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Abstract: Urban scaling law provides a quantitative understanding of the fundamental nonlinear
properties of how cities work. Addressing this, this study intended to examine the potential scaling
law that may lie in urban air pollution. With ground-monitored PM2.5 data and statistical socioeco-
nomic factors in 265 Chinese cities (2015–2019), a targeted analysis, based on the scaling power-law
model and scale-adjusted metropolitan indicator (SAMI) was conducted. The main findings of
this study were summarized as follows: (1) A significant sublinear scaling relationship between
PM2.5 and urban population size indicated that air quality degradation significantly lagged behind
urban growth, affirming the remarkable effectiveness of national efforts on atmospheric environment
improvement. (2) SAMI analysis expressed the relative conflict risk between PM2.5 pollution and
urbanization and showed significant spatial cluster characteristics. Cities in central China showed
higher potential risk than other regions, and there was a clear southward tendency for the city clusters
with increasing SAMIs during the study period. (3) During the study period, urbanization was not
the reason affecting the human-land conflict in terms of air pollution. This study is significant in that
it marked the first innovative incorporation of the scaling law model into an urban environmental
risk study. It also offered a new perspective from which to reframe the urban PM2.5 pollution risk,
along with the nationwide air environmental effort in China, which will benefit future research on
multi-types of urban environmental issues.

Keywords: air pollution risk; sublinear relationship; urbanization; zoning analysis; scale-adjusted
metropolitan indicator

1. Introduction

The process of urbanization is one of the most significant manifestations of human
civilization reshaping the Earth’s surface, accompanied by the continuous migration and
growth of the population [1]. Urban demographic growth produces ever-greater demands
on services for better living, externalizing as general affluence in multiple urban indicators,
such as economy level, individual income, infrastructure coverage, and traffic volume [2,3].
However, today’s cities vary greatly in enormous and changing scales (or sizes), from small
cities with just a few people to megacities with tens of millions of inhabitants, leading to
a wide range of urban indicators in the form of complexity and heterogeneity [4,5]. This
objective reality thus causes difficulties in recognizing the coherent linkages between these
urban indicators and the accompanying urbanization process across different cities.

Benefitting from increased data availability in many urban systems, urbanologists
began to experiment with a simplified analytical framework, i.e., urban scaling law, to
generalize the statistical patterns of urban indicators dependent on city scales [4,6,7]. The
scaling model was proposed based on dense empirical studies documenting that most
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urban properties vary continuously with urban scale, and can be well quantified by non-
linear power-law relations (Y~Y0·Nβ). Y indicates a specific urban indicator (e.g., road
network length and employment), Y0 is the normalization constant, N is the population
size (usually as the measure of city scale), and β indicates the general scaling rule across an
urban system. Bettencourt and Lobo [8] systematically reviewed previous relevant studies
and argued that the index of β acted as a robust scaling exponent for a wide variety of
urban indicators across different countries or time periods. Then, the range of β fell into
three categories with a taxonomic universality clustering around similar values, as: β > 1
(a superlinear relationship, signifying increasing returns to population size (scale), such
as the growth of gross domestic product (GDP) being faster than demographic growth),
β ≈ 1 (a linear relationship, associating with individual human needs which can be treated
as a standard per capita measurement), and β < 1 (a sublinear relationship, expressing
economies of scale usually associated with urban infrastructure) (Figure 1). With this, the
unified scaling model thus facilitates determination of the evolution of urban indicators,
along with the urbanization process, benefitting future urban policymaking [7,9–11]. How-
ever, most current urban scaling studies emphasized the endogenous indicators of cities,
e.g., socioeconomic activities or urban infrastructures [8,12–14]. Thus, a question could
be posed: could the urban scaling law model be effectively extended to characterize the
exogenous factors of urban systems such as urban environmental degradation?
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sublinear, and (b) the average scaling exponents (β) with ±95% confidence interval (CI) for different
urban indicators of the cities in China, EU, and USA, summarized by Bettencourt, Lobo [8]. R&D:
research and development.

The process of urbanization, while bringing about a great accumulation of popu-
lation, wealth, architecture, technology, and other resources, will also exert negative
externalities on itself and surrounding regions and induce serious eco-environmental
crises [1,15]. Among the multiple types of environmental degradations, ambient air pollu-
tion has aroused widespread concerns recently due to its inescapability and high risk of
morbidity and mortality [16–18]. The primary sources of air pollution are fossil combustion,
diesel vehicle usage, and household and industrial activity, etc., all of which are closely re-
lated to urbanization and industrialization processes [19]. For this reason, recent academic
discussions on air pollution have been carried out in the context of urbanization, covering
topics such as spatiotemporal characteristics [20–22], driving factors [23–25], and associated
risk stress [26–28]. On the whole, findings of these studies affirmed the pivotal contribution
of urban development on local, regional, or even global atmospheric environment deterio-
ration, especially in developing nations or regions undergoing dramatic urbanization or
industrialization (i.e., where the air pollution condition enhanced progressively with their
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development) [29,30]. Most relevant studies adopted absolute concentration of pollutants
to characterize the pollution status for specific cities or city-to-city comparison [31], but
they failed to consider that the differences in urban scale may be a potential confounding
factor during the assessment of air pollution status. For example, two Chinese cities, Beijing
and Nanchong, showed similar annual fine particulate matter (PM2.5) pollution levels
in 2019 (42 µg/m3, http://www.moc.cma.gov.cn accessed on 12 May 2020), but with huge
exposure demographic differences of >20 and 6.43 million residents, respectively [32]. Thus,
relying solely on pollutant concentration is not sufficient to express the relative risks to
which different cities are exposed. Moreover, recent studies have emphasized the solid non-
linear relationship between the air pollutant and urban (population) scale across different
cities [33,34]. Thus, whether urban environmental risks follow urban scaling law becomes
a topic worthy of academic discussion.

Echoing the above assumptions, this study intended to examine the effectiveness of
urban scaling laws in the wider context of urbanization. To the best of our knowledge, we
made the first attempt to explore urban air pollution issues and the potential scaling law
characteristics that they may imply. PM2.5 was considered as the typical air pollutant for
this study due to its higher topicality and attention-grabbing nature in both academic and
public society [16,17]. The specific research objectives were as follows: (1) verifying the
effectiveness of an urban scaling law on urban PM2.5 pollution in Chinese cities, along
with nationwide air pollution regulation (2015–2019); (2) characterizing the spatiotemporal
features of the relative PM2.5 pollution risk by introducing the Scale-Adjusted Metropolitan
Indicator (SAMI) based on a scaling model; (3) examining whether the urbanization process
contributed to variation in the relative PM2.5 pollution risk. Then, in-depth and extended
discussions based on the main findings were conducted to clarify the potential theoretical
and practical insights into the recognition of urban PM2.5 pollution risk.

2. Materials and Methods
2.1. Study Area

In this study, we focused our attention on cities in China, which are experiencing re-
markable urban transformation benefiting from the Reform and Opening-up policy [15,35].
However, the consequent deterioration of air quality triggered by urbanization and indus-
trialization processes has aroused widespread concern from all sectors of society, and PM2.5
has quickly become a widely known buzzword in public opinion [16,36]. Since 2013, there-
fore, the Chinese government has advocated a series of atmospheric environment-related
policies in an effort to improve the severe nationwide air pollution crisis [37,38]. Thanks to
this, local governments have built systematic monitoring systems for PM2.5 and other air
pollutants across the country (Figure 2). This, coupled with China’s huge urban population
base (in terms of both development momentum and risk exposure potential) [39,40] and
significant regional differences among cities (in terms of climate, socio-economic, and
environmental pollution risk, etc.) [41–43] provided us adequate environmental monitoring
data and the diversified caseload needed in this study.

2.2. Data Preparations

The nationwide records of the hourly PM2.5 concentration data started in early 2014
by the ground-level air quality monitoring stations in Chinese cities, provided by the
urban air quality publishing platform of China National Environment Monitoring Center
(http://www.moc.cma.gov.cn accessed on 12 May 2020). To ensure the integrity and
comparability of data sources, we initially excluded cities with irreparable data deficiencies,
and the time span of 2015–2019 was determined to maximize the integrity of recorded data
for most cities. Eventually, this study selected 265 cities across the northeast (NE, with
36 cities), east (EA, 74), central (CE, 69), and west (WE, 86) economic zones of mainland
China for empirical case study (Figure 2), involving municipalities, prefecture-level cities,
and autonomous prefectures. The continuous recorded hourly PM2.5 documentations of
the 265 case cities during 2015–2019 were downloaded, then were (average) calculated with
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all the time nodes of all the monitoring stations to obtain the annual PM2.5 concentration
for each city [33].

Figure 2. The case cities in China and related economic zones of this study. NE: northeast China; EA:
east China; CE: central China; WE: west China.

According to the urban scaling law model [6,11,40], the permanent resident population
(POP, 10,000 person) was selected as the basic indicator to quantify each case city’s size.
Moreover, plenty of relevant studies have documented that urbanization processes pose an
incontestable impact on PM2.5 pollution worldwide [29,44,45]. Thus, we tried to explore
whether urbanization was still valid for intervening in the scaling performance assigned
with PM2.5 pollution. Urban built-up area (BA, km2) as well as GDP (100 million RMB),
indicating the scale of spatial and economic urbanization respectively [46,47], were chosen
for further analysis and discussion in this study. The annual values of all three indicators
of the case cities (during 2015–2019, consistent with that of the PM2.5 data) were acquired
from the China Urban Statistical Yearbook [32].

2.3. Analysis Implementations
2.3.1. Scaling Law Analysis

In this study, we treated the urban PM2.5 pollution as the consequence of urbanization,
similar to other types of urban metrics (e.g., infrastructure construction, economic develop-
ment, production and living consumption, etc.) [44,48,49]. According to the urban scaling
law model mentioned in our introduction, the scaling law model on PM2.5 pollution could
be localized based on our research targets in the following form:

PM2.5(t) = α·POP(t)β (1)

where PM2.5(t) refers to the annual PM2.5 concentration of case cities at time t. With this,
the relative change in the per capita quantity (PM2.5(t)/POP) with each fractional increase
in population size (∆POP/POP) depended only on β instead of the initial city scale, POP(t).
Then, for the purpose of keeping the model as simple as possible [9,40], the linear ordinary
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least squares regression was applied to derive the scaling exponent β through logarithmic
transformation of Equation (1), as:

LOG(PM2.5(t)) = β·LOG(POP(t)) + LOG(α) + ξ (2)

where β can be treated as the slope of the linear model and ξ is a normally distributed
error with zero mean in a logarithmic relationship. The regression model was examined
with a given significance level of 0.05. The value of β, obtained from the regression model
(passing significance test) was used to determine the scaling characteristics by referring
to Figure 1.

However, the scaling exponent β was analogous to an overview on the average
(power-law scaling) behavior of urban indicators’ response to the demographic size of
cities (Figure 1). Therefore, a dimensionless indicator with relative value was developed to
further eliminate the impact of population size on urban indicators, according to the study
by Bettencourt, Lobo [50], as a Scale-Adjusted Metropolitan Indicator (SAMI):

SAMI = LOG
Yi

Y(Ni)
= LOG

Yi

Y0·Nβ
i

(3)

where Yi is the observed value of the urban indicator for specific city i. Accordingly,
the above scaling information can be substituted into Equation (3) to obtain the SAMI
representing the urban PM2.5 pollution risk, as followed:

SAMI = LOG
PM2.5(t)i

PM2.5(POP(t)i)
= LOG

PM2.5(t)i

α·POP(t)β
i

(4)

where PM2.5(t)i is the observed value of annual PM2.5 concentration for the case city i in
time t, while PM2.5(POP(t)i) is the corresponding projected value based on Equation (1). As
an index independent of city size, SAMI was able to capture the true local flavor assigned
to specific urban characteristics (PM2.5 concentration in this study) to specified times and
places, which allowed direct city-to-city performance comparison and provided objective
and meaningful rankings across the urban system compared to that of traditional per
capita or average indices [11,50]. In this study, the value of SAMI was used to quantify
the deviation between the actual PM2.5 pollution level and the expected one in a certain
population size according to the urban scaling law (Equation (1)). SAMI < 0 indicated that
the actual PM2.5 pollution was weaker than expected with lower urban pollution potential,
while SAMI > 0 indicated the opposite performance.

2.3.2. Auxiliary Analysis

With the results of the scaling law analysis, further auxiliary analyses were conducted
in this study to deepen the insight of the scaling characteristics of the urban PM2.5 pol-
lution risk in China. First, geospatial models, i.e., Hotspot (Getis-Ord Gi*) and Standard
deviational ellipse distributing (SDE) analyses were adopted to identify the statistically
significant spatial clusters of high (hotspot) and low values (coldspot) of SAMIs and their
spatial tendencies across time and space [47,51,52]. Then, four economic districts, i.e., NE,
EA, CE, and WE (Figure 2) were introduced for additional zonal statistics and comparisons
with SAMIs using one-way ANOVA and linear trend analysis, in order to capture the
dynamic pollution risk characteristics that may exist on the reginal scale [53]. Lastly, an
additional regression analysis was conducted between three urbanization indicators (i.e.,
POP, BA, and GDP) and the varying SAMI (∆SAMI, gap between 2015 and 2019), to verify
whether there was a significant association between the air pollution risk evolution and
urbanization process.

In summary, scaling law (including β and SAMI), ANOVA, and regression analyses
were conducted in SPSS software (Version 23, IBM, Armonk, NY, USA) and plotted in
Origin Pro (Version 2021b, OriginLab Corporation, Northampton, MA, USA) and GraphPad
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Prism software (Version 8.4, GraphPad Software, San Diego, CA, USA), while the geospatial
analysis (including hotspot and SDE analysis) and mapping were accomplished in ArcGIS
software (Version 10.8, ESRI, Redlands, CA, USA).

3. Results

The linear fitted results between the logarithmic POP and PM2.5 data showed that
the two indicators conformed to the urban scaling law during 2015–2019, even with lower
but significant R2 (0.153–0.176, p < 0.01, Figure 3). The scaling exponents (β) of PM2.5
ranged from 0.196 (2018) to 0.207 (2015), which was well below the empirical threshold of 1,
as shown in Figure 1. This indicated that the scaling feature of PM2.5 pollution showed
a significant sublinear pattern during the study period, signifying that growth in urban
population size corresponded to lower expectations of air pollution exacerbation from a
global perspective.
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When the focus shifted to the relative difference among individuals, SAMIs of each
case city showed significant spatial heterogeneity across the whole study region, as shown
in Figure 4. Generally, the spatial distribution of SAMIs was highly compatible with that of
PM2.5 in terms of perception. For all of 2015–2019, cities with higher SAMIs were mainly
distributed in the North China Plain and the western border regions, where most of the
cities also bore higher PM2.5 pollution risks (>55 µg/m3). In contrast, lower-value cities
were mainly located in the southeast coastal and northern border regions. These spatial
variations were further verified by hotspot analysis (Figure 4c). From a zoning perspective,
as shown in Figure 5, cities in CE unsurprisingly showed the highest average value of
SAMIs across all years, varying from 0.07 (2015, 2016) to 0.09 (2017, 2019), while cities in EA,
WE, and NE all showed significantly lower average SAMIs (p < 0.01) but larger standard
deviations from CE.

In terms of temporal variation, the case cities’ ∆SAMIs did not exhibit similar spatial
patterns to their cross-sectional values, even though most cities (251 of 265 cities) showed
obvious decline in annual PM2.5 concentration (Figure 6). The city clusters with higher
SAMIs showed clear southward shifts judging from the year-to-year morphology changes of
SDEs (Figure 4), which was verified by the slight rising trend of ∆SAMI with lower latitudes
(Figure 5). Furthermore, Hotspot analysis clarified that the key cities of ∆SAMIs mainly
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concentrated in CE (∆SAMI > 0), EA (>0), and NE (<0). Among the four economic zones, NE
showed the most significant average variation of −0.04 ± 0.09, followed by CE (0.02 ± 0.07),
EA (−0.01 ± 0.06), and WE (nearly 0 ± 0.1). In terms of city number, zonal statistics showed
that a total of 133 case cities (nearly 50% of the total cities) experienced increasing SAMIs,
with 42 in CE (61%), 37 in EA (50%), 42 in WE (49%), and 12 in NE (33%). There were
119 out of 133 cities with positive ∆SAMIs that were experiencing reduced PM2.5, while
another 90 cities showed declining characteristics in both PM2.5 and SAMIs (Figure 6c).

Figure 4. The spatial details of the (a) annual PM2.5 concentration (PM2.5), (b) Scale-Adjusted
Metropolitan Indicators (SAMI) & POP, and (c) Hotspot and corresponding standard deviational
ellipse (SDE) analysis results of SAMI for the case cities during 2015–2019.

Figure 7 shows the linear relationships between ∆SAMI and urbanization indictors in
different zones, with an additional analysis on ∆PM2.5. Generally, the results showed that
incremental urbanization would lead to declining trends, both in ∆SAMI and ∆PM2.5, in
most zoning contexts. Except for the cases between ∆SAMI and ∆GDP in NE, ∆PM2.5 and
∆POP in EA, ∆PM2.5, and ∆GDP in NE showed positive relationships. However, all these
indicators were not closely correlated, with insignificant (p > 0.05) or unsatisfactory (lower
R2) regression performances.
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4. Discussion
4.1. Revisiting Urban PM2.5 Pollution in the Perspective of Scaling Law

As mentioned above, the Chinese government implemented a series of strict, costless,
and nationwide top-down policies for air pollution abatement in recent years [17,38]. Our
study revealed remarkable improvement in urban PM2.5 pollution levels across most cities
in China after a brief changing analysis on its annual concentration (2015–2019) (Figure 6).
In contrast to previous studies, prior to 2013–2015, which documented that the overall
risk of air pollution in China was increasing [48,54,55], our findings suggested that current
environmental policies are functioning effectively. Similar conclusions have also been
drawn in related studies [33,56,57].

However, when we shifted our perspective and tried to discuss this air pollution
issue in terms of scaling law, we ended up with interesting new findings. Previously,
urban scaling law has been determined globally to be an effective universal taxonomy
in quantifying various urbanized characteristics assigned with population sizes [8,12,49].
Commensurate results could also be obtained based on the data used in this study (by
comparing Figures 1 and 8), which informed the general law that urbanization is a den-
sification process of resources, capital, and population. The efficient utilization of urban
resources will inevitably lead to faster growth of urban virtual factors, such as GDP or
technological innovation (weighted by population size, β > 1), compared to that of urban
infrastructure (e.g., BA or road network, β < 1) [7,40]. In this study, the annual PM2.5
concentration, although not a common-sense representative urban indicator, showed a
significant sublinear scaling law relationship with urban (population) size and much lower
β than other types of urban indicators (Figures 1 and 3). From this point of view, this finding
also confirmed the effectiveness of environmental policies on air quality improvement, i.e.,
the air pollution level has significantly lagged behind urban growth.
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and gross domestic product (GDP, 100 million RMB) in 2019. The straight line refers to the expected
linear relationship between these logarithmic indicators for the case cities. **: p < 0.01.

However, β only indicated global-level scaling characteristics [11,50], whereas SAMI
analysis revealed more spatial details. Geographically, higher SAMI can characterize more
severe human–land conflict in urban systems in terms of urbanization and air pollution
to a certain extent. Thus, our findings indicated that those cities with higher SAMIs have
not reached the national average level in terms of coordinating urban development and
environment pollution. In other words, in these cities, there was not enough potential space
for PM2.5 emissions under the current population size. Thus, future population growth
would easily exacerbate this human–land conflict. Generally, in the broader context of
national air environmental improvement, our study showed significant heterogeneity in
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SAMIs across time and space. The cities with higher-ranked SAMIs were mainly distributed
in parts of central and western China, while those with lower SAMIs were mainly located in
the southern coastal regions. However, the spatial pattern of SAMIs was not consistent with
the size of each city; rather, it was related to the current PM2.5 pollution level (Figure 4).
To some extent, this can be explained as influenced by the unique natural condition,
production, and living styles of different regions, and the cities with serious human–land
conflicts are often the areas with serious pollution [26,58]. For example, cities in CE
(which showed the highest average SAMI than other regions, Figure 5) had relatively high
population sizes and were definitely the most polluted areas identified by many relevant
studies, whereas higher PM2.5 pollution risks, weighted by population, were mainly
contributed by the local energy-intensive pillar industries [55,59–61]. In contrast, as the
frontier and autonomous minority regions, cities with small populations in WE also showed
higher concentrations of SAMIs and PM2.5 pollution, mainly due to the facilitation of local
natural sources (proximity to the Taklamakan Desert) and climatic transport conditions
(windy & arid) [41,62]. Moreover, we found quadratic polynomial distribution patterns
of SAMIs along the latitude, with high values are around 35◦N (Qinling Mountain–Huai
River) during 2015–2019, which coincided with the division of north and south China.
Ebenstein, Fan [18] argued that the Huai River winter heating range (Figure 9) produced
sustained differences in airborne PM concentrations between the north and south of China.
This could also partially explain the spatial differences in air pollution and the SAMIs of
this study.
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From the temporal change, nearly half of the case cities (133/265) showed rising
levels of SAMIs, while nearly all the case cities saw their annual PM2.5 concentration
fall (Figure 6). However, this did not mean that the pollution risks in these cities were
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increasing, but rather emphasized the contradiction between their urbanization process
and environmental degradation, which increased relatively compared to the global average
status. Moreover, the variation of SAMIs in the case cities did not show clearly regional
cluster characteristics in spaces similar to their cross-sectional values. Hotspot and SDE
analysis allowed us to note the presence of north-cold and south-hot patterns, in terms of
changes, during 2015–2019, which was exactly the opposite of the north-hot and south-cold
patterns assigned to the cross-sectional data. The hotspots of ∆SAMI concentrated in
central and southern cities. For the cities in central regions (mainly in Henan and Shanxi
provinces, Appendix A Figure A1), the relatively high ∆SAMI of these cities was possibly
due to the increased relative risk of PM2.5 pollution compared to the surrounding region’s
stronger environmental policies (i.e., the Beijing–Tianjin–Hebei (BTH) region, known as the
most polluted region in China, Figure 4). Figure 6 shows that the BTH region exhibited
the highest reduction in annual PM2.5 concentrations in China. Dong and Wang [56]
reported that the source contribution of PM2.5 in the BTH region was skewed from local
emissions due to importing from surrounding provinces with less strict pollutant emission
control strategies. The above arguments also explained the cities in the BTH region having
become the cold spots of ∆SAMI. The cities in the southern region (Guangdong) had less air
pollution background (Figure 4) and higher costs for environmental improvement. Scholars
have made a rough estimate that reduction of PM2.5 by 1 µg/m3 would cost 2.72 million
RMB in the BTH region, whereas in the Pearl River Delta (PRD) region (Guangdong
province), the cost would reach 7.31 million RMB, because of the need to sacrifice higher
value-added industries [63]. This contributed to the insignificant improvement in local air
quality (Figure 6), and consequently caused rising SAMIs with increasing risk potential.
Recent studies have also suggested the urgent need for synergistic air pollution control in
these often-neglected regions of southern China [37,64].

4.2. Does Urbanization Still Matter?

The process of urbanization has been acknowledged as key in the exacerbation of
urban PM2.5 pollution in China, confirmed by dense previous analyses [34,48,65–68].
However, with the promotion of pragmatic environmental policies and relevant supporting
measures, dramatic improvements in domestic air quality have been achieved in a few short
years [17,38]. Similarly, significant decreases in annual PM2.5 concentration accompanying
urbanization progress have been documented [33]. The question then becomes whether
urbanization remains responsible for PM2.5 pollution? The Environmental Kuznets Curve
(EKC) hypothesis can usually be used to answer this question, suggesting that urban
development would eventually alleviate the environmental degradation (e.g., urban PM2.5
pollution) [69–71]. However, our results did not support this hypothesis, as shown in
Figure 7, with insignificant pairwise associations between the variation of PM2.5 and
urbanization indicators in most of the zoning cases. Notably, NE was an exception, showing
a significant positive relationship between ∆PM2.5 and ∆GDP (p < 0.05), and implied that
the declining GDP in NE (due to the continuous loss of population and socio-economic
resources in recent years, Figure 6 and Appendix A Figure A2) was effectively associated
with a local reduction in PM2.5 concentration. But this also contradicted the growth
progress of urbanization highlighted by the EKC hypothesis [72,73].

SAMIs of the case cities were spatially inconsistent with their urbanization indicators,
i.e., POP, BA, and GDP (Figures 4 and A2). In addition, the regression analysis in Figure 7
emphasized that the variations of urbanization indicators were not significantly associated
with local ∆SAMIs across different zonings, indicating that the urbanization process might
not be the main factor affecting the human–land conflict in terms of urban air pollution.

Did ∆SAMI correlate with ∆PM2.5? Figure 6c showed a rough linear nexus between
the two indices. We broke down their relationship in a piecewise fashion according to
the quadrant range. All three valid quadrants showed significant (p < 0.01) and positive
linear relationships between ∆PM2.5 and ∆SAMI (Figure 10). However, in a way, these
results contradicted each other: that is, positive ∆PM2.5 undoubtedly increased the local
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risk in terms of higher SAMIs (Figure 10a), whereas negative ∆PM2.5 not only reduced
the risk in some cities (Figure 10c), but also increased the risk in others (Figure 10b). This
contradiction further highlighted the inherent heterogeneities in PM2.5 pollution risks in
different cities, which cannot be simply summarized by socioeconomic development or
environmental improvement. Similarly, Zhao, Zhou [53] concluded that different cities
would show different gradations of PM2.5 pollution characteristics according to their
urban size (BA), landscape form, and spatial location; Wang, Yao [33] also reported that
demographic/industrial structures in different cities could also contribute to differences
in the core drivers of local PM2.5 pollution risks—not to mention the direct impact of
natural factors with distinct geographical characteristics, e.g., climate, topography, and
land cover, etc., on the spatial heterogeneities of air pollution risk [30,41,74,75]. Under the
framework of urban scaling law, this study revealed that the cities in high-value clusters of
∆SAMI were not commonly thought of as economic-developed mega cities with a greater
spotlight (i.e., Beijing and Shanghai) or as underdeveloped small cities. Instead, they were
primarily medium-sized cities located in CE and EA (Figures 6 and A2), which presented
relatively intensified pollution risk potential along with their urbanization process but have
not received sufficient attention in previous PM2.5 related studies [76–78].
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4.3. Implications and Limitations

To our best knowledge, this study was the first attempt to discuss the urban scaling law
characteristics of PM2.5 pollution, providing a brand-new perspective on the quantitative
nexus between the process of urbanization and its related environmental risks. In general,
the significant sublinear relationship (β < 1, p < 0.01) between PM2.5 and POP objectively af-
firmed the unremitting effort on the part of the Chinese government to improve nationwide
air quality. However, all was not well; SAMI analysis further revealed significant regional
gaps in terms of relative risk. This demonstrated that environmental policies implemented
alongside urbanization processes effectively mitigated the overall air pollution risk but
failed to take regional balance into account. From the static cross-sectional perspective, the
relative risks of the case cities exhibited a distinct spatial gradient with higher clusters in CE
and lower clusters in other economic zones. Its spatial pattern was broadly consistent with
that of PM2.5 pollution, implying that the current focus on environmental investment needs
to be maintained, especially for those cities with higher PM2.5 concentrations than the
ambient air quality standard of II level (35 µg/m3) in China (Figure 4). More importantly,
from the interannual variation perspective, the overall southward trend of higher SAMIs
will then contribute to identifying future environmental concerns. Another implication of
the study is that relying on urban development alone cannot effectively solve the persistent
environmental risks originating from the process of urbanization. Not only that, but the
short-term advantage of policies for air quality improvement also come at great urbaniza-
tion costs, leading to economic slow-down or recession (Figure A2) and subsequent possible
population loss (Figure 6), unemployment, or social injustice [39,71,79,80]. Therefore, in
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the long-term, more sustainable urban environmental solutions with more feasible choices
(e.g., cleaner energy and technology, public awareness and participation, regional transfer
payments, etc.) are essential for narrowing the relative risk gaps of PM2.5 pollution across
cities, independent of their urbanization levels [16,27,81].

However, this study had some limitations. First, it is necessary to note the lower model
performance (R2) of the annual PM2.5 concentration (Figure 3) compared to other types
of urban indicators in previous urban scaling studies (Figure 1). This suggested that envi-
ronmental degradations were not inherent characteristics along with urban development
and may show significant regional and temporal heterogeneity. Zoning analysis verified
this, exhibiting various properties in both PM2.5 pollution and related SAMIs among CE,
EA, NE, and WE (Figure 6). In addition, analysis using global statistical analysis algorithm
(Equation (1)) in such region with significant spatial heterogeneity will result in lower R2

due to the spatial non-stationarity effect [82]. Similarly, Zhao, Zhou [83] obtained lower
R2 (< 0.1) when they discussed the regression relationship between the PM2.5 concentration
and urban population across the Chinese cities. Thus, it will be essential to carry out more
detailed studies to discuss the potential heterogeneity of the scaling law for more diverse
regions in the future. Second, the urbanization factors (i.e., POP, BA, and GDP) did not
show significant association with SAMIs of the case cities, and further research is needed
to explore more relevant explanatory variables to indicate the underlying causes or driving
mechanisms of the variations in SAMIs.

5. Conclusions

This study examined the potential urban scaling law that may lie in the urban air
pollution concerns of the public in China, using 265 cities as case study. Based on the ground-
monitored PM2.5 concentration and statistical socioeconomic data during 2015–2019, we
carried out a series of analyses and discussions. The main findings were summarized
as follows:

(1) Significant scaling law was examined between PM2.5 pollution and urban popula-
tion size, and their sublinear relationship indicated that air quality degradation significantly
lagged behind urban growth, affirming the remarkable effectiveness of national efforts on
atmospheric environment improvement during the study period.

(2) SAMIs reflected the relative conflict risk between PM2.5 pollution and urbanization
and showed significant regional cluster characteristics. Cities in CE generally showed
a higher risk than other regions, but there was a clear southward tendency for the city
clusters with positive ∆SAMI from 2015 to 2019.

(3) Neither urban scales nor temporal variations showed significant association with
POP, BA, or GDP, indicating that the urbanization process was not the main factor affecting
the human–land conflict on the dynamic of urban air pollution after the implementation of
the national environmental policy in China.

The aim of this study was to extend the effectiveness of the urban scaling law onto
a wider topic by innovative incorporation of the scaling model into urban environmental
risk study. The work offered a new perspective from which to reframe the urban PM2.5
pollution risk along with the nationwide air environmental effort in China. Both the
methodology and findings of this study will be beneficial for future efforts on similar urban
environmental degradations, such as urban overheating, flooding, or water pollution issues.
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