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Abstract

Bioavailability is the most important factor for the efficacy of any drug and it is determined by P- glycoprotein (P-gp)
expression. Confirmation of P-gp expression during ontogeny is needed for understanding the differences in
therapeutic efficacy of any drug in juvenile and adult animals. In this study, Abcb1 mRNA levels in the liver and
intestine of broilers during ontogeny were analysed by RT qPCR. Cellular distribution of P-gp was detected by
immunohistochemstry. Age-related differences of enrofloxacin pharmacokinetics were also studied. It was found that
broilers aged 4 week-old expressed significantly (P<0.01) higher levels of P-gp mRNA in the liver, jejunum and ileum,
than at other ages. However, there was no significant (P>0.05) age-related difference in the duodenum. Furthermore,
the highest and lowest levels of Abcb1 mRNA expression were observed in the jejunum, and duodenum,
respectively. P-gp immunoreactivity was detected on the apical surface of the enterocytes and in the bile canalicular
membranes of the hepatocytes. Pharmacokinetic analysis revealed that the 8 week-old broilers, when orally
administrated enrofloxacin, exhibited significantly higher Cmax (1.97 vs. 0.98 μg•ml-1, P=0.009), AUC(14.54 vs. 9.35
μg•ml-1•h, P=0.005) and Ka (1.38 vs. 0.43 h-1, P=0.032), as well as lower Tpeak (1.78 vs. 3.28 h, P=0.048) and T1/2ka
(0.6 vs. 1.64 h, P=0.012) than the 4 week-old broilers. The bioavailability of enrofloxacin in 8 week-old broilers was
increased by 15.9%, compared with that in 4 week-old birds. Interestingly, combining verapamil, a P-gp modulator,
significantly improved pharmacokinetic behaviour of enrofloxacin in all birds. The results indicate juvenile broilers had
a higher expression of P-gp in the intestine, affecting the pharmacokinetics and reducing the bioavailability of oral
enrofloxacin in broilers. On the basis of our results, it is recommended that alternative dose regimes are necessary
for different ages of broilers for effective therapy.
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Introduction

ABC transporters can carry a wide range of substrates
across biological membranes, by hydrolysing ATP as an
energy source [1]. Although these transporters are prone to
over-expression in tumours, their expression is widespread
throughout many normal tissues such as the liver, kidney and
intestine in mammals [2,3,4,5]. P-glycoprotein (P-gp, 170 kDa),
a multi-drug resistance gene (also known as Abcb1 gene)
product, is the most important transporter for clinically relevant
drugs and is the focus of this study. The data from knockout
mice suggest that intestinal P-gp may play a direct clinical role
in the disposition of orally administered drugs and in explaining

certain clinical drug-drug interactions [6,7,8]. The expression of
efflux transporters is regulated in a highly dynamic manner [9].
Regarding the physiological changes in P-gp expression, it has
been recently suggested that age might affect basal P-
glycoprotein levels in human and mice [10,11,12]. Age-related
differences have been observed in the pharmacokinetics of the
P-gp substrates digoxin [13] and fexofenadine [14]. In poultry,
only a few studies [15,16] have partially characterised the
expression of P-gp in tissues of chickens and turkeys. There is
increasing recognition for the role of P-gp in veterinary therapy
[17]. However, it is unknown whether age affects P-gp
expression in broilers, because P-gp expression affects the
pharmacokinetics of many orally administered drugs, including
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anti-parasitic and chemotherapeutic drugs in ruminant species
[18]. In addition, P-gp modulators can profoundly affect the
plasma disposition of chemotherapeutic drugs.
Fluoroquinolones have been successfully used for the
treatment of colibacillosis and mycoplasma infection in poultry
[19,20]. Some of them, such as danofloxacin and gatifloxacin,
have proven to be the substrates for ABC transporters
[21,22,23,24]. Enrofloxacin is also one of the most extensively
used therapeutic agents in poultry. However, very little is
known about the role of ABC transporters in the
pharmacokinetics of orally administered enrofloxacin in
chickens, especially in broilers at different ages.

This study investigated P-gp expression in the liver and small
intestines in broilers at different ages (from young adults to
slaughter stage), the effect of different P-gp expression levels
on enrofloxacin pharmacokinetics in broilers aged 4 and 8
weeks, and also using the P-gp modulator verapamil. This
study reveals that juvenile broilers have higher expression of P-
gp in the intestine, which affected pharmacokinetics by
reducing the bioavailability of orally administered enrofloxacin
in the broilers.

Materials and Methods

Reagents and drugs
Mouse monoclonal anti-P-gp (C219) and rabbit polyclonal

anti-P-gp antibodies, used for immunohistochemistry, were
from Covance (Princeton, New Jersey, USA) and Biossn
(Wuhan, Hubei, China), respectively. Rabbit anti-rat IgG-
horseradish peroxidase (HRP) was purchased from Boster
(Wuhan, Hubei, China). Enrofloxacin hydrochloride (ENRO,
bulk drug) was a gift from the China Institute of Veterinary Drug
Control (Beijing, China). Verapamil was purchased from Sigma
(St. Louis, MO, USA). All other compounds used were reagent
grade from local vendors.

Animals and sample collection
Total 20 one-day-old Ross broilers were purchased from a

commercial hatchery (Wuxi, China) and raised under standard
conditions of light and temperature. Feed (without antibiotics
and coccidiostats) and water were provided ad libitum. Tissue
samples (duodenum, jejunum, ileum and liver) were collected
at 2, 4, 6 and 8 weeks of age, respectively. Five randomly
chosen birds were sacrificed by decapitation at predetermined
time intervals. After being sub-packaged in aliquots and snap-
frozen in liquid nitrogen, all samples were stored at -70°C until
real-time RT-PCR analysis was performed. The use of the
birds followed the protocol approved by Nanjing Agricultural
University Animal Care and Use Committee.

RNA isolation and mRNA quantification
Real time RT-PCR was used to detect the mRNA expression

level in liver and different parts of intestine in broilers at
different ages. Total RNA was isolated from individual tissues
of all birds using Trizol Reagent (Takara, Tokyo, Japan)
according to the manufacturer’s instructions. Total RNAs were
treated with 100 U DNase I (RNase Free, Takara, Tokyo,

Japan) for 30 min at 37°C to ensure that all total RNA was free
of genomic DNA contamination. The total RNA concentration
was then quantified by Nanodrop photometer (ND-1000
Spectrophotometer, Rockland, DE, USA). Ratios of absorption
(260/280 nm) of all preparations were between 1.8 and 2.0.
Each RNA sample was subjected to electrophoresis on a 1.4%
agarose formaldehyde gel to verify its integrity. Single-stranded
cDNAs were synthesised and real-time PCR was performed,
as previously described [25]. Negative controls involved the
omission of RNA from the RT reactions and amplification with
specific primer/probe sets to confirm the lack of genomic DNA
contamination. Primers specific for P-gp and β-actin were
designed as described [26] and commercially synthesised for
real-time PCR analysis. Chicken β-actin was chosen as a
housekeeping gene for normalisation, based on experiments
showing stable expression of β-actin mRNA in the small
intestine and liver in the broilers. The PCR products were
sequenced to validate the identity of the amplicons. The 2 − ΔΔCt

method [27] was used to analyse the real-time RT-PCR data.

Immunohistochemistry
To localise P-gp protein expression in liver and small

intestine in broilers, immunohistochemistry was performed. As
the highest expression of P-gp mRNA was detected in broilers
at 4 weeks of age by real-time RT-PCR analysis, the liver and
small intestinal samples were randomly collected from 5
broilers aged 4 weeks. Immunostaining was performed on 5
µm paraffin tissue sections mounted on APES-coated slides.
After deparaffinisation in xylene and rehydration through
graded ethanol, endogenous peroxidase activity was blocked
with 3% (v/v) H2O2 for 15 min. Then, antigen retrieval was
performed by heating the sections in 0.01 M citrate buffer (pH
6.0), and nonspecific protein binding sites were blocked with
5% bovine serum albumin (BSA) at 37°C for 30 min.
Thereafter, the tissue-sections were incubated overnight at 4°C
with the primary antibody (monoclonal anti-P-gp, diluted 1:20;
or rabbit anti-P-gp, diluted 1:200). After washing with PBS, the
secondary antibody was applied and samples were incubated
for 45 min at 37°C. A streptavidin-biotin-complex was added
and the specimens were incubated for a further 30 min at 37°C.
The P-gp immunoreactivity was visualised with DAB staining,
according to the supplier’s instructions. Finally, sections were
counterstained with haematoxylin, dehydrated and cleared with
xylene and coated with neutral balsam. Sections treated as
above, but without the primary antibody, served as negative
controls. Monoclonal anti-P-gp (C219) was used to detect P-gp
in liver, and intestine. Two semi-quantitative measurements for
P-glycoprotein staining were performed by two experimental
pathologists in a double-blind analysis by a light microscope
(BX45-DP72; OLYMPUS, Tokyo, Japan) equipped with Plan
Apo objectives connected to a CCD camera (U-TV0.63XC;
OLYMPUS, Tokyo, Japan). The area and IOD labelled for P-
glycoprotein (labelled surface area) was analysed in the liver,
kidney and small intestinal using a computer-assisted image
analysis system (Image-Pro Plus 4.1 software).

P-gp on Enrofloxacin Pharmacokinetics in Broilers
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Experiments with enrofloxacin in broilers
In total, forty 4 week-old and forty 8 week-old healthy broilers

were randomly divided into four groups. The first group
received a single dose of 10 mg/kg body weight (b. w.) of
enrofloxacin orally through crop tube gavage. The second
group was first orally administrated with verapamil (15 mg/kg b.
w.) and then enrofloxacin (10 mg/kg b. w.). The third group
received a single dose of 10 mg/kg b.w. of enrofloxacin
intravenously (i.v.) through the left brachialis vein. The fourth
group was first orally administrated with verapamil (15 mg/kg b.
w.) and then injected with enrofloxacin (10 mg/kg b. w.). Blood
samples were collected from the right brachialis vein prior to
treatment and at 5, 15, 45 min and 1, 2, 4, 6, 8, 12 h in plastic
tubes after the administration of enrofloxacin in each group.
The blood samples were immediately centrifuged at 3 000 g for
15 min and stored at -20°C until analysis.

Assay for enrofloxacin in serum by HPLC
The serum concentrations of enrofloxacin were detected on

an Agilent 1200 high-performance liquid chromatography
(HPLC) system as described previously with minor
modifications [28,29]. Briefly, the samples were thawed at room
temperature and centrifuged at 2000 g for 5 min, the
supernatant (0.5 ml) was applied to acetonitrile and the organic
and water phases were separated by centrifugation. The
organic phase was evaporated to dryness under a nitrogen
stream and the residue was resuspended with mobile phase
solution. Twenty microliters of the mixture were injected into
the HPLC column. The composition of the mobile phase was
0.1M phosphoric acid (adjust pH to 3.0 with triethylamine)/
acetonitrile (84:16). Chromatographic separations were
performed on Kromasil C18 HPLC Columns (5 μm, 25 cm×4.6
mm). The flow rate of the mobile phase was set to 0.85 mL/

min. UV absorbance was measured at 278 nm. Drugs were
quantified by measuring the peak area.

Pharmacokinetic analysis
Pharmacokinetic calculations were performed on each

individual set of data using 3p97 practical pharmacokinetic
software (Version 97, Chinese Pharmacologic Association,
Beijing, China). The best fit was determined according to the
Akaike’s Information Criterion. The area under the
concentration-time curve (AUC) was calculated according to
the linear trapezoidal method.

Data analysis
All data were presented as mean ± standard error (S.E.), and

analysed by one-way ANOVA using SPSS 16.0 for Windows
followed by a least-significant difference (LSD) test for
individual comparisons. Values of mRNA abundance were
expressed as the fold-change relative to the average value of
one group. Pharmacokinetic parameters of enrofloxacin were
analysed using t-test for independent-samples. The
significance level was set at P < 0.05.

Results

Age-dependent mRNA expression in liver and small
intestines in broilers

With regard to P-gp expression in broilers during ontogeny,
first, we detected the mRNA expression of Abcb1 in broilers at
ages from Day 1 to Day 7. However, to our surprise, the
expression level of P-gp mRNA was very low in the liver or
small intestines from those very young birds (data not shown).
Therefore, we focused on studies of broilers aged from 2 to 8
weeks. According to the real-time RT-PCR results, the patterns

Figure 1.  Expression of P-gp mRNA in broilers at different ages.  (A) Expression levels of P-gp mRNA in liver, jejunum, ileum
and duodenum in broilers at indicated ages, as detected by real time RT PCR. (B) Relative comparison of expression levels of P-gp
mRNA in jejunum, ileum and duodenum in 4 week-old broilers, as detected by real time RT PCR. β-actin was used as a reference
gene for normalization (n=5). ** difference between ages of tissues (P<0.01).
doi: 10.1371/journal.pone.0074150.g001
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of mRNA expression in the liver and small intestines (except
duodenum) were age-dependent. As shown in Figure 1A, the
broilers at 4 weeks of age expressed significantly higher P-gp
mRNA levels in the liver, jejunum and ileum, than at other ages
(P<0.01). However, no significant age-related difference was
detected in P-gp mRNA expression in the duodenum (P>0.05),
although variation was observed within each age group. After
further analysing the intestinal samples of 4 week-old broilers,
the highest expression level of Abcb1 mRNA was observed in
the jejunum, while the lowest expression level of Abcb1 mRNA
was seen in the duodenum (Figure 1B).

The cellular localisation and quantification of P-gp in
liver and small intestines of broilers

The expression of P-gp protein in the liver and intestine of
broilers (4 weeks of age) was further investigated by
immunohistochemical studies using the P-gp antibody. No
background staining was observed in the negative controls

(data not shown). As shown in Figure 2, strong staining was
detected in the liver, duodenum, jejunum or ileum. In the
duodenum and jejunum, P-gp immunoreactivity was observed
on the apical surface of the enterocytes. However, in the ileum,
intense staining was visualised in the cytoplasm of the
enterocytes. In liver, marked P-gp immunostaining was
observed in the bile canalicular membranes of the hepatocytes.
To validate our immunohistochemistry results, we semi-
quantified the stained liver and small intestine using Image-Pro
Plus 4.1 software. After further analysing the intestinal samples
of 4 week-old broilers, the highest expression level of P-gp was
observed in the jejunum (Figure 3), whereas the lowest
expression level of P-gp was seen in the duodenum.
Quantification of P-gp staining provided additional validity to
our studies from the protein level, which is coincident with the
trend of mRNA expression level in the tissues of 4 week-old
broilers.

Figure 2.  Immunohistochemical staining of P-gp in the liver and intestines of 4 week-old broilers.  Rabbit anti-P-gp
polyclonal antibodies and mouse monoclonal anti-P-gp antibody (C219) were used to detect P-gp in duodenum (a), jejunum (b),
ileum (c) and liver (d) of broilers, respectively. Bar = 40 μm.
doi: 10.1371/journal.pone.0074150.g002
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Figure 3.  Semi-quantification of P-gp in liver and intestines of 4 week-old broilers.  The intensity of specific P-gp staining was
evaluated by measuring the IOD, area of positive staining using the Image-Pro Plus 4.1. software. Data were shown as mean ± S.E.
(n=5) *P<0.05, **P<0.01.
doi: 10.1371/journal.pone.0074150.g003
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Pharmacokinetics of enrofloxacin with a single
application in broilers at different ages

To determine whether P-gp expression level affects the
pharmacokinectics of enrofloxacin, the broilers at 4 and 8
weeks of age were selected, based on the highest and lowest
levels of P-gp mRNA expression in the liver and intestines of
the birds. The plasma concentration-time profiles of
enrofloxacin after a single oral administration of enrofloxacin
(10 mg/kg b.w.) in broilers at different ages are illustrated in
Figure 3, and the relevant pharmacokinetic parameters are
shown in Table 1. The results showed that there was a
significant difference between the two groups (4 and 8 week-
old broilers). As shown in Figure 4, enrofloxacin was detectable
in plasma at the first sampling point (0.083 h) in all broilers.
The 8 week-old broilers, when orally administered enrofloxacin,
exhibited a significantly higher Cmax (1.97 vs. 0.98 μg•mL-1,
P=0.009), AUC (14.54 vs. 9.35 μg•mL-1•h, P=0.005) and Ka

(1.38 vs. 0.43 h-1, P=0.032), as well as a lower Tpeak (1.78 vs.
3.28 h, P=0.048) and T1/2ka (0.6 vs. 1.64 h, P=0.012), compared

with the 4 week-old broilers. In addition, the bioavailability of
enrofloxacin in 8 week-old broilers was increased by 15.9%
compared with that in 4 week-old birds. However, when
enrofloxacin was i.v. administered, there were no significant
differences of the main parameters between the two groups of
broilers (Table 1). These results suggest that the higher
expression of P-gp will possibly affect the pharmacokinetics of
enrofloxacin, leading to decreased bioavailability of
enrofloxacin in the 4 week-old broilers.

Effect of verapamil on pharmacokinetics of orally
administrated enrofloxacin

To substantiate the effect of P-gp expression level on the
pharmacokinetics of enrofloxacin in broilers, verapamil, an
inhibitor of P-gp expression [30], was employed. The mean
plasma concentration-time profiles of oral enrofloxacin (10
mg/kg b. w.) in the presence or absence of oral verapamil (15
mg/kg b.w.) are shown in Figure 5. The relevant

Figure 4.  Plasma concentration-time profiles of orally administered enrofloxacin (10 mg/kg b.w.) in the broilers of 4 and 8
week old.  Data represent mean ± S.E. (n=10).
doi: 10.1371/journal.pone.0074150.g004
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pharmacokinetic parameters are also listed in Table 2. The
combination of enrofloxacin and verapamil caused significant
changes in the pharmacokinetic behaviour of enrofloxacin.
Compared to enrofloxacin alone, the combination of
enrofloxacin/verapamil significantly increased the AUC 0-∞ of
enrofloxacin by 2.16- and 1.69-fold (P<0.01), and the Cmax of
enrofloxacin by 1.46- and 1.17-fold (P<0.05) in 4 and 8 week-
old broilers, respectively. Also, the T1/2ka and Tpeak of

Table 1. Parameters of enrofloxacin, both orally and i.v.
administered (10 mg/kg), in 4 and 8 week-old broilers
(mean ± S.E., n=10).

Parameters 4 week old broilers 8 week old broilers
Oral administration

Ka (h-1) 0.43±0.09 1.38±0.7*

t1/2ka (h) 1.64±0.33 0.6±0.27**

Tpeak (h) 3.28±0.35 1.78±0.4*

Cmax (μg•mL-1) 0.98±0.1 1.97±0.54**

AUC (μg•mL-1•h) 9.35±1.12 14.54±2.3**

t1/2ke (h) 3.36±0.40 3.79±1.24
Cl/f (mL/min) 1.08±0.12 0.7±0.1
i.v. administration

t1/2 (h) 4.52±0.47 5.23±1.5
AUC (μg•mL-1•h) 28.1±1.00 29.55±1.23
Cll/f (mL/min) 0.34±0.05 0.33±0.013
F (%) 33.3 49.2

* p< 0.05, ** p < 0.01 significant difference vs. 4 week old broilers. Ka:
absorption constant; t1/2ka: absorption half-life; Tpeak: time to reach peak
concentration; Cmax: peak concentration; AUC: area under the plasma
concentration-time curve from zero to time infinity; F: bioavailability
doi: 10.1371/journal.pone.0074150.t001

enrofloxacin were lower after the co-administration of verapamil
(P<0.05) in both 4 and 8 week-old broilers. The results support
the notion that the level of P-gp profoundly impacts the
pharmacokinetics of orally administered enrofloxacin in
broilers.

Effect of verapamil on pharmacokinetics of i.v.
administered enrofloxacin

Because the plasma AUC is determined by both uptake and
elimination, we also treated broilers with enrofloxacin given by
i.v. injection. After i.v. administration, the maximum plasma
levels of enrofloxacin were almost equal in the presence or
absence of verapamil in both 4 and 8 week-old broilers (Figure
6). The effect of verapamil on the pharmacokinetic parameters
is shown in Table 2. The combination of enrofloxacin/verapamil
caused no significant changes in the pharmacokinetic
behaviour of enrofloxacin. As shown in Table 2, the presence
of verapamil did not significantly alter the t1/2, AUC and CL
(P>0.05) of i.v. administered enrofloxacin, in broilers of the two
chosen ages. Relative to their respective plasma AUC values
after oral drug administration, the estimated bioavailability after
oral administration (AUCoral/AUCi.v. ×100%) for 4 week-old
broilers was 74.6% and 33.3% in the presence and absence of
verapamil, respectively, and 79.9% and 49.2% in the presence
and absence of verapamil, respectively, for 8 week-old broilers.

Discussion

P-gp is a key molecule in determining not only the resistance
of cancer cells against chemotherapeutic drugs but also the
disposition of a variety of drugs in the intestine and other
tissues [1]. Knowledge of ontogenic expression of P-gp
involved in distribution and elimination of drugs is important to

Figure 5.  Plasma concentration-time profiles of orally administered enrofloxacin (10 mg/kg b.w.) in the presence and
absence of verapamil (15 mg/kg b.w.) in the broilers of 4 week old (A) and 8 week old (B).  Data represent mean ± S.E.
(n=10).
doi: 10.1371/journal.pone.0074150.g005
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interpret the differences in therapeutic efficacy and safety
between juvenile and adult animals. Age-dependent expression
of P-gp in mammals has been extensively studied [10,12,31];
however, related information in chickens is not available. This
prompted us to study the expression pattern of P-gp in the liver
and different parts of the intestine of broilers at different ages
(2~8 weeks old), corresponding to the stages in poultry
husbandry. Here, for the first time, we show that the expression
of P-gp mRNA peaked at 4 weeks, and then declined with age.
Of greater importance, our results strongly suggest that the
age-related expression of P-gp had a serious impact on the
pharmacokinetics and bioavailability of oral enrofloxacin in
broilers.

Examination of tissue-specific gene expression of P-gp
together with its developmental difference is the first step to
assess its physiological function in broilers. Our results of the
organ and cellular distribution of P-gp in broilers were in
agreement with previously reported findings in rodents and
humans [32,33,34]. Limited studies have examined the
ontogenic expression of P-gp in rats and chickens, but
discrepant observations were reported [16,35,36]. Rosati et al.
[36] found that mdr1 a/b level increased in liver and kidney in
rats continuously until Day 60, then declined in all tissues with
age, particularly during the period of 5-8 months old. In
contrast, Kamath and Morris [37] found no difference in liver P-
gp activity or protein level between young (22 days) and adult
rats. Barnes [16] assessed P-gp expression in broilers from 0
to 21 days of age and found that it increased in the liver and
kidney over the first few days of life with an apparent plateau at
Day 2 and Day 4, respectively; however, the level in the
duodenum did not significantly change with age. We found that
P-gp mRNA expression was very low in the liver or small
intestines in broilers from Day 1 to Day 7 (data not shown), and
increased in a time-dependent manner at the early growing

stage, peaking at 4 weeks of age in the liver, jejunum and
ileum, before declining (Figure 1A). The ontogenic expression
of P-gp in the duodenum reported in this study is in line with
that published by Barnes [16], but the results for the liver are in
sharp contrast to other reports. It is likely that this is due to
different animals or feeds used. Further investigation is needed
to address this issue.

Table 2. Parameters of enrofloxacin, both orally and i.v.
administered (10 mg/kg), in 4 and 8 week-old broilers in the
presence and absence of verapamil (15 mg/kg) (mean ±
S.E., n=10).

Parameters 4 week old broilers 8 week old broilers

 ENRO ENRO+VER ENRO ENRO+VER
Oral administration

Ka (h-1) 0.43±0.09 1.02±0.53 1.38±0.7 2.98±0.57#

t1/2ka (h) 1.64±0.33 0.79±0.31* 0.6±0.27 0.24±0.04#

Tpeak (h) 3.28±0.35 2.86±0.93 1.78±0.4 1.11±0.29#

Cmax (μg•mL-1) 0.98±0.1 1.43±0.15* 1.97±0.54 2.3±0.74#

AUC (μg•mL-1•h) 9.35±1.12 20.24±4.49** 14.54±2.3 24.63±4.53##

t1/2β (h) 3.36±0.4 8.43±3.30* 3.79±1.24 6.58±4.5#

Cl/f(mL/min) 1.08±0.12 0.51±0.10** 0.7±0.10 0.54±0.27
i.v. administration

t1/2 (h) 4.52±0.47 4.61±0.61 5.23±1.5 7.15±2.14
AUC (μg•mL-1•h) 28.1±1.00 27.14±2.58 29.55±1.23 30.83±3.12
CL/F (mL/min) 0.34±0.05 0.37±0.04 0.33±0.013 0.33±0.03
F�%) 33.3 74.6* 49.2 79.9#

* p< 0.05, ** p < 0.01 significant difference between parameters of enrofloxacin
in the presence and absence of verapamil in 4 week old broilers. # p< 0.05, ##p <
0.01 significant difference between parameters of enrofloxacin in the presence and
absence of verapamil in 8 week old broilers.
doi: 10.1371/journal.pone.0074150.t002

Figure 6.  Plasma concentration-time profiles of i.v. treated enrofloxacin (10 mg/kg b.w.) in the presence of verapamil (15
mg/kg b.w.) in the broilers aged 4 weeks (A) and 8 weeks old (B).  Data represent mean ± S.E. (n=10).
doi: 10.1371/journal.pone.0074150.g006
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The factors responsible for the age-dependent changes in P-
gp expression are still unclear. However, Demeule et al. [38]
and Iqbal et al. [39] have independently demonstrated that the
expression of P-gp is up-regulated by steroids and other
hormones whose activity may change during aging. Whether
endogenous and/or exogenous (feed) hormones affect
ontogenic P-gp expression in chickens needs further
investigation. We speculate that the difference of P-gp
expression peak between birds and mammals is probably
related to the fact that birds consume a complex mixture of
plant-based nutrients or non-nutritive material upon hatching,
and thus birds might have earlier high levels of P-gp in
response to the presence of substrates in the diet than
mammals.

In addition, although enrofloxacin is available in an oral
dosage form, the bioavailability of the oral form is lower than
that of subcutaneous or intravenous forms in chicken, sheep
and swine [40,41,42]; this has been ascribed to the
metabolising enzymes within the intestines and the liver. Also,
P-gp affects the absorption of enrofloxacin [43]. Considering
that enrofloxacin is a substrate of P-gp [43], the modulation of
P-gp expression level and activity may cause significant
changes in the pharmacokinetic profiles of enrofloxacin. The
Cmax, Tpeak, AUC and bioavailability of oral enrofloxacin in the
broilers (4 and 8 week-old) in the current study were not in
accordance with the values in other studies [40,44,45]. This
might be due to different pharmaceutical formulations, or
different ages or breeds of birds used in the studies. Li et al.
[25] suggested that some excipients could enhance the
absorption of a drug from the intestines by inhibiting P-gp. In
order to preclude the effect of excipients on P-gp function, bulk
drug of enrofloxacin was used in this study. The comparison of
the enrofloxacin pharmacokinetics in 4 and 8 week-old broilers
with different expression levels of P-gp strongly indicated the
potential role of P-gp in enrofloxacin disposition. This is further
supported by the finding that verapamil, an inhibitor of P-gp
expression, was able to increase the absorption of
enrofloxacin. Higher Cmax and AUC of enrofloxacin after the co-
administration of enrofloxacin/verapamil implied an increase in
the absorption of enrofloxacin from the gastrointestinal tract.
Although the expression of P-gp mRNA was also observed in
the liver, the pharmacokinetics of enrofloxacin after i.v.
administration alone or with the presence of verapamil were not

significantly altered in both 4 and 8 week-old broilers.
Therefore, the elevated bioavailability should result from the
increased absorption of enrofloxacin by inhibiting P-gp in the
intestine, rather than from decreased biliary excretion through
inhibiting P-gp in the liver. Our results were somewhat similar
to those reported by Sparreboom et al. [6], who found that the
biliary excretion of paclitaxe was the same in P-gp knockout
and wild-type mice. Seguin et al. [46] observed a poor oral
bioavailability of enrofloxacin in neonatal kittens (2 to 8 weeks
old), compared with that in adults; it is possible that the high
level of P-gp in the intestine constituted a barrier that limited
the absorption of enrofloxacin in kittens. Therefore, we should
be aware that not all young animals should receive low doses
under all circumstances. For some drugs (e.g. enrofloxacin),
higher doses are actually needed to achieve therapeutic
concentrations of the drugs in young animals.

In conclusion, age-related changes of P-gp expression in the
intestine affect the pharmacokinetics of oral enrofloxacin in
broilers. The higher expression of P-gp in the intestine of young
broilers results in the low oral bioavailability of enrofloxacin. We
expect that the results presented here for enrofloxacin are
representative for other substrate drugs transported by P-gp.
The findings also suggest that the co-administration of P-gp
inhibitors may be an alternative strategy to improve the oral
bioavailability and therapeutic efficacy of some other P-gp
substrate drugs (e.g. ceftiofur licensed for use in animals) in
young broilers. Further studies will focus on P-gp-associated
different therapeutic efficiency of enrofloxacin in young and
adult broilers challenged with E. coli.
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