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Encephalopathy with electrical status epilepticus in sleep (ESES) syndrome is characterized by a near-continuous
spike-and-wave discharges during sleep with marked developmental regression, mainly in speech, and the
presence of clinical seizures. Although the etiology ofESES is generally unknown, its resistance to antiseizure
medication (ASM), and favorable responses to oral corticosteroids (OCS), support a role for inflammation.
However, the prolonged use of OCS results in undesirable side effects and alternative treatment measures are
needed. Herein, we present a patient with ESES who revealed responsed to a combination of immunomodulating

Keywords:
Esjé?/ agents other than OCS. The patient revealed 30, 50, and 100%, reduction in the ESES pattern on EEG with the
IL-1R sequential addition of anakinra (interleukin-1f inhibitor), intravenous immunoglobulin (IVIg), and sirolimus,

mTOR inhibitor
Oral corticosteroid

an inhibitor of mammalian target of rapamycin (mTOR) respectively, after discontinuation of OCS due to side
effects. This combination of immune-modulating agents, that were selected based on monocyte cytokine profiles,
also resulted in a gradual improvement of speech and behavioral symptoms. This case indicates a possible use of
immunomodulating agents other than OCS for ESES syndrome.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Encephalopathy with electrical status epilepticus in sleep (ESES
syndrome) mainly affects children, mostly present between 2 and 14
years of age [2], and is characterized by the ESES pattern in
electroencephalogram (EEG) (originally described as >85% of status
epileptics during non-rapid eye movement sleep) and decline of
cognitive functioning with or without clinical seizures [3]. ESES
syndrome is often interchangeably called encephalopathy with
continuous spikes and waves during sleep (CSWS), defined with
prodromal EEG abnormalities followed by a CSWS pattern, and the
improvement of EEG patterns with age [4,5]. ESES may include
Landau-Kleffner syndrome (LKS) which was originally described as a
clinical syndrome with acquired aphasia and seizures [6]. Spontaneous
resolution of the ESES pattern tends to occur during puberty, but
cognitive impairment generally persists [7,8]. Etiology of ESES
syndrome is unknown in most cases, except for a small subset of ESES
patients with identifiable brain malformations or gene mutations [9,10].

* Corresponding author at: Department of Pediatrics, SPUH and Department of
Pediatrics, Rutgers-RW]J, 254 Easton Ave. New Brunswick, NJ 08901, United States.
E-mail address: hjyonouchi@saintpetersuh.com (H. Jyonouchi).

Most ESES patients without a known etiology have been treated
with ASM'AEDs (mainly benzodiazepines), and oral corticosteroids
(OCS). The therapeutic effects of ASM on ESES syndrome have been
less than satisfactory [1]. OCS tend to provide better therapeutic effects
than ASM, but OCS is not suitable for long-term use, given its significant
side effects [1,7,11]. There is an urgent need of other treatment options
for effectively controlling ESES syndrome. Immune mediated
inflammation has been suspected to play a role in ESES with unknown
etiology, considering favorable responses to OCS in ESES patients [12].
Other immunomodulating agents used for epileptic conditions other
than ESES, such as intravenous immunoglobulin (IVIg) may be
applicable for ESES. However, it should be noted that IVIg is not
universally effective in controlling epilepsy [13].

This case report describes one ESES patient who responded
unfavorably to ASM and had recurrence of ESES/cognitive impairment
after discontinuation of OCS. However, a stepwise addition of
immunomodulating agents, that were selected based on monocyte
cytokine profiles, resulted in the complete resolution of the ESES pattern
in his EEG and improvement in cognitive impairment. To our
knowledge, anakinra (IL-18 inhibitor) and sirolimus (mTOR inhibitor)
are novel therapeutic approaches for ESES. The presented case indicates
a possible application of immunomodulating agents other than OCS for
ESES syndrome.

1 Please substitute AED with ASM throughout the text.
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2. Materials and methods
2.1. The study subject

The signed consent form for preparation of this case report was
obtained prior to submission of the paper per policy of our institution.
For doing serial assays of monocyte cytokine production, he was
enrolled in a research study approved by the IRB at our institution
after obtaining a signed consent form.

2.2. Cell cultures

Purified peripheral blood monocytes (PBMo), obtained with the use
of an immunoaffinity column (monocyte separation kit Il - human,
MILTENYI BIOTEC, Cambridge, MA, United States), were used for
assessing the production of monocyte cytokines [interleukin-18 (IL-
18), IL-6, IL-10, IL-12p40, tumor necrosis factor-a (TNF-at), soluble
TNF receptor II (sTNFRII), and CC motif ligand 2 (CCL2)] by enzyme
linked immunosorbent assay (ELISA) [14]. ELISA reagents were
obtained from BD Biosciences (San Diego, CA, USA) and R & D
(Minneapolis, MN, USA). PBMo were incubated overnight with and
without stimuli of innate immunity [lipopolysaccharide (LPS) (0.1 pg/
ml, GIBCO-BRL, Gaithersburg, MD, USA), zymosan (50 pg/ml, Sigma-
Aldrich, St. Luis, Mo, USA), CL097 (20 uM, Invivogen, San Diego, CA,
USA), and candida heat extract (HCKA, 107 cells/ml, Invivogen, as a
source of B-glucan) in the same culture conditions detailed previously
[15].

3. Results
3.1. Case presentation

The patient initially presented at 6 years of age for evaluation of
possible immune abnormalities in association with ESES to the Pediatric
Allergy/Immunology Clinic. He was born at 37 weeks gestational age via
cesarean section to a mother with pre-eclampsia. His birth weight was 5
pounds 11 oz. He was noted to have hyper-echolalia, mild muscle
wasting/hypotonia, and chronic constipation around 2 years of age. An
extensive metabolic and genetic workup excluded primary
mitochondrial/metabolic disorders.
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3.1.1. ESES diagnosis

He developed normally except for mild speech delay (hyperlexia
and echolalia) until around 5 years-old, when he regressed
developmentally. Regression mainly affected speech/language, along
with onset of disturbed sleep and hyperactivity, followed by a clinical
seizure (nocturnal seizure) at 5.5 years. Neurology workup at John
Hopkins led to a diagnosis of ESES syndrome [spike-wave index (SWI)
100%] with unremarkable findings in the magnetic resonance imaging
(MRI) and cerebrospinal fluid (CSF) (Fig. 1).

3.1.2. Initial treatment measures

He revealed only temporary improvement in ESES pattern with ASM
(diazepam, divalproex, and clobazam). Three months after the
diagnosis of ESES, marked fluctuation of behavioral symptoms sets in,
triggered by microbial infection: his symptoms were similar to those
of acute-onset neuropsychiatric symptoms (PANS) [16]. He was then
tried on OCS (prednisone 2 mg/kg/day), which resulted in the
normalization of his EEG and improvement in cognitive functioning/
behavioral symptoms (Fig. 1). His neuropsychiatric symptoms slowly
returned, after tapering off the OCS protocol. The parents elected not
to repeat OCS therapy due to assoicated lack of growth, excessive
weight gain, and mood swing. Diffuse decreases in metabolic activity
in the left temporal lobe by PET/SPECT scan and the ESES pattern (55%
SWI) recurred after tapering off OCS (Fig. 1). He returned to our clinic
at 7.5 years old to explore other treatment options.

3.1.3. Changes in VEEG findings following immunomodulating agents

Anakinra, was started (100 mg/day subcutaneous (SQ) injection) at
7.6 years, due to increase in production of IL-1R (Fig. 2). Despite
improvement of behavioral symptoms with anakinra, the ESES pattern
(>60% SWI in all areas) persisted (Fig. 1). IVIg (0.6 g/kg/dose every 3
weeks) was added as a preventive measure for recurrent viral
syndrome, since behavioral symptoms (hyperactivity, irritability, and
worsening speech) worsened in the convalescence stage of viral
syndrome. The ESES patterns persisted after the addition of IVIg to his
regimen (Fig. 1). Sirolimus (1 mg/day) was then added and after 7
weeks of treatment, his VEEG revealed resolution of the ESES pattern.
Normal EEG findings observed at 3 and 7 months were observed after
the addition of sirolimus(Fig. 1).
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Fig. 1. Changes in percentage (%) of SWI by VEEG after the diagnosis of ESES syndrome.
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Fig. 2. Changes in production of IL-118 [panel A] and TNF-« [panel B] by PBMo from the obtained case.
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3.1.4. Cognitive impairment and behavioral symptoms with

immunomodulating agents

His mother who is a linguist, observed improved sleep pattern/
speech/social interactions with anakinra despite the lack of
improvement in VEEG. It is of note that the behavioral symptoms
(especially motor tics) fluctuated following microbial infection and
social stress, even after starting IVIg, and then sirolimus. IVIg was later
switched to the SQ rout (0.2 g/kg/dose every week), due to increasingly
difficult IV access: this change eliminated his need for OCS as pre- and
post-medications. Despite fluctuating behavioral symptoms, with
these immunomodulating agents, he retained gains in cognitive
functioning. He would typically lose once acquired cognitive functions
following immune insults prior to treatment. Then his behavioral
symptoms slowly improved. Our attempt of reducing the anakinra
dose after starting sirolimus was not tolerated with noticeable
worsening behavioral symptoms and speech impairment. The patient
continues to have hyperlexia and echolalia with infrequent novel
utterance that were present prior to onset of ESES.

3.2. Laboratory findings

3.2.1. Metabolic and genetic workup

Results of an extensive metabolic workup, with the use of CSF,
plasma, and urine were unremarkable. Array comparative genomic
hybridization (CGH), epilepsy gene panel, mitochondrial genome

A. IL-1B/IL-10 ratio
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sequencing, and whole exom sequencing (WES) did not reveal any
abnormalities.

3.2.2. Conventional immune workup

He had a negative allergy workup with total IgE level at 11, and
normal immunoglobulin (Ig) and pneumococcal antibody titers prior
to start of supplemental Ig treatment. Quantiferon-TB test and hepatitis
B screening were both negative before starting sirolimus. [gM and IgA
and remained within normal range after starting anakinra and
sirolimus. Sequential examination of his complete blood cell (CBC)
count revealed normal levels of hemoglobin, WBC and platelet counts.

3.2.3. Monocyte cytokine profiling

Monocyte cytokine profiles were tested repeatedly as summarized
in Figs. 2-3. When his neuropsychiatric symptoms and ESES pattern
by VEEG became exacerbated after tapering off of OCS, the most notable
finding in monocyte cytokine profiles was an increase in IL-118 and TNF-
a production (Fig. 2A and B). Production of these cytokines decreased
after starting anakinra and IVIg, but increased again, after he suffered
from a viral syndrome. These levels declined after starting sirolimus.
Although IL-6 has been implicated with epilepsy and febrile seizures
[17,18], we did not observe significant changes in IL-6 production by
PBMo in his case. When we examined the ratio of inflammatory
cytokine vs. counter-regulatory cytokines, as IL-1R/IL-10 and TNF-at/
STNFRII ratios, we observed an increase in these ratios before starting
anakinra (Fig. 3). The IL-113/IL-10 ratios under LPS or CL097 stimulated
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Fig. 3. Changes in IL-18/IL-10 and TNF-o/sTNFRII ratios produced by PBMo in this patient.
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cultures revealed similar tendencies as compared to changes of
production of IL-1f8 and TNF-« (Fig. 3A and B).

4. Discussion

A role of inflammatory cytokines in seizure disorders has been
suspected in febrile seizures [19]. In animal models of febrile seizures,
increased production of IL-1¢, IL-113, IL-6, and TNF-a has been reported
and also in humans, both centrally (the brain) and the peripherally [20].
Immune mediated inflammation has also been implicated with
aafebrile seizures, indicating a possible role for anti-inflammatory
treatment as therapeutic options for epilepsy [21,22]. A role of
inflammation has also been suspected in ESES, given favorable
responses to OCS [1,11]. Increase in serum cytokine levels (TNF-o, IL-
6, IL-1a, and CCL2) has been shown in 11 ESES patients with unknown
etiology [12]. In this study, the authors reported significant decrease in
plasma IL-6 levels in 5 ESES patients when they were treated with either
OCS in 3 patients, and monthly IVIg in 2 patients, without noticeable
changes in plasma levels of other cytokines [12].

Serum levels of cytokines are easy to measure, but may not be
sensitive biomarkers, since some cytokines that are implicated with
clinical seizures [21], i.e. TNF-a and IL-18, are known to have short
half-lives. In other neurodegenerative diseases, levels of cytokine have
been shown to vary over time [23].

We have studied changes in monocyte cytokine profiles in
treatment-resistant epilepsy as well as autism spectrum disorders
[14,24]. In these conditions, production of IL-118 and IL-1/3/IL-10 ratios
revealed correlations with behavioral symptoms of autism spectrum
disorder and responses to the anakinra for clinical seizures [14,24,25].
This is attributed to the fact that PBMo can migrate to the brain and
differentiate into bone marrow derived microglial cells skewed to
inflammatory responses [26,27].

After the patient failed to maintain remission following tapering off
0CS, we assessed monocyte cytokine profiles, to address other
treatment options. The results of increased production of IL-1, TNF-
o, IL-18/IL-10 ratio, and TNF-a/sTNFRII ratios (Fig. 2-3), indicated a
use of immunomodulating agents for controlling the production of
these cytokines. Anakinra was initially utilized because it has a good
safety profile except for local reactions at the injection site [28]. IVIg
was then added to prevent the recurrent viral syndromes, that often
triggered his worsening behavioral symptoms. [VIg has been reported
to have had favorable responses in 2 ESES subjects by others [12], and
has also been used as a second line measure for treatment-resistant
seizures [13,29].

Finally, oral sirolimus was added to his regimen for the following
reasons. First, mTOR inhibitors have been used for controlling
treatment-resistant seizures in patients with mutations causing over-
activation of the mTOR pathway [30]. mTOR inhibitors have also been
used for patients with primary immunodeficiency syndromes which
cause overactivation of mTOR pathway and subsequent
neuropsychiatric symptoms [31]. In addition, mTOR inhibitors are
known to shift T cell differentiation from inflammatory T-helper 17
(Th17) cells into regulatory T (Treg) cells and increase autophagy,
potentially exerting multiple anti-inflammatory effects on various
immune cells, including brain immune cells [32]. Because of its
immunosuppressive effects, there is a potential risk of bone marrow
suppression and activation of tuberculosis and hepatitis B may be
possible. The presented case had both negative hepatitis B screening
and quantiferon TB gold. He has been closely monitored and so far,
there is no evidence of side effects. In the presented case, addition of
sirolimus revealed resolution of the ESES pattern. TNF-o and IL-118
production also tended to decrease with the addition of sirolimus to
his treatment regimen, indicating a role of mTOR pathway activation
in his ESES.

Our case revealed favorable effects of immunomodulating agents,
further supporting a role of neuroinflammation in ESES syndrome
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with unknown etiology. OCS have been noted to exert favorable effects
on ESES, but chronic OCS are not suitable as a maintenance medication
for some patients, given their unfavorable side effects. On the other
hand, the immunomodulating agents tried in the presented case (IVIg,
anakinra, and sirolimus) can be used for prolonged periods with
tolerable side effects. However, anakinra and IVIg are injectables and
costly, as compared to oral sirolimus. Oral gate keeper inhibitors such
as sirolimus may be a good first line choice when treatment measures
other than OCS are required for ESES. The presented case also indicates
a need for the blockage of other inflammatory pathways to fully control
ESES other than just the mTOR pathway. Becuase this is a single case
report, such possibilities need to be addressed in a larger number of
ESES patients, preferentially in a double-blinded, placebo-controlled
study design.

5. Conclusions

This study presents the case of a child with ESES syndrome who was
reasonably controlled with a combination of immunomodulating
agents other than OCS. Further studies will be necessary to elucidate
which immunomodulating agents are suitable for each ESES patient,
based on better characterization of clinical features and laboratory
findings.

Abbreviation used

AEDs anti—epileptic dI‘UgSl Use ASM as the abbreviation for antiseizure
medication

CGH comparative genomic hybridization

CSF cerebral spinal fluid

CSWS  continuous spikes and waves during sleep

EEG electroencephalogram

ESES encephalopathy with electrical status epilepticus in sleep
Ig immunoglobulin

IL interleukin

IVig intravenous immunoglobulin

LKS Landau-Kleffner syndrome

MRI magnetic resonance imaging

mTOR  mammalian target of rapamycin

0CS oral corticosteroid

PBMo  peripheral blood monocytes

PANS pediatric autoimmune neuropsychiatric syndrome

PET positron emission tomography

SPECT  single photon emission computed tomography
SPUH Saint Peter's University Hospital

SQ subcutaneous

SWI spike wave index

TGF tumor growth

TNF tumor necrosis factor

VEEG video EEG

WES whole exome sequencing
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