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Abstract

Although several genes (including a strong effect in the human leukocyte antigen (HLA) region) and
some environmental factors have been implicated to cause susceptibility to rheumatoid arthritis (RA),
the etiology of the disease is not completely understood. The ability to screen the entire genome for
association to complex diseases has great potential for identifying gene effects. However, the efficiency
of gene detection in this situation may be improved by methods specifically designed for high-
dimensional data. The aim of this study was to compare how three different statistical approaches,
multifactor dimensionality reduction (MDR), random forests (RF), and an omnibus approach, worked in
identifying gene effects (including gene-gene interaction) associated with RA. We developed a test set of
genes based on previous linkage and association findings and tested all three methods. In the presence
of the HLA shared-epitope factor, other genes showed weaker effects. All three methods detected
SNPs in PTPN22 and TRAF1-C5 as being important. But we did not detect any new genes in this study.
We conclude that the three high-dimensional methods are useful as an initial screening for gene
associations to identify promising genes for further modeling and additional replication studies.

Introduction
Rheumatoid arthritis (RA) is a chronic inflammatory
disease affecting approximately 1% of the population
[1]. Studies suggest that both genetic and environmental
factors contribute to susceptibility to RA, with an

estimated heritability of 60% [2]. Although HLA-DRB1
and PTPN22 are two genes that have been consistently
associated with RA, they do not account for all of the
genetic variation in RA [3]. Recent genome-wide associa-
tion studies identified TRAF1-C5 and a locus on
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chromosome 1q13 as being associated with RA [4,5]. It
is unknown whether gene-gene interactions play a role
in disease etiology. Several methods have been designed
specifically to conduct analyses of high-dimensional
problems, including multifactor dimensionality reduc-
tion (MDR) [6], random forests (RF) [7,8], and an
omnibus approach [9]. These approaches are currently
exploratory but they permit testing for gene-gene
interaction effects. In this study, we applied these three
approaches as well as logistic regression to Genetic
Analysis Workshop 16 (GAW16) data specifically to test
their ability to detect genes associated with RA. We chose
a limited set of single-nucleotide polymorphisms (SNPs)
based on previous linkage and association results to
make the data set more defined and more likely to be
enriched for genes with true effects.

Methods
Data set
We used the GAW16 RA data set, which contains
545,080 SNPs genotyped on 868 RA cases and 1194
controls. The detailed sample and genotyping informa-
tion are described elsewhere [4]. All the phenotypes,
covariates, and genotypes for regions of interest were
extracted from the overall data set. We limited our
analyses to selected genes and regions identified from
previous studies. The SNP list was selected based on
genes/regions identified from a whole-genome linkage
scan using the North American Rheumatoid Arthritis
Consortium (NARAC) families [10], genome-wide asso-
ciation studies using these same case-control data [4],
and the Wellcome Trust Case Control Consortium
(WTCCC) data, which includes an RA subset [5]
(Table 1). We selected 100 SNPs flanking each linkage
peak marker (rs1354905 in chromosome 2 with LOD =
3.52 and rs2035693 in chromosome 11 with LOD =
3.09) [10]. Six genes/regions were identified from
association studies by selecting the top three findings
in Plenge et al. [4] and Wellcome Trust RA study [5].
Each gene was flanked by 50 kb up- and down-stream to

incorporate potential regulatory elements. All available
markers in these regions were identified and extracted
from the GAW16 data set.

Data analysis
The initial quality control screening of all SNPs was
performed using the Hardy-Weinberg equilibrium test in
the computer program Haploview, separately in cases
and controls. We also examined linkage disequilibrium
patterns in each of the selected genes and regions
because markers that are in high linkage disequilibrium
will cause computational problems for some methods
[11]. We ran Tagger [12] using different linkage
disequilibrium levels to evaluate the tagSNPs among
our selected markers and then set a criterion of r2 < 0.5 to
select tagSNPs for the final analysis. A single-SNP allelic
chi-squared test for association was also computed using
Haploview. The HLA shared-epitope (SE) status was
included in the analyses.

We applied three high-dimensional methods to the
selected SNPs: 1) MDR, 2) omnibus, and 3) RF. MDR is a
data reduction approach for detecting and characterizing
multi-locus genotype combinations that interact to
predict disease risk for common, complex disease. It
pools genotypes into “high-risk” and “low-risk” groups
in order to reduce multidimensional data into only one
dimension [6]. For the MDR analysis, we conducted
analyses with and without the SE in the model. Five-fold
cross-validation and 1000 permutations were performed
to determine the statistical significance level.

The omnibus method tests for gene-based effects by
considering all SNPs in the gene/region as a single group
and evaluates the “test” gene assuming a known gene or
other risk factor plays a role [9]. This method uses a logistic
regression approach but the significance of the test gene
effect includes both the main effect and the interaction
between this gene and the known risk factor or gene. For
this analysis, SE was included as the known risk gene for

Table 1: Selected genes and regions

Source Gene/region Chromosome Location (Mb) No. selected SNPs Ref.

Association study PTPN22 1 114.0-114.2 21 [4]
TRAF1-C5 9 120.7-121.0 38 [4]
CD40 20 44.1-44.2 30 [4]
chr 1 1 114.0-114.1 11 [5]
chr 7 7 130.8-130.9 20 [5]
chr 10 10 6.0-6.2 65 [5]

Linkage study chr 2 2 191.8-192.3 100 [10]
chr 11 11 40.7-41.2 101 [10]

Total 386 (378)a

a8 SNPs on chromosome 1 overlapped between two studies; therefore 378 SNPs were in the final list.
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each of the test loci. For the genes identified by these
methods, logistic regression was used to formally test
whether the interaction terms were significant predictors.

The RF method is a tree-based classification and
regression method. It uses two measures for SNP
importance: mean decrease accuracy (MDA), which
permutes the values of each variable in the out-of-bag
cases and records the prediction, and mean decrease Gini
(MDG), which measures the quality of a split in every
node of the trees. We used the RF package for the
statistical package R, and based the analysis on the
classification method [7,8]. For each run we grew
500 trees. Runs with 1000 and 5000 trees were also
carried out with very similar results (results not shown).
We started with all SNPs and SE status and identified
those factors with the greatest influence on disease
phenotype, based on the RF measure of importance. We
arbitrarily selected the top 15 SNPs and SE status for
further study. The classification error rates were used as a
measure of how well the RF predicted disease status. We
started by looking at all pairs of factors and compared
the percentage of records correctly classified by the
generated RF for each pair. Any pair that stood out with a
markedly lower classification error rate would indicate
interaction. We also generated RFs based on a growing
set of factors, adding them one at a time from the
ordered importance list and then again compared the
classification error rates.

Results
Of the 378 markers selected, 20 were excluded for the
following reasons: not polymorphic (n = 6), minor allele
frequency ≤ 0.1% (n = 8), and not in Hardy-Weinberg
equilibrium in controls (n = 6, p < 0.0001). Results from
single-SNP allelic chi-square association test showed 86
SNPs significantly associated with RA (p < 0.05). Of these,
one SNP on PTPN22, rs2476601, was highly associated
with RA (p < 10-12). Consistent with findings from the
study of Plenge et al. [4], statistical significance was
observed for 10 SNPs in TRAF1-C5 (p-values ranged from
10-5 to 10-9) as well as one SNP in CD40 (rs1569723,

p < 10-5). Interestingly, we observed that SNP rs1517853 in
the linkage region on chromosome 2, was also significant
at p < 10-4. This marker is 37.8 kb away from the SNP at the
linkage peak (rs1949429, LOD = 3.52). However, the peak
SNP was not in the GAW16 data set. After adjusting for SE,
statistical significance was observed for only rs2476601 in
PTPN22 and rs3789597 in RSBN1/chromosome 1 (OR =
1.62 with 95% CI = 1.09~2.39) from logistic regression.
A total of 175 tagSNPs were selected at an r2 < 0.5 level to
represent the 378 selected SNPs across the eight genes/
regions.

Table 2 shows the best models for these genes in RA using
the MDR approach. SE status was the strongest risk factor
identified, with an average prediction accuracy of 76.24%
(p < 0.0001). When we allowed for two genes in the
analysis, a marker from the chromosome 2 linkage peak
(rs1517835) was identified in addition to SE and predicted
disease status correctly 75.54% of the time (p < 0.0001).
However, the cross validation was low (40%) and the
overall prediction rate was not higher than SE alone.
Because SE is such a strong risk factor, it might mask
weaker effects conferred by other markers. We therefore
conducted additional MDR analyses excluding SE from the
model. PTPN22 (rs2476601) was identified as the best
single-locus model. In a two-locus model, MDR identified
PTPN22 and TRAF1-C5 (p < 0.0001) with a predicted
accuracy of 57.64%, but this is only a slight improvement
over the one-locus model.

Table 3 shows the results from the omnibus method.
With SE as known risk gene in the model, the omnibus
method identified the TRAF1-C5 gene as having the
strongest gene effect on RA (p = 0.0006, this p-value
reflects both the main effect and the interaction between
TRAF1-C5 and SE). Similarly, PTPN22 showed a gene
effect with p = 0.0018. However, when we used logistic
regression to validate this two-locus model, no interac-
tion was observed for these two genes (p = 0.55), and
they did not show a significant interaction with SE.

As with the MDR analysis, the RF method showed that
SE status was the most important risk factor in RA

Table 2: Best models detected by MDR analyses

No. locus/loci in model Best model Accuracy (%) Cross validation p-Value

With SE
1-locus SE 76.24 100% < 0.0001
2-locus SE chr 2 linkage (rs1517835) 75.54 40% < 0.0001

Without SE
1-locus PTPN22 (rs2476601) 56.27 100% < 0.0001
2-locus PTPN22 (rs2476601)

TRAF1-C5 (rs3761847)
57.64 100% < 0.0001
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because it correctly classified disease status of individuals
72% of the time. Interestingly, SE status was more
accurate at predicting which individuals had RA (error
rate ~2%) than controls (error rate 47%). By incremen-
tally adding SNPs according to importance, we found
that the error rate reached a minimum with SE status and
the top eight SNPs (Table 4). With these factors, 77% of
individuals were correctly classified (73% of RA indivi-
duals and 80% of controls). The odd imbalance of false
positives and negatives seen with SE status alone
disappeared with the addition of the top eight SNPs.
The top nine factors identified by MDA importance are
shown in Table 4. For comparison, we also show the
importance ranking by MDG. As with the MDR and
omnibus approach, SNPs in PTPN22 and TRAF1-C5 were
in the top set along with other SNPs, particularly in two
candidate genes, IL2RA and CD40.

Discussion
In this study, SE, the strongest genetic component to RA,
was identified by both MDR and RF methods with
similar prediction accuracy (MDR: 76%, RF: 72%). SE
did not distinguish controls as well as cases using the RF
method, which reflects the fact that nearly all of the cases
are positive for SE but about half of the controls are also
positive. SE alone is not sufficient to distinguish RA from
“normal,” but as additional genes were added, the
prediction error was increasingly similar between cases
and controls. We used the omnibus method to detect

genes other than SE. All three methods detected PTPN22
as being important to RA susceptibility. TRAF1-C5 was
identified by both the RF and omnibus methods and was
suggested by the MDR two-locus analysis. These findings
are consistent with the results from the single-SNP
association analysis [4]. Thus, our study using real data
demonstrates the ability of these high-dimensional
screening methods to detect gene effects. The three
methods have the advantage of allowing for both gene
main effects and interactions to be tested because they
consider multilocus genotypes. However, they cannot
explicitly test significance of the interaction terms
because there is no formal nested model testing. We
used standard logistic regression to test the interaction
terms but we did not find evidence of gene-gene
interaction. It is likely that the strong main effect of SE
limits our ability to detect both additional genes and the
presence of gene-gene interaction effects.

Based on our analysis, we conclude that both MDR and
RF are useful exploratory approaches for finding gene
effects when many genes (or SNPs) are tested. The
omnibus method is especially designed to test a gene
(taking all of the SNPs in one gene as a whole group) in
the presence of another known gene or risk factor. Thus,
it was ideal in this setting because the SE is already
known to have a strong effect in RA susceptibility. Genes
identified by these exploratory methods can then be
taken forward in replication studies and examined using
more formal statistical modeling.

Conclusion
For exploratory analysis of high-dimensional genotype
data in complex diseases, MDR, RF, and a new omnibus
method can all be used as tools to screen for genes of
importance, whether they have main effects or are
involved in interactions. These methods were all
successful in identifying genes previously suggested for
RA. However, they did not identify additional genes. The
challenge of determining the precise genetic models of
susceptibility will require other methods along with
large numbers of study subjects.

List of abbreviations used
GAW16: Genetic Analysis Workshop 16; MDA: Mean
decrease in accuracy; MDG: Mean decrease in Gini; MDR:
Multifactor dimensionality reduction; RA: Rheumatoid
arthritis; RF: Random forests; SE: Shared epitope; SNP:
Single-nucleotide polymorphism.
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Table 3: p-Value for each gene/region considering SE as known
risk gene in the omnibus method

Gene 1 No. SNPs Score test p-Value

chr 1/PTPN22 9 37.48 0.0018
chr 2/linkage 49 49.07 0.8957
chr 7 11 17.04 0.3417
chr 9/TRAF1-C5 13 44.01 0.0006
chr 10 33 61.15 0.1100
chr 11/linkage 41 44.96 0.7077
chr 20/CD40 19 32.22 0.1920

a Bold font indicates p < 0.05.

Table 4: Detection of important factors using RF

Ranking by importance

Marker Gene Chr MDA MDG

SE Shared epitope N/A 1 1
rs8177685 IL2RA 10 2 2
rs2476601 PTPN22 1 3 4
rs2274037 IL2RA 10 4 111
rs1569723 CD40 20 5 5
rs7559874 linkage 2 6 6
rs2416810 TRAF1-C5 9 7 65
rs7795093 association 7 8 3
rs1179766 TRAF1-C5 9 9 121
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