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Abstract: One of the key elements in assessing traffic safety on the roads is the detection of asphalt
conditions. In this paper, we propose an optical sensor based on GeSi nanocrystals embedded in
SiO2 matrix that discriminates between different slippery road conditions (wet and icy asphalt and
asphalt covered with dirty ice) in respect to dry asphalt. The sensor is fabricated by magnetron
sputtering deposition followed by rapid thermal annealing. The photodetector has spectral sensitivity
in the 360–1350 nm range and the signal-noise ratio is 102–103. The working principle of sensor setup
for detection of road conditions is based on the photoresponse (photocurrent) of the sensor under
illumination with the light reflected from the asphalt having different reflection coefficients for dry,
wet, icy and dirty ice coatings. For this, the asphalt is illuminated sequentially with 980 and 1064 nm
laser diodes. A database of these photocurrents is obtained for the different road conditions. We show
that the use of both k-nearest neighbor and artificial neural networks classification algorithms enables
a more accurate recognition of the class corresponding to a specific road state than in the case of
using only one algorithm. This is achieved by comparing the new output sensor data with previously
classified data for each algorithm and then by performing an intersection of the algorithms’ results.

Keywords: optical sensor; photodetection of reflected light from asphalt; road conditions detection
sensor; road safety; smart roads; k-nearest neighbor algorithm; artificial neural networks

1. Introduction

The car manufacturers, together with road authorities, are continuously challenged to supply
effective services to ensure efficient and safe transportation. Fast and correct evaluation of slippery road
conditions is critical for a driver, who should evaluate the conditions in order to have safe transportation
and to prevent traffic accidents. The slow response of a human being is due to the limited information
about road conditions that the human eye can provide and, therefore, using sensors for discriminating
between dry, wet or icy asphalt is a requirement for the mitigation of traffic accidents.

At present, different types of technological systems, like fixed automated spray technology
(FAST) [1,2], road weather information systems (RWIS) [3,4], environmental sensors [5], sensor networks
for smart roads [6,7], pavement surface temperature sensors [8] and modern weather forecast
systems [9], have been developed for detecting the asphalt state or for road monitoring under
different atmospheric conditions. Great efforts have been made to integrate all these technological
systems into a cooperative-intelligent transportation system (C-ITS) [10]. This platform was proposed
to facilitate communications between vehicles and vehicles (V2V), vehicles and infrastructure (V2I)
and infrastructure and vehicles (I2V) [11,12].
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The development of sensor-based systems is the most appropriate solution with flexibility,
portability and high applicability, which overcomes the limitations of the fixed systems as RWIS.
Different sensor approaches were proposed in the study of Tabatabai et al. in which the authors proposed
a sensor based on electrical resistance measurements that, besides determining roadway conditions
(icy, dry, wet and frozen), transmits warnings about location and surface temperature [13]. Piccardi et al.
studied different sensing geometries for the evaluation of the asphalt state using the measurement
of the polarization/depolarization state of near infrared radiation (by two photodiodes). From their
results, one can distinguish between a safe surface and different dangerous surfaces (wet, with water
and icy) [14]. Jonsson et al. proposed another technique for determining road conditions based on
infrared thermometry [15]. The measurements performed with a capacitive sensor represent another
alternative proposed for detection of the road surface covered with water or ice. The limitation of this
method is related to sensor contamination with dirt, fuel and salt [16–18]. In the paper published by
Alimasi et al., the efforts are focused on a portable measurement system that can distinguish between
different road states by comparing the ratio between specular reflectance and diffuse reflectance [19].
The recognition based on video images for identifying road conditions represents another approach
proposed by Zhao et al. This method is based on road surface state recognition using a support vector
machine (SVM) sustained by a grid searching algorithm and a particle swarm optimization algorithm
(PSO) to improve recognition accuracy [20].

Using optical sensors to discriminate between different slippery road conditions is one of the best
solution. Such an optical system is usually based on the comparison of the reflection coefficient at
different wavelengths for different road states [14,15,21–24], for which broad-band optical sensors with
extended sensitivity from visible (VIS) to short wave infrared (SWIR, 1–3 µm) are needed. Group IV,
Si-Ge-Sn based photodetectors are very promising non-toxic alternatives to market available III-V
devices. A cost-effective technique based on SiGeSn nanocrystals (NCs) embedded in an oxide matrix
obtained by magnetron sputtering can be used for large-scale production of highly sensitive VIS-SWIR
optical sensors [25–30]. In such composite materials, the oxide matrix has the role of the surface
passivation of nanocrystals [28,29,31–33]. SiGe NCs alloys have the advantage of tuning the energy
bandgap by adjusting the SiGe composition, in addition to the size controlling of the bandgap by
quantum confinement effect. The SiGeSiO2 amorphous films deposited by magnetron sputtering
and successively annealed by rapid thermal annealing (RTA) within the 700–1000 ◦C range for NC
self-assembly, have shown photoresponsivity of about 5 AW−1 at room temperature, measured on
coplanar diode structures [28].

In this paper we describe an optimized new optical sensor based on GeSi NCs embedded in a
SiO2 matrix, that are fabricated by magnetron co-sputtering deposition of Ge, Si and SiO2 followed by
thermal annealing, to be used for discriminating between different slippery road conditions in respect
to dry asphalt. Such sensors based on eco-friendly materials, compatible with the well-established
technology of Si, using cost-effective fabrication technology have many socio and economic advantages
in respect to other sensors available on the market. The GeSi NCs sensors were experimentally tested
by using them within an optical set-up for the detection of four types of road surface, namely dry,
wet, icy asphalt and dirty ice asphalt. The experimental data were processed by two classification
algorithms, namely k-nearest neighbor (KNN) and artificial neural network (ANN) algorithms for
identifying the class to which road condition belonged. An important advantage of the proposed sensor
is that this is also completely customizable for a better fit with the required needs. Thus, by changing
the fabrication parameters, the spectral sensitivity of the sensor was adjusted in order to achieve a
better matching between spectral characteristics of dry, wet and icy asphalt and the sensitivity domain
of the sensor.
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2. Materials and Methods

2.1. Optical Sensor Fabrication

The films with GeSiSiO2 were deposited by magnetron sputtering. The fabrication process was
described elsewhere [27,28]. Here, we describe the layer fabrication procedure for optimized annealing.
Thus, three separate targets (Ge, Si and SiO2) under DC and RF regime (20 W DC for Ge, 38 W DC for Si
and 138 W RF for SiO2) were employed to ensure the Ge:Si:SiO2 composition of 24.2at%:27.4at%:48.4at%
(corresponding to SixGe1-x alloy in SiO2, with a concentration of x = 53at%). The deposition was made
on n-type Si wafers chemically cleaned by a standard RCA(Radio Corporation of America) method in a
Piranha solution and then covered by 50 nm SiO2 grown by dry oxidation in a rapid thermal processor
(RTP) for electrical isolation of the GeSi NCs active layer from Si substrate. The as-deposited films
have about 320 nm thickness.

The GeSi nanocrystallization was made by rapid thermal annealing (RTA) at optimal temperature
of 900 ◦C for 10 min in N2 atmosphere. RTA temperature and time are critical in obtaining photosensitive
GeSi NCs due to the competition between Ge fast diffusion and GeSi NCs formation in SiO2 matrix [25–28].

The workflow for obtaining the GeSi NCs:SiO2/SiO2/n-Si photodetector with Al contacts
(magnetron sputtering) in planar geometry is presented in Figure 1.

Figure 1. The workflow for obtaining the GeSi NCs:SiO2/SiO2/n-Si photodetector.

2.2. Sensor Signal Measurements and Software Packet for Data Analysis

The spectral dependence of the sensor sensitivity was measured under monochromatic illumination
with modulated light (120 Hz frequency) using an incandescent lamp (250 W) and Newport
monochromator. For this, a lock-in amplifier (SR830) and a mechanical chopper (SR540) were used.
For acquiring the photo-signal data for different states of the asphalt, the monochromatic light
emitted by pulsed laser diodes of different wavelengths was measured after diffuse reflection on the
asphalt surface using a homemade data acquisition system described below. For database analysis
by discrimination algorithms, the Python 3.7 programming language was used. The software source
codes and resulting data corresponding to the used KNN, ANN and comparing algorithms are given
by Supplementary Materials.

3. Results and Discussions

3.1. Photodetector Characterization

Figure 2 shows the cross-section TEM image at low magnification of GeSi NCs: SiO2/SiO2/n-Si
structure. The image reveals the increase in density and the decrease in the size of the NCs towards
the SiO2/Si substrate. This non-uniformity is caused by Ge and Si segregation and diffusion processes
influenced by the depth-dependent internal stress in the film [34]. The upper part of the film of
about 85 nm shows low Ge concentration due to the fast Ge diffusion and its surface oxidation and
evaporation. By construction, the GeSi NCs:SiO2 layer is electrically isolated from the Si substrate by a
50 nm of SiO2 buffer layer.
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Figure 2. Low magnification XTEM image of GeSi NCs:SiO2/SiO2/n-Si structure. Inset is an HRTEM
image of a spherical GeSi NC.

The size of GeSi NCs increases from 5 nm at the bottom of the film to 18 nm at the surface. Figure 2
shows a low magnification XTEM (Cross-Sectional Transmission Electron Microscopy) image of the
GeSi NCs:SiO2 film on SiO2/n-Si substrate. The inset in Figure 2 shows the HRTEM (High-Resolution
Transmission Electron Microscopy) image of a spherical GeSi NC. The distance of 0.322 nm between (111)
planes in GeSi NCs corresponds to about 40at% Si concentration as evaluated by linear interpolation,
neglecting possible influence of strain in NCs. This value of Si concentration in GeSi NCs is lower than
the mean concentration of about 53 at% Si of the SiGe alloy in the fabricated film.

The non-uniform distribution of the NCs size is beneficial for broadening of the photosensitivity
spectra. Figure 3 shows the photocurrent spectrum of the photodetector with spectral sensitivity
detected in the range of 360–1350 nm.

Figure 3. Spectral dependence of the photocurrent measured on GeSi NCs:SiO2 photodetector.

The spectral distribution curve of the photocurrent presents a maximum at 1100 nm wavelength
and another broad one in the 600–1000 nm range. The signal-noise ratio is 102–103.

3.2. Data Acquisition System

The working principle of the proposed optical sensor setup is based on different specular/diffuse
reflections of the dry, wet and icy asphalt at different illumination wavelengths that is sketched in
Figure 4a. Figure 4b shows the workflow of the sensor setup.



Sensors 2020, 20, 6395 5 of 11

Figure 4. (a) The working principle and (b) the workflow of the sensor setup.

Based on the spectral dependence of the photoresponse of GeSi NCs:SiO2 photodetector, we chose
as the illumination source two laser diodes emitting about 200 mW in near-infrared (NIR), one laser
diode RLT980-150GS of 150 mW from Roithner Lasertechnik with a wavelength of λ = 980 nm and
another laser diode M9-A64-0200 of 200 mW from Thorlabs with a wavelength of λ = 1064 nm.
The system is designed to be placed along the roads using an electric grid or independent renewable
energy sources but could also be easily implemented in a novel integrated topology for electric
vehicles [35]. The laser light and specular/diffuse reflections of light from the asphalt is collimated by
using a collimator with a quartz lens and a parabolic mirror as shown in the Figure 4a. The power
supply for the laser diodes was provided from a custom made constant current source circuit using
a LM317 integrated circuit. The current was modulated through a BD139 transistor by using a TTL
(Transistor–Transistor Logic) signal (0 ÷ 5 V) from an Arduino UNO board with a modulation frequency
of 119 Hz. The electric circuit of the laser diode power supply is presented in Figure 5.

Figure 5. The electric circuit of the laser diode power supply.

By modulating the current in the laser power supply, a pulsed laser light was obtained with the
frequency of the TTL signal. The TTL signals measured by an oscilloscope are generated by an Arduino
board and illustrated in Figure 5. Each laser diode has a separate power supply connected to the same
Arduino board which gives the possibility to separately control the laser diodes from a computer
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connected to the Arduino board. The measurement procedure consists of the successive illumination
of the asphalt at a precise angle with the two laser diodes such that only one laser diode is active at
a time, then the reflected light is detected by the GeSi NCs:SiO2 photodetector. The photocurrent
generated by the reflected light is then measured with a Stanford SR830 DSP lock-in amplifier that uses
the frequency reference of the TTL signal generated by the Arduino board.

3.3. Optoelectronic Database for Different Asphalt States

One complete measurement is done when the asphalt is successively illuminated with the two
laser diodes. The photocurrent I1064, generated by the λ = 1064 nm wavelength illumination, is plotted
as a function of the photocurrent I980, generated by the λ = 980 nm illumination. So, a complete
determination represents one point in the I1064–I980 plot. The experimental results in Figure 6 were
obtained by multiple measurements (in different zones of the asphalt) of the photocurrent for the two
laser illumination for each case of dry, wet, icy asphalt and dirty ice (a mixture of asphalt powder,
dust and water, frozen together). The asphalt was illuminated at an angle of 30 degrees related to normal
incidence (Figure 4a). One can see that there is a good separation between the results corresponding to
the different states of asphalt.

Figure 6. Experimental results obtained by multiple measurements of the photocurrent for the two
laser diode illumination in the case of dry, wet, icy asphalt and dirty ice (frozen monolith of mixed
asphalt powder, dust and water).

The best separation is obtained for icy asphalt for which one can observe that the photocurrent for
both wavelengths (λ= 980 nm and λ= 1064 nm) is with order of magnitude higher than the photocurrent
that corresponds to wet asphalt. In the case of dry asphalt, illumination with the λ = 980 nm wavelength
generates a higher photocurrent compared with the one for dirty ice.

3.4. Database Analysis by Discrimination Algorithms

In order to have a system for complete detection of road conditions, it should be able to discriminate
between dry, wet or icy asphalt. For this, first of all, separable clusters/classes of output data from the
sensor ((I1064, I980) points), corresponding to each type of asphalt (dry, wet, icy asphalt and dirty ice),
should be obtained. Additionally, it is necessary to have a classification algorithm to recognize the class
by comparing the new output sensor data with previously classified data. For this, we used two different
types of classification algorithms, namely k-nearest neighbor algorithm (KNN) and artificial neural
network algorithm (ANN) [36]. For programming these algorithms, the Python 3.7 programming
language was used and for the ANN algorithm, additionally, the Scikit-learn python [37,38] library
was used. The KNN algorithm calculates the Euclidian distances in the I1064–I980 plane between the
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point that corresponds to new output sensor data and each point already classified from the measured
photocurrents database and, finally, chooses the class to which the new point belongs considering the
minimum distance (Figure 7a). We applied the KNN algorithm to our experimental data by generating
an array of 30 × 70 points in the 0–30 nA and 0–70 nA ranges and classified them in Figure 7b.

Figure 7. K-nearest neighbor (KNN) algorithm: (a) the working principle and (b) KNN algorithm
applied to array data.

The advantage of the KNN algorithm over the ANN is that the KNN algorithm requires no
training before using it in the classification procedure. However, the KNN drawback is that at higher
database size the classification process becomes slower due to more iterations involved. Alternative
fuzzy logic that is not investigated here could be based on the field programmable gate array (FPGA)
or its Proportional-Integral-Derivative (PID)-type version [39]. The ANN algorithm works differently
by simulating a network of artificial neurons that requires a training procedure [37] that is time
consuming but at the end of the training procedure the algorithm works without training data making
the classification very fast. We also applied the ANN algorithm to our experimental data, similarly to
KNN algorithm. The proposed ANN configuration consists of two input neurons, four hidden layers
(each one with 28 neurons) and four output neurons, the total number being 2520 synapses (weights).
Each neuron in the network uses a rectifier linear unit (ReLU) as an activation function. The ANN
algorithm was trained using the experimental data plotted in Figure 6 and after training, the network
was fed with the same array as for the KNN algorithm. The results of applying the ANN algorithm on
the array data and the working principle of the algorithm are presented in Figure 8.

Both KNN and ANN algorithms provide a good mapping of the array data (data that arrive from
the sensor). However, both algorithms have as a drawback the permanent correspondence between
new data and the asphalt state. In other words, new data will always be assigned to one of the dry,
wet, icy asphalt and dirty ice classes which is not always a correct decision due to the possibility of
an asphalt mixed state occurring like wet-ice-dry asphalt or a new asphalt condition that needs to be
learned. This drawback can be overcome by limiting the algorithms’ mapping around the experimental
data and by introducing a new class that corresponds to undecided action which triggers the learning
procedure of the ANN algorithm in order to assign the undecided point to an existing class or to
create another one. This can be done by intersection of the classification results of the KNN and ANN
algorithms. This means that the new data can be assigned to an existing class only if it is confirmed by
both algorithms. If the asphalt class is confirmed by only one algorithm, then it will be assigned to an
undecided class. The results of the algorithms’ intersection are presented in Figure 9. The software
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source codes and the resulting data corresponding to the KNN, ANN and comparing algorithms are
given in the Supplementary Materials.

Figure 8. Artificial neural network (ANN) algorithm: (a) the working principle and (b) ANN algorithm
applied to array data.

Figure 9. KNN and ANN algorithms’ classification intersection: (a) a schematic example of the
intersection of the classification results of the KNN and ANN algorithms for the dirty ice state and
(b) results of KNN and ANN intersection applied on the array data.

In reality, the undecided results correspond to an asphalt mixed state or to an unknown state
which need to be covered by classification algorithms by labeling the data and training the algorithms.
If a classification algorithm is trained to recognize a certain state of the asphalt, then the undecided
results can be ignored because it is less probable for it to correspond to that specific state for which the
algorithm is trained to recognize.
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4. Conclusions

An optical sensor system based on GeSi NCs embedded in an SiO2 matrix was developed for
discriminating between different slippery road conditions, namely wet, icy asphalt and dirty ice
(frozen monolith of mixed asphalt powder, dust and water) in respect to dry asphalt. The sensor was
fabricated by magnetron sputtering deposition of Ge, Si and SiO2 on oxidized n-type Si substrate,
followed by RTA annealing for GeSi NCs formation. The photodetector has a spectral sensitivity in
the range of 360–1350 nm and the signal-noise ratio is 102–103. The working principle of the sensor
setup is based on the different reflection coefficients of the dry, wet and icy asphalt illuminated with
980 and 1064 nm laser diodes, one at a time. The experimental results show that the data obtained for
different asphalt states present good separation and that it is possible to use classification algorithms,
such as the k-nearest neighbor and artificial neural networks employed by us. Each classification
algorithm provides excellent overlapping between experimental data and classified (predicted) ones
but the mapping prediction falsely extends to infinity. This limitation is overcome by using the
intersection of the classification results of the KNN and ANN algorithms leading to the constraining
of the mapping prediction near the experimental data. The optical sensor together with the setup
to be mounted along the road for road safety conditions is dedicated to be a potential platform for
warning drivers with enough time and distance before reaching the slippery road. The proposed setup
involves cheap materials, electronic components and fabrication processes. For future development
of real cost-effective applications of the proposed road state detection platform, cheap light emitting
diodes can be used. The present experiments have used lasers of less than 200 mW power, emitting in
near infrared. Currently, the system is designed to be placed along the roads, ideally using renewable
energy sources, but the proposed electro-optic detection system could be easily implemented in the
future in a novel integrated topology for electric vehicles.

Supplementary Materials: Software source codes and resulting data corresponding to the used KNN, ANN and
comparing algorithms are available online at http://www.mdpi.com/1424-8220/20/21/6395/s1.
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