teams of investigators have developed open 
genetic, genomic, and transcriptomic resources to study the 
eye, visual system, and blinding diseases [8-12]. Over this 
same period, the costs of generating high-quality phenome 
and genome data have been decreased, and data quality 
and throughput have improved greatly. We are now at the 
point that is practical to consider in-depth analyses across 
large cohorts of human populations and rodent models. In 
the case of isogenic cohorts of mice and rats, the analysis 
of single genomes can be extended to multiple time points 
during development, aging, and in the progression of blinding 
diseases, making it possible to study gene-by-environmental 
and gene-by-treatment effects in ways that have high trans-
lational relevance to human clinical disease. A second major 
advance is our ability to systematically define and validate 
causal gene variants with increasing precision, power, and 
efficiency [13,14]. We can then move on to the more impor-
tant stage of research to probe linked molecular and cellular 
networks associated with variation in the eye and visual 
system structure, function, disease, and treatment. For the 
first time, we can, in principle, combine a systems approach 
across the entire visual system (from the cornea to the cortex 
to visually guided behavior) using global omics and genetic 
methods, including epigenomic, proteomic, metabolomic, and 

lipidomic methods. When this omics combination is coupled 
with classic genetics (i.e., genetically diverse populations), it 
is referred to as systems genetics; essentially systems biology 
but in a rich genetics and omics context [2,3,15].

Progress in systems genetics was driven by the develop-
ment of greatly expanded families of fully isogenic replicable 
cohorts [16,17], in particular the BXD strain set (parental 
strains, the C57BL/6J mouse and the DBA/2J mouse, Figure 
1) [18,19], the AXB/BXA strain set (parental strains, the AJ 
mouse and the C57BL/6J mouse) [20], and the collaborative 
cross (CC,) [21,22]. In addition, the CC is used to create the 
mouse diversity outbred strains [23,24]. These recombinant 
inbred strains have been used in studies of the visual system, 
focusing mainly on the retina [17,25-28]. Table 1 lists the 
attributes of each strain and the strain set–specific tools avail-
able for data analysis. Each recombinant inbred strain has its 
advantages. The AXB strains were used extensively to map 
quantitative trait loci (QTLs) modulating cell number in the 
retina [29,30]. The disadvantage of this strain set is that there 
are a limited number of strains (now in cryopreservation) and 
only one data set for transcriptome analysis of the whole eye. 
The CC has the advantage of an extremely diverse genetic 
background with eight parental mouse strains contributing 
to the overall genetic diversity. Seventy-five strains are avail-
able from the Jackson Laboratory; however, this strain set is 
not widely used in vision research. All of the recombinant 
inbred strains have the distinct advantage of resampling the 
same genetic background. This ability to resample decreases 
the contribution of environmental variance and dramatically 
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enhances the ability to accurately map QTLs. The fact that 
mice cannot be resampled in the mouse diversity panel is a 
decidedly distinct disadvantage.

At the present time, the BXD family is one of the preemi-
nent platforms for systems biology to study the visual system 

and neurodegeneration [12,15,27,31-34]. The BXD family 
consists of 150 strains that segregate at more than 6 million 
sequence variants—a level comparable to many human 
cohorts used in genome-wide association studies (GWASs) 
[19]. There are several advantages vis-à-vis studies of human 

Figure 1. The breeding strategy for creating the BXD recombinant inbred strains is shown. The parental strains were C57BL/6J female mice 
and DBA/2J male mice. The mice were bred to produce an F1 cross, and the F1 mice were bred again to produce an F2 generation. The 
mice were inbred through brother-sister mating for at least 20 generations to produce inbred sub-strain populations. Currently, 150 BXD 
strains are available.

Table 1. Comparison of Strain Sets Commonly Used in Vision Research.

Features BXD AXB CC Diversity outbred
Number of parental strains 2 2 8 8
Number of Strains 202 25* 75 Unlimited
Resampling Yes Yes Yes No
Fully sequenced No No Yes No
Fully mapped genome Yes Yes Yes No
Bioinformatic tools GeneNetwork GeneNetwork SPARCC** No
Eye transcriptome datasets 2 1 0 0
Retina transcriptome datasets 4 0 0 0

*Cryopreserved Jackson Laboratories **Simulated Power Analysis in the Realized Collaborative Cross [1,119]
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cohorts: efficient experimental procedures and therapeutics, 
access to cells and tissues at any time point under many 
controlled conditions, high statistical power (resampling 
individual isogenic genotypes), high mapping precision 
(often better than 2 mega-bases), the ability to study gene-by-
environmental interactions, and faster exploration and testing 
of the potential and the limitations of precision medicine.

The BXD family (Figure 1) was derived by crossing two 
of the most widely used inbred strains of mice: C57BL/6J 
(B6) and DBA/2J (D2). The B6-by-D2 offspring (BXD) were 
then inbred along separate lines until each line was fully 
inbred. Each of the 150 BXD progeny strains is essentially 
immortal and a fully inbred sibling. Some of these strains 
have been used for nearly 25 years for rigorous quantitative 
analysis of the visual system and the retina structure [35], 
cortical plasticity [27,36], as well as for studies of eye and 
retinal transcriptomes [1,37].

The development of the BXD family was begun by 
Benjamin A. Taylor in about 1973. He generated the two 
sets of these strains (BXD1 to BXD32 [38], and then BXD33 
to BXD42 [18]) at the Jackson Laboratory. BXD43 through 
BXD102 were generated by Lu Lu, Jeremy Pierce, and 
colleagues in the late 1990s and early 2000s using advanced 
intercross progeny [39]. Recent efforts by our group have 
increased the number of BXD progeny to 150 living strains. 

All are currently available from either the Jackson Laboratory 
or the University of Tennessee Health Science Center. All 
have been fully sequenced (this is publicly available) [19].

The BXD family incorporates a comparatively high level 
of genetic diversity and can serve as a robust animal model 
for some human ophthalmic diseases and developmental 
abnormalities. The use of sophisticated molecular, imaging, 
and phenotyping methods across such a large set of fully 
sequenced and isogenic (reproducible) lines of mice opens 
up new opportunities in an experimental version of precision 
medicine. We focus on the eye, retina, and primary visual 
system. The BXD family of strains offers a unique resource 
for the vision research community with several advantages. 
Across the strains, there is a relatively high level of diversity 
in phenotypes. For example, the total population of retinal 
ganglion cells per eye varies from about 50,800 ± 1,100 in 
BXD27 to 75,800 ± 2,000 in BXD32 [40]. The practicality 
of resampling each genome many times—for example, to 
gain precise estimates of RGC numbers—greatly reduces 
non-genetic sources of variance and boosts the effective 
heritability of traits. This makes it possible to map and even 
clone the most stubborn and noisiest phenotypes. Initial 
studies by our group explored the genetic diversity within 
the BXD family to define genetic, molecular, and phenotypic 
networks active in the eye (Table 2).

Table 2. BXD Microarray Databases Available on GeneNetwork.

Retina RNA
DoD CDMRP Retina Affy MoGene 2.0 ST (May 2015) RMA Gene Level
DoD CDMRP Retina Affy MoGene 2.0 ST (May 2015) RMA Exon Level
Full HEI Retina Illumina V6.2 (April 2010)
HEI Retina Normal Illumina V6.2 (April 2010)
DoD Retina After Blast Affy MoGene 2.0 ST (May 2016) RMA Gene Level
DoD Retina Blast vs. Normal Affy MoGene 2.0 ST (May 2016) RMA Gene Level
DoD Retina after Blast Affy MoGene 2.0 ST (May 2016) RMA Exon Level
ONC HEI Retina (April 2012) RankInv
HEI ONC vs Normal HEI Retina Illumina V6.2 (Sept 2011) RankInv
Eye RNA
Eye M430v2 (September 2008) RMA
Eye M430v2 No Mutant/Mutant (April 2012) RMA
Eye M430v2 Mutant Gpnmb (September 2008) RMA
Eye M430v2 WT Gpnmb (September 2008) RMA
Eye M430v2 Mutant Tyrp1 (September 2008) RMA
Eye M430v2 WT Tyrp1 (September 2008) RMA
Eye M430v2 WT WT (September 2008) RMA
Howell et al., 2011, DBA/2J Glaucoma Optic Nerve Head M430 2.0 (December 2012) RMA
Howell et al., 2011, DBA/2J Glaucoma Retina M430 2.0 (December 2012) RMA
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We have developed companion open access data 
resources and analytic tools that make the statistical and 
mapping methods far more accessible to a large community 
of vision research scientists who have matched expertise in 
molecular and cellular biology (for detailed instruction on the 
use of these resources, see Geisert et al. [1]). For example, we 
generated, collected, and curated multiple gene expression 
data sets (Table 2). Normative and experimental data sets 
facilitate the study of ocular diseases and injury in eyes [1] 
and the retinas [11,27,37,41]. The complete eye data set is the 
Eye M430v2 (Sep08) RMA which contains data from 68 BXD 
RI strains, the parental strain, the reciprocal F1 crosses, 35 
strains from the mouse diversity panel, and eye data from six 
knockout mouse lines. The other data sets are subsets taken 
from the original data. One of the parental strains contains 
mutations in two genes (Tyrp1 and Gpnmb) that contribute to 
pigment dispersion and ultimately, to glaucoma [42-44]. The 
derivative data sets are split subsamples based on the pres-
ence or absence of mutations in these two genes. For example, 
the Eye M430v2 no Mutant/Mutant (Aug12) RMA data set 
contains array data for eyes from 57 BXD strains, none of 
which have mutations in Tyrp1 or Gpnmb.

There are also several different retinal transcriptome 
data sets. The most recent exploits the Affymetrix Mouse 
Gene 2.0 ST Exon array (Santa Clara, CA) to estimate change 
in gene expression between the healthy retina and the retina 5 
days after the eye was exposed to a 50 psi blast injury ((Table 
2) [37,41]. These Affymetrix data sets include the DoD Retina 
Normal Affy MoGene 2.0 ST (May15) RMA Gene Level (the 
data set was made using healthy retinas from 59 different 
mouse strains), DoD Retina Normal Affy MoGene 2.0 ST 
(May15) RMA Exon Level (the data set explores 59 strains 
at the exon level), DoD Retina After Blast Affy MoGene 
2.0 ST (March16) RMA Gene Level (the data set consists of 
gene-level data from the retinas of 54 strains 5 days following 
blast injury), DoD Retina After Blast Affy MoGene 2.0 ST 
(March16) RMA Exon Level (the 5-day blast injury data are 
also presented at the exon level), and DoD Retina Blast versus 
Normal Affy MoGene 2.0 ST (April15) RMA Gene Level. 
The other data sets were run on the Illumina V6.2 array (San 
Diego, CA), and the difference in gene expression between 
healthy retinas and retinas 2 days after optic nerve crush was 
examined [11,27]. The arrays in the Illumina data set include 
Full HEI Retina Illumina V6.2 (April10) RankInv (the data 
set represents gene-level expression data from the healthy 
retinas from 75 BXD strains), HEI Retina Normal Illumina 
V6.2 (April10) RankInv (the data set is similar to that for the 
full retina with the removal of data from six strains with high 
levels of glial fibrillary acidic protein (GFAP) expression), 
and ONC HEI Retina (April12) RankInv (the data set consists 

of retinal samples 2 days after optic nerve crush). These BXD 
data sets provide a large resource that is especially useful for 
characterizing molecular and genetic networks in the eye, and 
for tracking down sequence variants related to the injury or 
disease susceptibility [1,11,45,46]. Furthermore, all the retinal 
mRNA profile data from healthy and injured conditions 
are accessible by the public on GeneNetwork, along with a 
sophisticated array of bioinformatic tools.

Defining genetic networks active in the eye and the retina: 
The eye and retina transcriptome data sets provide powerful 
tools for defining the genetic profiles of specific ocular 
tissues and cell types [1,47,48]. In the HEI Eye Data Set, 
signature transcript profiles can define the genes expressed 
in the cornea to retinal ganglion cells [1]. The large micro-
array data sets also allow us to define genetic networks active 
within the retina and the changes in these networks that occur 
after injury [11,49]. One example is the activation of an innate 
immune network within the retina following optic nerve 
crush or blast injury to the eye. Using four comprehensive 
and complementary transcriptome data sets (the healthy 
retina and the retina 2 days after optic nerve crush, along 
with the healthy retina and the retina 5 days after blast injury, 
gn2.GeneNetwork.org), we examined changes that occur in 
gene expression profiles after optic nerve crush or after blast 
injury. Our group found an innate immune network that is 
rapidly activated after injury to the retina [11,41]. This work 
added to the previous work of others that showed members 
of the complement cascade are involved in retinal injury 
and glaucoma [50-53]. The importance of this complement 
network in glaucoma was revealed by knocking out C1qa on a 
DBA/2J background. In these animals, pigmentary dispersion 
glaucoma and elevated intraocular pressure (IOP) occur, but 
the expected loss of axons in the optic nerve is dramatically 
mitigated [53]. Thus, C1QA, and potentially, the complement 
cascade, plays a pivotal role in the degeneration of axons 
within the optic nerve of the DBA/2J glaucoma mouse model.

An examination of the changes in the expression of C1qa 
and C4 following optic nerve crush or blast injury led to the 
identification of a genetic network activated by injury. The 
prominent genes in this network are members of the innate 
immune system. Defining the activation of these genetic 
pathways was made possible by the large number of BXD 
strains in these data sets [1,11]. The power of this research 
effort allows us to define genetic networks in the healthy 
mouse retina and genetic networks activated by injury (based 
on 61 BXD strains). If we look at the distribution of C4b 
across the BXD RI strain set, we can see that selected animals 
have high levels of expression. If we compare the top 100 
correlates of C4b in the injured retina to those in the healthy 
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retina, then there is clear upregulation of the expression of 
these genes, and the genes are more highly correlated than 
observed in the healthy retina database (Figure 2). Exam-
ining cellular markers in the activated network, it appears 
that retinal microglia are the main cellular component of the 
innate immune response in the retina [11]. Defining the innate 
immune genetic network in the retina illustrates the power of 
the BXD strain set to examine the coordinated activation of 
genomic elements.

Systems biology of ocular phenotypes: One of the primary 
uses of the BXD family is to map QTLs that modulate 

ocular phenotypes or functional aspects of the visual system. 
Our group has conducted studies on several morphometric 
features, beginning with ganglion cell number [35], eye size, 
lens weight, and retinal area [54]. Examination of one of the 
targets of the retina, the lateral geniculate nucleus (LGN), in 
the BXD strains, led to interesting correlations between the 
number of RGC neurons and the number of neurons in the 
lateral geniculate nucleus. The study of the LGN is a good 
example of how systematically generating quantitative data 
across the BXD family can lead to substantial revisions in 
our understanding of the visual system [55]. Before the LGN 

Figure 2. The activation of the innate immune network following ONC is illustrated. A: Following damage to the optic nerve, the retina 
responds with the retinal ganglion cells undergoing degeneration and the microglia and macroglia (astrocytes and Müller cells) responding 
to the insult. B: One of the responses is upregulation of components of the innate immune system. The genes that are upregulated by injury 
are shown. There is also an increased correlation across the BXD strains from the healthy retina (C) to the retina 2 days after injury (D). 
The network map for selected genes from the innate immune system illustrates the increased correlation in the retina 2 days after optic 
nerve crush (ONC). In the mouse, C1q is represented by three separate genes, and all three genes (C1qa, C1qb, and C1qc) behave similarly. 
The colored lines indicate the Pearson correlation between the genes with the red lines representing r>0.7 and the orange lines representing 
r>0.5. Selected genes from the innate immune network are shown in two plots. Notice the increased correlation in the genes of the innate 
immune network following ONC. These data demonstrate the power of comparing and contrasting two different data sets: the healthy retina 
and the retina after ONC.
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work, it was universally thought that the numbers of RGC 
neurons and neurons in the LGN were jointly titrated during 
development to some optimal functional stoichiometry—for 
example, to a relative tightly adjusted ratio between RGC 
neurons and their principal targets in the LGN. However, 
Seecharan and colleagues [55] refuted this neat numerical 
matching hypothesis. Across 56 strains, the correlation 
between the numbers of RGC and LGN neurons is merely 
0.01, strong evidence that interconnected neurons in these two 
regions are not jointly controlled by either genetic or devel-
opmental mechanisms. Other families of inbred strains were 
used to examine other cell types within the retina [30,48,56-
61]. Finally, recent studies used the BXD strain set to examine 
the regenerative capacity of axons in the optic nerve [62]. All 
of the phenotypic data are available on GeneNetwork under 
BXD Phenotypes.

The tools and databases presented in GeneNetwork were 
used to examine genetic regulation of factors associated with 
glaucoma risk in humans [63]. Glaucoma affects millions of 
people worldwide [64,65] and is the second leading cause of 
blindness in the United States [66]. Adult-onset glaucoma is 
a collection of diseases with multiple risk factors and genes 
that ultimately affect the loss of RGCs [67-69]. The severity 
of primary open angle glaucoma (POAG) is dependent on 
the interaction of multiple genes, age, and environmental 
factors [70]. The primary risk factor is elevated IOP [71]. 
There are known genetic mutations that affect IOP that result 
in inherited glaucoma [72,73]. Since the Ocular Hyperten-
sion Treatment Studies (OHTS) [63] and others’ subsequent 
independent findings [74,75], several phenotypic risk factors 
for POAG have been identified. Two of these glaucoma risk 
factors are IOP and central corneal thickness (CCT). We iden-
tified genes modulating these phenotypic factors in the mouse 
and examined human glaucoma to determine the potential 
role of these genes in human populations. As an alternative 
approach to human GWASs, we used mouse model systems to 
define genes regulating ocular phenotypes and potential links 
between these ocular traits and glaucoma risk [76]. These 
mouse models aid not only in defining genes involved in glau-
coma risk but also in understanding the disease mechanism 
along with potential therapeutic interventions [77,78].

Regulation of IOP: The BXD family was used in three studies 
to examine QTLs modulating IOP in the mouse [12,25,28]. We 
know a considerable amount about the regulation of IOP from 
the production of aqueous humor to the outflow pathways 
[79,80]. We also know that IOP is a complex trait affected by 
different tissues in the eye each of which may be regulated by 
multiple genes. Interestingly, until recently few studies [81-86] 
had identified genomic loci in humans modulating healthy 

IOP. Recent work using the eye phenotypic data from the UK 
Biobank identified several genes modulating IOP in human 
populations [87-89]. Lu et al. [28] examined the regulation of 
IOP in BXD strains relative to pigment dispersion (transil-
lumination deficit), time of day, and age. The study found that 
IOP across the full array of BXD strains was independent of 
transillumination defects or the time of day. There was no 
single genomic locus identified in this study that was found to 
modulate IOP in this set of BXD strains. The second study by 
Chintalapudi et al. [25] examined 65 BXD strains and found 
a significant QTL peak on chromosome 5. Within this QTL, 
one gene (Cacna2D1) was identified as a likely candidate 
for modulating IOP in the mouse. When the , National Eye 
Institute Glaucoma Human genetics collaBORation Heritable 
Overall Operational Database (NEIGHBORHOOD) GWAS 
was examined, calcium channel, voltage-dependent, alpha 
2/delta subunit 1 (CACNA2D1-HGNC: 1399 Entrez Gene: 
781 Ensembl: ENSG00000153956 OMIM: 114204) had a 
nominal association with POAG (p<0.001). This protein 
was also found to be highly expressed in the ciliary body 
and displayed expression in the trabecular meshwork. The 
identification of this candidate gene, Cacna2d1, provided a 
promising new target for therapeutic intervention to modu-
late IOP in POAG. The third study by King et al. [12] used 
38 BXD strains, none of which carried the two mutations 
(Tyrp1 and Gpnmb) that result in pigment dispersion and 
elevated IOP. The genome-wide interval map identified one 
significant peak on chromosome 8 that lies in a gene desert. 
Within this region, there are only four annotated genes: 
Gm15679 (predicted gene 15,679), Cdh8 (cadherin 8), Cdh11 
(cadherin 11), and Gm8730 (predicted gene 8730). Defining 
good candidate genes within the QTL requires a genomic 
element that eventually affects protein function. There are 
several possibilities: an increase or decrease in the amount of 
transcript produced by each strain, resulting in differences 
of protein expression or a difference in RNA levels (specifi-
cally non-coding RNAs or microRNAs). Another possibility 
is there is a mutation in the transcript that affects its function. 
For a protein, this would represent a non-synonymous single 
nucleotide polymorphism (SNP) that has a deleterious effect 
on protein function. For RNA, it would represent a sequence 
change that alters the function of the RNA. Using the tools 
available on GeneNetwork, we were able to identify candidate 
genes, particularly those associated with so-called cis-QTLs 
[1] or with nonsynonymous SNPs changing protein sequence 
and affecting protein function [47]. There are only two strong 
candidate genes, Cdh11 and Cdh8. Neither has cis-QTLs in 
eye or retinal data sets [1,37]. Both have non-synonymous 
SNPs. Based on expression levels and on Sorting Intolerant 
from Tolerant (SIFT) analysis (a test designed to define SNPs 
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that affect protein function), Cdh11 was the single strongest 
candidate. Examining human RNA sequencing (RNA-seq) 
data for the trabecular meshwork [90], we found expression 
of CDH11 is 55 times higher than that of CDH8. Cadherin 
11 was also found in structures associated with the control 
of IOP. In sections of the mouse eye stained for cadherin 11, 
there was antibody-specific staining of the trabecular mesh-
work, the endothelial cells of the canal of Schlemm, and other 
structures within the angle of the eye. The expression pattern 
of cadherin 11 in the cells of the trabecular meshwork and 
the canal of Schlemm is appropriate for a protein involved in 
regulation of IOP. After we found these results in the mouse, 
two human GWASs identified cadherin 11 (CDH11-HGNC: 
1750 Entrez Gene: 1009 Ensembl: ENSG00000140937 
OMIM: 600023) as a gene involved in the regulation of IOP 
in humans [87,88]. Recent studies demonstrated that CDH11 
is also a glaucoma risk factor [91]. These data revealed that 
cadherin 11 is a modulator of IOP and a risk for glaucoma.

Cadherins play an important role in cell–cell adhesion 
[92-94], and trabecular meshwork cells express several family 
members, including VE-cadherin (cadherin 5), K-cadherin 
(cadherin 6), OB-cadherin (cadherin 11), cadherin 19, and 
N-cadherin (cadherin 2) [95-97]. In the trabecular mesh-
work, cadherins can be modulated by TGFβ [98]. In culture, 
treating trabecular meshwork cells with Wnt3a causes an 
increase in cadherin 11 expression, resulting in enhanced 
cell–cell adhesion. The levels of cadherin 11 can also be 
affected by the wingless (Wnt)/β-catenin pathway [99]. Wnt 
signaling is known to increase membrane associated cadherin 
6 [100]. The TGFβ and Wnt/β-catenin pathways interact with 
each other in modulating cadherin expression, specifically 
cadherin 2, cadherin 6, and cadherin 11. The upregulation 
of these cadherins in cultured trabecular meshwork cells 
enhances the adhesion between the cells resulting in an 
increase in resistance across the culture cell monolayers. The 
interaction between the Wnt signaling pathway and cadherins 
appears to be important in the regulation of IOP. The Clark 
group [101] found that increasing TGFβ elevates IOP while 
the Wnt pathway maintains IOP homeostasis. We have shown 
that Cdh11 modulates IOP in the mouse [34]. Others have 
implicated CDH11 in IOP regulation in humans [87,88]. It 
appears to be part of an integral network involved in TGFβ 
and the Wnt/β-catenin signaling that modulates cell adhesion 
between trabecular meshwork cells. These interactions play 
an important role in the regulation of IOP and potentially 
form the basis of the role of CDH11 in glaucoma [91].

Susceptibility of RGCs to injury: To define genomic elements 
modulating the susceptibility of RGCs to injury, we exam-
ined axon loss in 49 BXD strains that had magnetic beads 

injected into the anterior chamber of one eye blocking the 
trabecular meshwork and elevating IOP [49]. When the 
number of axons in the healthy retina and the number of 
axons following elevated IOP were used to generate genome-
wide interval maps, they revealed the same suggestive QTLs 
on proximal chromosome 3. Neither the healthy nerve nor 
the optic nerve after elevated IOP had QTLs that reached a 
level of statistical significance (p>0.05). To define genomic 
loci that could modulate the susceptibility of RGCs to death, 
the loss of axons per strain was calculated by subtracting the 
mean number of axons in bead-injected eyes from the mean 
number of axons in healthy eyes for each strain. The genome-
wide interval map revealed a single statistically significant 
genomic locus on chromosome 18 (54 to 56 Mb). Within 
this locus, there were no non-synonymous SNPs that could 
account for the allelic differences between the C57BL/6J and 
DBA/2J mice. One gene, Aldh7a1, had a significant linkage 
related score (LRS = 31, p<0.01, Probe 17,354,434). Aldh7a1 
was the single cis-eQTL within this interval.

The distribution of the ALDH7A1 protein in retinal 
sections or flatmounts reveals it is within RGCs that are 
colabeled with RGC markers TUJ1 or RBPMS [48,102]. 
ALDH7A1 staining was relatively ubiquitous in the cell body 
and axons but absent from the nucleus. These results are in 
line with other studies that demonstrated mitochondrial and 
cytosolic localization of ALDH7A1 in humans and rodents 
[103-105].

It is interesting to speculate about the potential role of 
ALDH7A1 in glaucoma risk. ALDH7A1 is involved in the 
metabolism of acetaldehyde to acetic acid. This process also 
involves metabolism of NAD. This coregulation of NAD may 
have a direct effect on axon and neuronal survival. These 
data suggest that allelic differences in ALDH7A1 may affect 
mitochondria function resulting in the susceptibility of RGCs 
to death. Previous work revealed that mitochondrial function 
is critical for RGC survival. The prime example is an inter-
esting murine mutation that affects Wallerian degeneration in 
the peripheral nervous system [106] and the central nervous 
system [107]. The mutation disrupting healthy axon degenera-
tion is a chimeric protein made up of Ube4b and Nmnat1 that 
produces the Wallerian Degeneration Slow (Wlds) protein. 
The effect of Wlds on axonal degeneration is due to local 
activity in the axon itself. The chimeric protein localizes 
not only to the nucleus but also in small axonal pools [108], 
causing a local increase in NAD+. In a rat model of glaucoma, 
Wlds was shown to protect axons from degeneration, but did 
not appear to alter the fate of the neuronal cell bodies [109]. 
In the D2 mouse model of glaucoma, supplementing the 
diet with NAD or overexpressing Nmnat1 partially protects 
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against glaucomatous degeneration [110]. When the mutation 
in WLDs was put on the D2 background, and the mouse was 
supplemented with NAM (nicotinamide, a NAD precursor), 
there was almost complete rescue from the effects of glau-
coma with 94% of the treated eyes not developing glaucoma 
[78]. It is possible that the interactions of ALDH7A1 with 
NAD are in part responsible for the glaucoma risk inferred 
by specific mutations in this protein.

Central corneal thickness and glaucoma: The BXD strains 
were used to define a genetic link between CCT and glaucoma 
risk [12]. CCT is one of the most heritable ocular phenotypes, 
and it is also a risk for developing POAG [111-113]. Thinner 
corneas are associated with an increased risk of developing 
POAG, and this risk is independent of the confounding effects 
of CCT on intraocular pressure measurements [63,75]. A 
thinner CCT is also associated with increased severity of 
visual field loss and more rapid progression of the disease 
[66,70,114]. Pou6f2 was identified as a gene that modulates 
CCT in the mouse, and in the NEIGHBORHOOD human 
glaucoma database, POU6F2 (HGNC: 21694 Entrez Gene: 

11281 Ensembl: ENSG00000106536 OMIM: 609062) is a risk 
factor for human glaucoma [91,115,116].

CCT was measured in 61 BXD RI strains (Figure 3), and 
a single significant QTL (Figure 3) was identified on chro-
mosome 13 (13 to 19 Mb). Within this QTL, there was only 
one candidate gene Pou6f2 that contained non-synonymous 
SNPs in the mouse. The syntenic regions in the human were 
examined by Wiggs and colleagues in the NEIGHBOR-
HOOD database [117] to determine if there are potential risk 
factors for glaucoma in this region. The top 50 SNPs were all 
associated with one gene (POU6F2). The highest statistically 
significant level was a probability of 10−6 for SNP rs76319873. 
This combined approach identified Pou6f2 as a gene that 
modulates CCT in the mouse and a risk factor for primary 
open angle glaucoma [91].

POU6F2 was first described as a novel POU-domain 
transcription factor in the retina [118], and it identified a 
subpopulation of RGCs. We have independently confirmed 
these findings and found that Pou6f2 is part of a genetic 
network found in mouse RGCs [48]. The first hint of the link 

Figure 3. Central corneal thickness was measured using optical coherence tomography (OCT) in A. B: The difference in the central corneal 
thickness (CCT) can be seen in the 61 BXD strains measured. C: Interval map of the CCT across the mouse genome. The total linkage related 
score (LRS) is indicated with a blue line. The red line illustrates the contribution from the B6 allele and the green line the contribution from 
the D2 allele. Across the top of the figure, the genome is indicated from chromosome 1 to chromosome X. On the y-axis is the LRS. Notice 
one statistically significant quantitative trait locus (QTL) peak on chromosome 13 (above the pink line, p = 0.05) and additional suggestive 
peaks (above the gray line). D: Mice with a null mutation in Pou6f2 (n = 6) had thinner corneas than wild-type (n = 6) littermates.
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between Pou6f2 modulating CCT in the mouse and the poten-
tial role of the gene in glaucoma is revealed during the devel-
opment of the eye. POU6F2 is expressed in RGC progenitor 
cells and the cornea. In the embryonic eye, strong POU6F2 
staining was observed in neuroblasts destined to become 
RGCs. There is also staining of the developing cornea and 
corneal stem cells [12].

In flatmounts of the mouse retina, virtually all of the 
POU6F2-positive cells are labeled with RNA-binding protein 
with multiple splicing, RBPMS (Figure 4). There are cells that 
are heavily labeled (approximately 16% of RPBMS RGCs) 
and cells that are moderately to lightly labeled (approximately 
16% of the RPBMS RGCs). A few cells in the amacrine cell 
layer are POU6F2 positive, and all of these cells are also 
labeled with RBPMS, suggesting that these cells are displaced 
ganglion cells. In retinas 28 days following optic nerve crush, 
no cells in the ganglion cell layer are positive for POU6F2. 
As POU6F2 is found only in RBPMS positive cells, and as 
all of the staining for POU6F2 disappears following optic 
nerve crush, we conclude that POU6F2 labels only RGCs in 
the C57BL/6J and DBA2J mouse adult retinas.

To examine the potential role of POU6F2 in glaucoma, 
we compared the distribution of POU6F2-RGCs in four young 
D2 mice (70 days old) to four older D2 mice (8 months old). 
There was a 22% loss of RPBMS labeled RGCs in the aged 
mice, while there was a 73% loss of POU6F2 heavily labeled 

cells and a 10% loss of POU6F2 moderate to lightly labeled 
RGCs (Figure 4). These data demonstrate that heavily labeled 
POU6F2 RGCs are sensitive to early phases of glaucoma in 
the DBA/2J mouse model.

Conclusions: The BXD family and the research tools devel-
oped on GeneNetwork offer the vision research community 
a unique system for analyzing complex genomic interactions 
associated with the healthy development of the mammalian 
visual system and disease. The initial efforts of our group 
explored the genetic diversity within the BXD RI strain set 
and defined genetic networks active in the eye. As a result of 
this work, we provided the vision research community with 
the Hamilton Eye Institute Mouse Eye Database (HEIMED 
[1]). To continue our efforts in studying the complex biology 
and diseases of the eye, we created the HEI Retinal Database. 
Within this database, naturally occurring changes in the 
mRNA levels are defined as the phenotype, and the genomic 
loci modulating the differences in transcriptional control 
can be evaluated using traditional QTL mapping methods. 
Thus, the HEI Retinal Database and the DoD Normal Retina 
Database provide a transcriptome-wide analysis of the retina, 
which allows identification of the genetic variability between 
the BXD RI strains and the expression signatures of cells 
that underlie the phenotypic variation. The utility of the BXD 
strains and the expression databases offered on GeneNet-
work is demonstrated by the identification of Pou6f2 as a 

Figure 4. The selective sensitivity of POU6F2 RGC subtypes is demonstrated using the DBA/2J mouse model of glaucoma. POU6F2 (green) 
differentially labels ganglion cells (stained red with RBPMS). A: In the retina, 16.8% of the retinal ganglion cells (RGCs) are heavily labeled, 
and 16.1% of the RGCs are lightly labeled for POU6F2. In 8-month-old DBA/2J mice, there is a modest loss of RGCs with 22% loss of 
RBPMS-labeled RGCs in aged DBA/2J mice compared to young DBA/2J mice (2 months of age, young D2). The arrow heads mark heavily-
labeled RGCs and the arrows indicate lightly-labeled RGCs. B: There was a dramatic loss of 73% of the heavily labeled POU6F2-positive 
cells compared to the young D2 mice. These data demonstrate the sensitivity of the heavily labeled POU6F2 RGC subtype to glaucoma.
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modulator of CCT (a risk factor for POAG) and Cdh11 as a 
modulator of IOP (a risk factor for POAG). Both genes were 
recently identified as glaucoma risk factors [91] providing a 
genetic link between CCT and IOP to glaucoma risk.
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