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In recent years, high-precision medical equipment, especially large-scale medical imaging equipment, is usually composed of
circuit, water, light, and other structures. Its structure is cumbersome and complex, so it is difficult to detect and diagnose the
health status of medical imaging equipment. Based on the vibration signal of mechanical equipment, a PLSR-DNN hybrid
network model for health prediction of medical equipment is proposed by using partial least squares regression (PLSR) algorithm
and deep neural networks (DNNs). At the same time, in the diagnosis of medical imaging equipment fault, the paper proposes to
use rough set to screen the fault factors and then use BP neural network to classify and identify the fault and analyzes the practical
application effect of the two technologies. *e results show that the PLSR-DNN hybrid network model for health prediction of
medical imaging equipment is basically consistent with the actual health value of medical equipment; medical imaging equipment
fault diagnosis technology is based on rough set and BP neural network. In the test set, the sensitivity, specificity, and accuracy of
medical imaging equipment fault identification are 75.0%, 83.3%, and 85.0%. *e above results show that the proposed health
prediction method and fault diagnosis method of medical imaging equipment have good performance in health prediction and
fault diagnosis of medical equipment.

1. Introduction

With the development of science, modern mechanical
equipment has entered a new stage, and more and more
mechanical equipment has entered people’s daily life [1].
With the development of new technology of medical
equipment, a large number of high-precision and highly
mechanized medical imaging equipment have entered
various hospitals [2]. With the influx of a wide range of
medical imaging equipment into the hospital, how to carry
out the scientific and effective management of these medical
imaging equipment is imminent [3]. *e basic link of
medical imaging equipment management is the evaluation
of medical imaging equipment health and the diagnosis of
medical imaging equipment fault [4]. At this stage, the skill
level of medical technicians in professional maintenance and
testing of medical imaging equipment still needs to be

improved, and it is difficult to achieve the synchronous
improvement of medical imaging equipment technology
[5, 6]. In other words, the failure of medical imaging
equipment inventory has become the difficulty of medical
imaging equipment management. In view of this, this paper
proposes to mine the influencing factors of medical imaging
equipment fault through rough set, describe the medical
imaging equipment universe data set with information table,
and find out the condition attribute and decision attribute in
different medical equipment. In the case of maintaining the
primary category of rough set, we reduce the redundant data
in rough set, that is, we retain really useful data by reducing
dimension. *en, the BP neural network is used to identify
and classify the fault factors to complete the medical imaging
equipment fault diagnosis. In the aspect of health evaluation
of medical equipment, the parameters associated with the
health of medical imaging equipment are extracted as the
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input features of the health prediction model. Partial least
squares regression algorithm (PLSR) neural network and
deep neural network (DNN) PLSR-DNN hybrid neural
network model are constructed.

Meng et al. proposed a multifeature fusion fault diag-
nosis method based on the combination of quadratic filter
and QPSO-KELM algorithm. It has achieved excellent di-
agnosis results in gearbox fault diagnosis. Guo et al. used the
belief network of parameter optimization to diagnose the
bearing fault.*e diagnosis results show that themethod can
correctly identify the bearing faults under different condi-
tions, greatly improve the intelligence of fault classification,
and reduce the time of parameter selection of deep learning
model [7]. *e two-dimensional visualization of the original
acoustic emission signal has been used by scholars such as
Islam and Kim to provide bearing health information [8].
Han et al. believe that in-depth learning has become a new
research direction in the field of intelligent monitoring and
fault diagnosis of industrial equipment [9]. In order to
improve the diagnosis accuracy of the mechanical equip-
ment fault diagnosis model, Tang and other scholars pro-
posed a fault diagnosis model of mechanical equipment with
feature selection feedback network [10]. Wang and other
scholars proposed a fault diagnosis model of mechanical
equipment based on noise assisted signal enhancement and
stochastic resonance and optimized the parameters by
particle swarm optimization. Ma et al. put forward that
rolling bearing is the key component of mechanical
equipment, and it plays an important role in fault detection
of mechanical equipment.

Reid et al. believe that it is necessary to pay attention to
the fault diagnosis of sterilization pod, especially in Africa
[11]. Bebronne and other scholars used artificial neural
network (ANN) and partial least squares regression (PLSR)
to estimate the area under the infection progress curve in the
study of winter wheat fungal infection [12]. Perin et al. used
partial least squares regression (PLSR) and spectropho-
tometry combined with color image and spectrophotometry
to evaluate the antioxidant activity of Picea asperata [13].
Kristoffersen and other scholars have established a partial
least squares regression (PLSR) model to predict DH% by
molecular weight distribution to predict the degree of hy-
drolysis of milk protein hydrolysate [14]. Shen et al. believe
that light, near infrared and mid infrared reflectance spectra
combined with partial least squares regression method is an
effective method to determine soil properties [15]. Dong and
other scholars improved the residual of multiple linear re-
gression model by partial least squares regression and
support vector regression [16]. Meunier et al. believe that
partial least squares regression (PLSR) can predict the
contribution of electrochemical drift to subsequent full
voltammetric scanning [17]. Sun et al. and other researchers
proposed a power system asset fault prediction scheme
combining unsupervised and supervised learning, and the
experimental results show that it has good performance [18].

To sum up, in recent years, there are a lot of research
studies on artificial neural network, partial least squares
regression, mechanical equipment fault, and so on, but the
research on health evaluation and fault diagnosis prediction

of medical imaging equipment through neural network is
relatively lacking. *erefore, a medical imaging equipment
health evaluation technology based on PLSR-DNN hybrid
neural network and a medical imaging equipment fault
diagnosis technology based on rough set and BP neural
network are proposed to assist people in the evaluation and
diagnosis of medical imaging equipment health and fault.

2. Research on the Health Evaluation and Fault
Diagnosis Method of Medical Imaging
Equipment Based on Neural
Network Algorithm

2.1. Health Evaluation Technology of Medical Imaging
Equipment Based on Neural Network Algorithm. Firstly, the
parameters related to the health status of medical imaging
equipment are extracted by calculating the characteristic
parameters of the vibration signal characterization signal,
which are used as the input characteristics of the health
degree prediction model [19]. When the medical machinery
is in the same healthy state, its vibration signal belongs to
stable signal [20].
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Expressions (1) and (2) indicate the i vibration signal
sampling point in the working period Tk of medical
machinery with health degree k, where i � 1, 2, . . . of ti

and health degree is k � 1, 2, . . .. Vk(t) represents the
vibration signal, which refers to the amplitude of the
vibration signal corresponding to the medical imaging
equipment with k health degree collected at a time. *e
mean value and standard deviation of vibration signal in
ti ∼ tj period are M and S, respectively. C1, C2 are con-
stants, and both of them are only affected by health degree
k. With the use of medical equipment, its health gradually
degenerates, and the overall performance of vibration
signal is nonstationary signal [21]. *e characteristic
frequencies of different parts of mechanical equipment
are different, and the amplitude frequency form of vi-
bration signal a(f) can be obtained by the time-fre-
quency conversion tool.

s.t. ϕn � fi, fj􏽨 􏽩 fi <fj􏼐 􏼑, (3)

where fi represents i frequency points and ϕn represents n

continuous frequency interval corresponding to the first
characteristic frequency. ∀fn ∈ ϕn, a(fn) − η+ > 0,
η+ � μ + cσ, in which η+ � μ + cσ is mainly responsible for
the detection of signal outliers, η+ refers to the average level,
which is used to determine the size of continuous frequency
interval, μ is the mean value of the signal, σ refers to the
standard deviation of the signal, and c ∈ [3, +∞) is the
factor responsible for determining the positive average
[22, 23].
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where A∗ represents the amplitude of the characteristic
frequency corresponding to the extracted vibration signal
and A∗ is the frequency domain. f∗n � argmaxfn∈ϕn

a(fn)􏼈 􏼉,
where f∗n represents the n characteristic frequency. So, the
equivalent calculation of M, S, A∗ does not depend on the
physical structure and failure mechanism of medical
equipment, so it can analyze different types of vibration
signals [24].

*e partial least squares regression algorithm is intro-
duced to select features from the linear level (PLSR), and the
nonlinear level regression mapping between the selected
features and the health degree of medical imaging equip-
ment is established through the deep neural network (DNN),
so as to construct the PLSR-DNN hybrid neural network
health degree prediction model [25].

As shown in Figure 1, PLSR-DNN model is composed of
PLSR layer and DNN layer. *e former uses PLSR to carry out
linear regression mapping on input features, while the latter
uses DNN to carry out nonlinear regression mapping on
output of the first layer, where M, S, A∗ belong to a medical
imaging equipment through vibration signal acquisition n. *e
average value of each characteristic is 0, and the variance is 1.
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where X0 represents the input data matrix with n vibration
signal features and Y0 represents the target data matrix with
m health labels. *e input sample vector with m data is
represented as xT. *e target sample vector with m data is
represented as yT. According to the data matrix, the space
projection is started:

t1 � x1w11 + x2w12 + · · · + xnw1n � X0w1, (7)

u1 � y1v11 + y2v12 + · · · + ymv1m � Y0v1, (8)

where t1 represents the linear combination of input sample
vectors; u1 is the linear combination of the target sample
vectors; the n element of the unit vector w1 is w1n; the m

element of the unit vector v1 is v1m; the eigenvector of
XT

0 Y0Y
T
0 X0 is w1; and the eigenvector of YT

0 X0X
T
0 Y0 is v1.

When the spatial correlation of t1 and u1 after projection
reaches the maximum, there is t1 ≈ u1. *e regression
models of X0 and Y0 to t1 were established:

X0 � t1α1 + E1,

Y0 � t1β1 + F1,
􏼨 (9)

where α1, β1 represent parameter vectors and E1, F1 rep-
resent residual matrix. When there is a rank of matrix X0 is
r, there are as follows:

X0 � t1α1 + t2α2 + · · · trαr + Er, (10)

Y0 � t1β1 + t2β2 + · · · trβr + Fr, (11)

where αi(i � 1, 2, . . . , r), βi(i � 1, 2, . . . , r) are parameter
vectors (αi � XT

0 ti/‖ti‖
2, βi � YT

0 ti/‖ti‖
2, and

ti � X0wi(i � 1, 2, . . . , r)) and Er, Fr represent the mini-
mum residual matrix.

Y0 � X0w1β1 + X0w2
β2 + · · · X0wrβr + Fr. (12)

Equation (12) is the PLSR equation, which is responsible
for processing input variables in the linear mapping layer
when predicting the health of medical equipment and can
effectively reduce the difficulty of network optimization.

Figure 2 shows a deep neural network with two hidden
layers.*e neurons in the adjacent layers are fully connected
with each other. xi(i � 1, 2, . . . , n) is the input characteristic
of the vibration signal of the medical imaging equipment
after PLSR processing; 􏽢y indicates the health prediction
output of medical equipment; Relu is selected as the acti-
vation function between the hidden layers; and linear output
is selected between the hidden layer and the output layer.
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where W is the weight matrix of each layer, b is the deviation
matrix of the corresponding layer, the mean square error is
selected as the loss function J(W, b), and yi represents the
actual value of the data target of group i. At the same time,
the predicted value of group i is represented by 􏽢yi. In order
to reduce overfitting, regularization term is introduced.
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Figure 1: Health prediction model of PLSR-DNN hybrid neural
network.
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where λ represents the regularization parameter and m

represents the number of sample sets. After regularization,
the deep learning network can limit the parameters to be too
large or too many. After processing, the weight of each layer
is set to 0.

HD � T − TO, (15)

where HD indicates the current health of the medical device,
T indicates the total operation time of medical imaging
equipment before failure, and TO indicates the current
running time of the medical device.

2.2. Design of Medical Imaging Equipment Fault Diagnosis
Method Based on Neural Network Algorithm. Rough set
theory can mine the interaction of different fuzzy datasets
from the existing data and explain the potential laws. Its
core is the division of related knowledge, related sets,
approximate sets, and so on [22]. As medical equipment,
especially large medical equipment, is usually composed
of electronic components, circuits, machinery, optical
path, etc., the structure is complex and cumbersome, so it
is very difficult to detect its fault, and it is difficult to
describe the internal logic of medical imaging equipment
with conventional methods. In the research process, the
information table of rough set is used to describe the
relevant data sets. We take the ventilator as an example
(see Table 1).

In Table 1, the “oxygen supply concentration” is se-
lected as the condition attribute of rough set, the “in-
fluence on respiratory therapy” factor is selected as the
decision attribute of rough set, and the decision rule is
found through the implied condition attribute, that is, the
influence on respiratory therapy is found through the
oxygen supply concentration. *e reduction process of
rough set is reduced to process, and only the core of rough
set is retained. However, the reduction set of a rough set is
not a unique set. Because the reduction process of
medical imaging equipment fault factors is directly
limited by software, hardware and inherent conditions of
equipment, and other factors, attribute importance re-
duction algorithm is used to complete the reduction of
rough set. In addition, in terms of generalization ability

and fault tolerance ability, rough set theory has some
shortcomings, so unsupervised BP neural network
combined with rough set theory is used. *e input di-
mension of neural network is simplified by rough set
reduction, as shown in Figure 3.

As shown in Figure 3, after the training samples are
input, the conditional attributes are quantified. *e re-
dundant items are removed according to the quantitative
results, and the decision tree is constructed by using the
remaining samples. *e equivalence set of condition at-
tribute and decision attribute is calculated. *e impor-
tance of attributes is calculated. When the importance is 0,
delete and observe whether the decision table is consis-
tent. If it is consistent, simplify the attribute. After all the
attributes have been calculated, the simplified decision
table can be obtained. After rule acquisition, rule sim-
plification, and training planning, the conditional attri-
butes are selected, and the final classification results are
output through BP neural network classification model. In
addition, after the test set samples are input, the condi-
tional attributes are quantified, the conditional attributes
are selected, and the BP neural network is used to classify.
Ventilator is an important life support equipment in
clinical treatment, so we choose ventilator as the repre-
sentative of medical imaging equipment to build the
experimental model.

As shown in Table 2, it mainly collects the environmental
data factors, electrical factors, and gas path factors that cause
ventilator failure, among which the environmental factors
refer to the ventilator failure caused by the internal and
external environment during the use of the ventilator;
electrical factors refer to breathing and failure caused by the
change of power supply of key parts of the ventilator during
the use of the ventilator. Air path coefficient refers to the
ventilator itself to provide the user with oxygen and air
negative feedback gas monitoring mode. While maintaining
the stable gas supply function of the ventilator, the gas
problem has a certain probability of causing the ventilator
failure.

Figure 4 shows the experimental model of the ventilator.
It can be seen that the humidity of the power module, the
temperature of the air module, the pressure of the air source,
the temperature of the air source, and the total load of the
battery are all factors obtained from the rough reduction set.
*ese factors are used as the input values for the input layer.
*e failure factors selected by the model (abnormal tidal
volume, large deviation of oxygen concentration, failure of
airtightness, and so on) were compared with the conven-
tional failure factors.

Table 1: Rough set information of ventilator.

Ventilator brand
and model

Oxygen supply
concentration (%)

Does it affect
respiratory therapy?

Hamilton C1 100 No
Delphi Evita4 74 Yes
. . . . . . . . .

Bird Vela 83 No

x1 x2 xn

h1

h1

y⌃

Figure 2: DNN model.
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Training 
sample input

Quantitative 
condition attribute

Remove duplicate items 
and build decision tree

Calculating the equivalence 
set of condition attribute and 

decision attribute

Calculating the 
importance of attributes

Importance = 0

Whether the decision table is consistent after deletion

Attribute reduction

No

All properties have been calculated

The simplified decision 
scale is obtained

Rule 
simplification

Rule 
acquisition

Rule training

Test set sample input Quantitative 
condition attribute

Conditional 
attribute selection

BP neural network 
classification model

Output of 
classification results

No

No

Yes

Yes

Yes

Figure 3: DNN model.

Table 2: Ventilator failure data collection.

Project Mainly for Acquisition module

Environmental data
collection

Power supply module, air oxygen mixing module, and
temperature and humidity data acquisition inside the

cabinet

YC1001 temperature and humidity acquisition
module collects 32 channels of independent

temperature and humidity

Collection of
electrical factors

Total load voltage and load current of ventilator, input
voltage and current of turbine/compressor, voltage/current
of air oxygen mixing module, and input voltage/current of

exhalation/inhalation valve

16-channel JY-DAM1600AC module

Gas path factor
collection

*e pressure, concentration, and humidity of the input gas
of the ventilator, the gas pressure at the input end of the air

oxygen mixture, and the internal flow monitoring
LORA, YC1001 modular

Humidity of power module
Total load current

Turbine/compressor current
Air module temperature

Valve voltage
Air pressure

Gas source temperature
Gas source concentration

Abnormal tidal volume
Air compressor failure

Self check alarm

Large deviation of oxygen 
concentration

Can’t breathe
Low pressure alarm

Airtightness cannot pass

Abnormal tidal volume

Deviation of oxygen 
concentration is large

Airtightness cannot pass

Rough reduction set (factor) Input 
layer Hidden layer

Output 
layer High frequency 

fault (selected) Failure (normal)

Figure 4: Experimental model building.
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where Se, Sp, andAcc represent sensitivity, specificity, and
accuracy, respectively; max is the total number of failure
mode classification (max � 3 is in research); TP is the true
ratio; FP is a false positive case; FN is a false negative case;
and TN means true negative.

3. Analysis of the Effect of Medical Imaging
Equipment Health Evaluation and
Fault Diagnosis

3.1. Effect Analysis of Health Evaluation of Medical Imaging
EquipmentBased onNeuralNetwork. We select 96 groups of
sampling data and select 75% of them as the training set and
25% as the test set; the corresponding characteristics of the
three axial vibration signals are used as the network input,
and the health of medical imaging equipment is used as the
prediction output of the network. In frequency domain A∗,
as the input parameter is combined with the single-layer
network model based on DNN network, as model 1, select
range feature M, S, A∗. As the input parameter is combined
with the single-layer network model based on DNN net-
work, as model 2, select range feature M, S, A∗. As the input
parameter is combined with the single-layer network model
based on DNN network, as model 3, the model proposed in
this paper is based on the characteristics of amplitude range
M, S, A∗. As input parameters are combined with the hybrid
network model based on PLSR-DNN, the predicted values of
the four models for the health degree of medical imaging
equipment are shown in Figure 5.

As shown in Figure 5, compared with the actual health of
medical imaging equipment corresponding to different
sampling points, the health value of medical imaging
equipment predicted by the proposed model is basically
consistent with the actual health value. *e difference be-
tween the predicted value and the actual value of health
degree of medical imaging equipment in model 1 is the
largest. Model 2 predicted the health degree of medical
equipment, which was less than the actual health degree of
medical equipment. *e predicted value of medical imaging
equipment in model 3 is basically consistent with the actual
predicted value of medical equipment, but the predicted
value of health degree of somemedical imaging equipment is
higher than the actual health value of medical equipment.
*e above results show that the proposed method is char-
acterized by amplitude range M, S, A∗. As an input pa-
rameter, combined with the hybrid network model based on
PLSR-DNN, it can achieve good application effect of medical

imaging equipment health degree prediction, and the pre-
dicted value of health degree is basically consistent with the
actual value of medical imaging equipment health degree.

In order to further explore the prediction effect of the
four models, the prediction errors of the four models are
studied and analyzed.*e prediction error E is the difference
between the actual health degree and the predicted health
degree. When E> 0, the predicted health degree of the model
is judged to be premature prediction; when E< 0, it was
judged that the health degree predicted by the model was too
late. *e prediction errors of the four models are shown in
Figure 6.

As shown in Figure 6, the prediction error of the pro-
posed method based on PLSR-DNN hybrid network model
is basically on the straight line of prediction error� 0, that is,
the prediction error of the proposed method based on PLSR-
DNN hybrid network model is basically 0 regardless of the
specific location of the sampling point. When the sampling
point is 20, the prediction error of model 1 is 150, and when
the sampling point is 24, the prediction error of model 1 is
−80. *e prediction error of model 2 fluctuates greatly, and
the predicted value of health degree of medical imaging
equipment obtained at very few sampling points is consis-
tent with the predicted value of actual health degree of
medical equipment. *e prediction error of model 3 fluc-
tuates slightly around the error of 0, and the overall pre-
diction error of model 3 is better than that of model 1 and
model 2, but the overall effect is not as good as the proposed
health evaluation method of medical imaging equipment
based on PLSR-DNN hybrid network model.

3.2. Application Effect Analysis of Fault Diagnosis Method for
Medical Imaging Equipment Based on Neural Network. In
this study, 90 ventilator failures were selected as the training
set, and the neural network was trained through the training
set. *ere were 41 abnormal tidal volume failures, 22 ab-
normal oxygen concentration failures, and 27 abnormal air
tightness failures in the training set. At the same time, the
neural network training iterations are set to 1000 times.
After the completion of the neural network training, the
specific situation of BP neural network to identify the fault
mode of medical imaging equipment is compared.

It can be seen from Figure 7 that in the training set, the
detection results of the ventilator equipment fault training
set in the training set by the proposed medical imaging
equipment fault detection technology based on rough set
and BP neural network algorithm show that the detection
sensitivity, specificity, and accuracy of abnormal tidal vol-
ume fault are 87.7%, 75.6%, and 92.7%, respectively. *e
sensitivity, specificity, and accuracy were 90.9%, 95.5%, and
86.4%, respectively. *e sensitivity, specificity, and accuracy
of the method are 85.2%, 85.6%, and 92.6%, respectively. To
sum up, it can be seen that when the medical imaging
equipment fault detection technology based on rough set
and BP neural network algorithm proposed in the study
detects the training set, the total sensitivity of the corre-
sponding ventilator fault detection is 87.8%, the corre-
sponding specificity is 85.6%, and the accuracy rate is 91.1%.
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After training, 60 ventilators were tested by using the
rough set BP hybrid neural network. *e test set was
composed of 27 ventilators with abnormal tidal volume, 12
ventilators with abnormal oxygen concentration, and 21
ventilators with abnormal air tightness. *e application
effect of the proposed hybrid neural network based on rough
set and BP is compared after training.

As shown in Figure 8, after training, the proposed
medical imaging equipment fault recognition technology
based on rough set and BP hybrid neural network has a
recognition sensitivity of 70.4%, corresponding specificity of
85.2% for the ventilator with abnormal tidal volume, and an
accuracy of 77.8% for the ventilator with abnormal tidal
volume. In the number of malfunctioning ventilators with

abnormal oxygen concentration, the recognition sensitivity,
specificity, and accuracy of the medical imaging equipment
fault recognition technology based on rough set BP hybrid
neural network are 66.7%, 75.0%, and 83.3%, respectively.
When the air tightness of the ventilator is abnormal, the
recognition sensitivity, specificity, and accuracy of the
medical imaging equipment fault recognition technology
based on rough set BP hybrid neural network are 85.7%,
85.7%, and 95.2%, respectively. From the overall analysis,
after training, the overall recognition sensitivity, speci-
ficity, and accuracy of the medical imaging equipment
fault recognition technology based on rough set and BP
hybrid neural network are 75.0%, 83.3%, and 85.0%,
respectively.
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2 4 6 8 10 12 14 16 18 20 22 24
Sampling point

Actual health
Model 1
Model 2

Model 3
The proposed model
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Figure 5: Comparison of actual health degree with the predicted results of four models.
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Figure 6: Comparison of health prediction errors of four models.
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4. Conclusion

*e necessary link of medical imaging equipment man-
agement in health detection and fault detection is presented.
Aiming at the health management of medical equipment, a
health degree prediction technology based on PLSR-DNN
hybrid network model is proposed. At the same time, a fault
diagnosis technology based on rough set and BP neural
network is proposed, and the practical application effect of
these two technologies is analyzed. *e results show that the
predicted health value of different sampling points of
medical imaging equipment is basically consistent with the
actual health value of the medical imaging equipment based
on PLSR-DNN hybrid network model, that is, the prediction
error base between the predicted health value and the actual
health value obtained by the technology is 0. In the training
set, the overall recognition sensitivity, specificity, and ac-
curacy of the proposed fault diagnosis technology of medical
imaging equipment proposed by the rough set and BP neural
network were 87.8%, 85.6%, and 91.1%, respectively. In the
test set, the overall recognition sensitivity, specificity, and

accuracy of the proposed fault diagnosis technology of
medical imaging equipment proposed by the rough set and
BP neural network were 75.0%, 83.3%, and 85.0%, respec-
tively. *e results show that the proposed health prediction
technology based on PLSR-DNN hybrid network model and
the fault diagnosis technology of medical imaging equip-
ment based on rough set and BP neural network have good
application effect in the health examination and fault di-
agnosis of medical equipment. Although some achievements
have been made in this study, only ventilator is selected for
the application test of medical imaging equipment fault
diagnosis technology. *e test results are not comprehen-
sive. Other medical imaging equipment should be included
in the analysis scope in the follow-up research.
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