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Abstract

Background: To evaluate the feasibility of using radiomics with precontrast magnetic resonance imaging for
classifying hepatocellular carcinoma (HCC) and hepatic haemangioma (HH).

Methods: This study enrolled 369 consecutive patients with 446 lesions (a total of 222 HCCs and 224 HHs). A
training set was constituted by randomly selecting 80% of the samples and the remaining samples were used to
test. On magnetic resonance (MR) images of HCC and HH obtained with in-phase, out-phase, T2-weighted imaging
(T2WI), and diffusion-weighted imaging (DWI) sequences, we outlined the target lesions and extracted 1029
radiomics features, which were classified as first-, second-, higher-order statistics and shape features. Then, the
variance threshold, select k best, and least absolute shrinkage and selection operator algorithms were explored for
dimensionality reduction of the features. We used four classifiers (decision tree, random forest, K nearest
neighbours, and logistic regression) to identify HCC and HH on the basis of radiomics features. Two abdominal
radiologists also performed the conventional qualitative analysis for classification of HCC and HH. Diagnostic
performances of radiomics and radiologists were evaluated by receiver operating characteristic (ROC) analysis.

Results: Valuable radiomics features for building a radiomics signature were extracted from in-phase (n= 22), out-phase
(n = 24), T2WI (n = 34) and DWI (n = 24) sequences. In comparison, the logistic regression classifier showed better
predictive ability by combining four sequences. In the training set, the area under the ROC curve (AUC) was 0.86
(sensitivity: 0.76; specificity: 0.78), and in the testing set, the AUC was 0.89 (sensitivity: 0.822; specificity: 0.714). The
diagnostic performance for the optimal radiomics-based combined model was significantly higher than that for the less
experienced radiologist (2-years experience) (AUC = 0.702, p < 0.05), and had no statistic difference with the experienced
radiologist (10-years experience) (AUC = 0.908, p>0.05).

Conclusions: We developed and validated a radiomics signature as an adjunct tool to distinguish HCC and HH by
combining in-phase, out-phase, T2W, and DW MR images, which outperformed the less experienced radiologist (2-years
experience), and was nearly equal to the experienced radiologist (10-years experience).
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Background
Hepatocellular carcinoma (HCC) and hepatic haemangi-
oma (HH) are common hepatic malignant and benign
tumours respectively [1, 2]. Early detection and diagnosis
of these tumours are extremely important because their
treatment strategies and prognoses are completely
different [3]. However, HCC and HH share similar signa-
tures in the early stages, when the “gold standard” for
differential diagnosis mainly involves pathological
evidence obtained post-surgery, puncture, or interven-
tional tumour cell staining [4]. Magnetic resonance im-
aging (MRI) has recently gained prominence in the
diagnosis of hepatic tumours because of its various
modalities such as multi-parametric imaging, functional
imaging, and biochemical metabolic analysis techniques,
all of which can optimize the clinical application from
morphology to quantitative analysis [5, 6]. The differen-
tial diagnosis of HCC and HH by medical images usually
depends on the visually morphological features and sig-
nal intensity, and the changes of signal enhancement
such as washout is currently the key evidence for
imaging diagnosis. However, diagnosis in patients who
cannot receive contrast injections may be problematic
because non-contrast image features have inferior
diagnosis accuracy. Moreover, the absence of washout in
small HCCs may also lead to incorrect differential
diagnosis [7]. It is note worthy that currently diagnostic
methods based on MR images may be influenced by
human factors, such as tiredness or inexperience, which
can potentially affect the diagnostic accuracy. These
reasons highlight the need for a quantitative diagnostic
criterion based on precontrast MR images that does not
require invasive approaches, such as surgery, puncture,
or interventional therapy, or intravenous injection of a
contrast agent.
Radiomics is a diagnostic technology based on radiomics

signatures that is currently gaining prominence in the field
of radiology for its potential ability to help detect lesions,
improve diagnostic accuracy, predict disease risk, and
guide treatment strategies [8]. Preclinical studies of
radiomics-based approaches with imaging methods
such as X-ray radiography, computed tomography
(CT), ultrasound, and MRI have been performed for
various tissues such as the lung, liver, bone, and brain
[9–11]. For MR images of liver lesions, Kim et al.
[12] suggested that radiomics was useful in grading
HCC risk and showed consistency with radiologists’
opinions. Gatos et al. [13] applied radiomics to
segment and classify focal liver lesions on the basis of
non-enhanced T2-weighted images, providing a non-
invasive method to evaluate liver lesions. This study
aimed to determine whether a radiomics signature
with high specificity and sensitivity can distinguish
between HCC and HH by using precontrast MR

images with a radiomics model based on comparisons
of four common classifiers.

Methods
Dataset
This study was approved by the institutional review
board of our hospital, and informed consent was
obtained from all patients. In this study, we recruited
369 patients with 446 lesions including HCC (222/446)
and HH (224/446) confirmed by pathological examina-
tions after hepatectomy, puncture assessments, interven-
tional tumour cell staining or typical imaging findings
between January 1, 2011 and September 1, 2017. A train-
ing set was constituted by randomly selecting 80% of the
samples and the remaining samples were used to test.
All patients had undergone MRI examinations before
therapeutic procedures such as surgery, puncture, and
adjuvant therapy. MRI was performed using the GE
3 .0T or 1 .5T MR scanner (Signa, HDxt, GE Healthcare,
United States) with an eight-channel phased array body
coil. All patients were asked to fast for about four to six
hours before scanning, after which they underwent
upper abdomen MRI examination in the supine position.
The MR scan sequences were as follows: (1) fast spoiled
gradient-recalled sequence axial fat suppression
T1-weighted gradient echo in-phase and out-phase:
repetition time (TR)/echo time (TE) = 400/8.0 ms, field
of view (FOV) = 320 mm × 320mm, matrix = 320 × 192,
number of excitations (NEX) = 2.0, slice thickness = 5.0
mm. (2) T2WI: TR/TE = 4000/125 ms, FOV = 320mm ×
320mm, matrix = 320 × 192, NEX = 4.0, slice thickness =
5 .0mm. (3) DWI with a spin-echo planar imaging se-
quence: TR/TE, 4000/70 ms, b = 600 s/mm [2], slice
thickness = 5.0 mm, FOV = 320mm× 320mm, matrix =
128 × 128, NEX = 6.0. The patients’ status of hepatic cir-
rhosis were recorded according to MRI features of cir-
rhosis: a nodular liver margin, lobar atrophy /
hypertrophy, parenchymal heterogeneity. Finally, 59
HCC lesions and 19 HH lesions were accompanied by
the occurance of cirrhosis.

Radiomics analysis overview
In the abdominal MR images on each sequence, includ-
ing in-phase T1WI, out-phase T1WI, T2WI, and DWI,
the lesions at all slices were outlined as regions of
interest (ROIs), which were then reconstituted to form
stereoscopic lesions. In addition, we extracted 1029
radiomics features, including original (n = 93) and
higher-order features (n = 936). Next, the variance
threshold, select k best and least absolute shrinkage and
selection operator (LASSO) operator algorithms were
recommended to reduce the dimensionality of the
radiomics features. Four classifiers (decision tree, ran-
dom forest, K nearest neighbours, and logistic
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regression) were used to distinguish HCC and HH. The
diagnostic performance was evaluated on the basis of
the area under the receiver operating characteristic
curve (AUC), sensitivity and specificity. Figure 1 illus-
trates the overall flowchart of our radiomics workflow.

Imaging segmentation
On the basis of the abdominal MRI data from the Pic-
ture Archiving and Communication System, in-phase
T1WI, out-phase T1WI, T2WI, and DWI were collected.
We manually outlined the lesions and attempted error
minimization. Two radiologists with five years’ clinical
experience were blinded to all patients’ information,
reviewed the selected MR images, and outlined target le-
sions on each image. Consistency in their ROI assess-
ments was regarded as a sign of validity. However, if
they had different opinions, a third radiologist with ten
years’ clinical experience participated in the discussion
and the final decision were recorded. The examples of
ROIs in HCC and HH in different MRI series including
in-phase imaging, out-phase imaging, T2WI, and DWI
are shown in Fig. 2.

Intensity normalization
Even with the same MRI scanner and identical scanning
parameters, variations in the MRI intensity cannot be
avoided, and these may affect the process of feature ex-
traction. To minimize the MRI intensity variations, we
normalized the intensity of the image using the following
formula (where x indicates the original intensity; f(x) in-
dicates the normalized intensity; μ refers to the mean
value; σ indicates the variance; s is an optional scaling,
by default, it is set to 1) [14].

f xð Þ ¼ s x−μx
� �

δx

Radiomics feature extraction
We analysed a total of 1029 radiomics features categorized
into four classes: first-order features, shape features,
second-order features (texture), and higher-order statistic
features (Table 1). First-order features can provide the
spatial distribution of multiple voxel intensities regardless
of the three-dimensional structure. Based on the
histogram method within the image region, it is feasible to
analyse the image features via voxel distribution. Shape
features of tumours, such as oval, spiculated, lobulated,
and irregular, which are hypothesized as potential identifi-
cation biomarkers, are independent from the grey-level
intensity distribution in the ROIs. We epitomized the
shape-related features from a three-dimensional perspec-
tive. Considering the sphere as a standard shape, we aimed
to analyse the similarity between the lesions and the

sphere. The diameter, area, and volume were also taken
into account using parameters such as the maximum 2D
diameter column/row/slice, maximum 3D diameter, and
surface volume ratio. We also suggested that elongation
and flatness may be potentially shape-related markers.
The values of elongation range between 1 (where the
cross-section through the first and second largest princi-
pal moments is circle-like) and 0 (where the object is a
single point or a 1-dimensional line). The values of flat-
ness also range between 1 (non-flat, sphere-like) and 0 (a
flat object).
Second-order statistics are generally named as “tex-

ture”, which was first suggested by Haralick and his
colleagues in 1973 [15, 16]. The texture features are
described via a density histogram and the spatial loca-
tions of each pixel are also expressed. Three types of
texture features, including Gray Level Co-occurence
Matrix (GLCM), Gray Level Run Length Matrix
(GLRLM), and Gray Level Size Zone Matrix (GLSZM),
were analysed in our study.
On the basis of the first- and second-order features,

we applied filter grids on images and obtained robust
transformed features, namely higher-order statistic
features. Five types of filters were applied: exponential,
square, square root, logarithm, and wavelet (which was
applied as either a high- (H) or a low-pass (L) filter in each
of the three dimensions: wavelet-LHL, wavelet-LHH,
wavelet-HLL, wavelet-LLH, wavelet-HLH, wavelet-HHH,
wavelet-HHL, and wavelet-LLL).
In present study, we used three methods to gradually

select the optimal features. We first applied a variance
threshold to reduce the features whose variance was not
consistent with the threshold (set as 0.8). Next, based on
the select K best findings, we further removed the fea-
tures that did not show statistical differences (p > 0.05).
This process can be viewed as a preconditioning of the
predictive model. Finally, the LASSO algorithm was per-
formed, the best alpha in each sequence was identified,
and coefficients were calculated to obtain the most rele-
vant features.

Classification
Classification was applied to identify HCC and HH on
the basis of various features in multi-sequences. The
classifiers we used were constructed by supervised learn-
ing, which involves learning from a set of given samples
possessing known categories to create a classifier that
can correctly classify new objects [17]. Four supervised
learning classifiers were tested in our study (decision
tree, random forest, K nearest neighbours, and logistic
regression). The decision tree algorithm first generates
readable rules and decisions using an inductive
algorithm, after which new data are analysed by using
this decision. Thus, a decision tree is essentially a
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Fig. 1 Flow diagram of theradiomics analysis
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classification algorithm employing a series of rules to clas-
sify data [18]. The random forest technique involves a non-
linear supervised sparse regression–based classifier that
contains multiple decision trees, with its output category
based on the number of categories exported by the individ-
ual trees [19]. The K nearest neighbour is a kind of
lazy-learning algorithm that implements learning based on
the k nearest neighbours of each query point during the
classification process [20]. In the process of logical regres-
sion, to address a regression or classification problem, a
cost function is established and then the optimal model pa-
rameters are obtained through optimization and iterative
solution [21]. The AUC, sensitivity, and specificity were sig-
nificant indexes for evaluating the performance in differen-
tiating HCC from HH on non-enhanced MR images.

Classification by two radiologists
The conventional qualitative analysis for classification of
HCC and HH was performed by two abdominal radiolo-
gists with different experience (2 and 10 years, respect-
ively). They were blinded to all patients’ information,
reviewed the MR images, and recorded their own
diagnosis. For evaluation of the performances of the two
radiologists in the task of classification, the AUC, sensi-
tivity, and specificity were calculated and compared.

Results
After calculations based on the variance threshold, 1029
basic features underwent the first dimensionality reduction
on in-phase (n = 683), out-phase (n = 685), T2WI (n = 653),
and DWI sequences (n = 649). Next, features with P values

Fig. 2 Imaging segmentation on HCC and HH. The ROIs which enclose the boundary of target lesions on in-phase, out-phase, T2WI and DWI
are depicted

Table 1 Radiomics features in the radiomics analysis

Types Features

First-order statistics
(n = 19)

Energy, Total Energy, Entropy, Minimum, 10Percentile, 90Percentile, Maximum, Mean, Median, Interquartile Range, Range,
Mean Absolute Deviation, Robust Mean Absolute Deviation, Root Mean Squared, Standard Deviation, Skewness, Kurtosis,
Variance, Uniformity

Shape
(n = 15)

Volume, Surface Area, Surface Volume Ratio, Sphericity, Compactness1, Compactness2, Spherical Disproportion,
Maximum 3D Diameter, Maximum 2D Diameter Column, Maximum 2D Diameter Row, Major Axis, Minor Axis, Least Axis,
Elongation, Flatness

Second-order
statistics

GLCM
(n = 27)

Autocorrelation, Average Intensity, GrayLevel Intensity, Cluster Prominence, Cluster Shade, Cluster Tendency, Contrast,
Correlation, Difference Average, Difference Entropy, Difference Variance, Dissimilarity, Energy, Entropy, Homogeneity1,
Homogeneity2, Informal Measure Of Correlation1, Informal Measure Of Correlation2, Inverse Difference Moment, Inverse
Difference Moment Normalized, Inverse Difference, Inverse Variance, Maximum Probability, Sum Average, Sum Entropy,
Sum Variance, Sum of Squares

GLRLM
(n = 16)

Gray Level Non-Uniformity, Gray Level Non Uniformity Normalized, Gray Level Variance, High Gray Level Run Emphasis,
Long Run Emphasis, Long Run High Gray Level Emphasis, Long Run Low Gray Level Emphasis, Low Gray Level Run Em-
phasis, Short Run Emphasis, Short Run High Gray Level Emphasis, Short Run Low Gray Level Emphasis, Run Entropy, Run
Length Non Uniformity, Run Length Non Uniformity Normalized, Run Percentage, Run Variance

GLSZM
(n = 16)

Small Area Emphasis, Large Area Emphasis, Gray Level Non-Uniformity, Gray Level Non-Normalized, Size Zone Non-
Uniformity, Size Zone Non-Uniformity Normalized, Zone Percentage, Gray Level Variance, Zone Variance, Zone Entropy,
Low Gray Level Zone Emphasis, High Gray Level Zone Emphasis, Small Area Low Gray Level Emphasis, Small Area High
Gray Level Emphasis, Large Area Low Gray Level Emphasis, Large Area High Gray Level Emphasis

Higher-order statistics
(n = 936)

First- and second-order features are transformed by Exponential, Square, Square Root, Logarithm, Wavelet
(wavelet-LHL,wavelet-LHH,wavelet-HLL,wavelet-LLH,wavelet-HLH,wavelet-HHH,wavelet-HHL,wavelet-LLL)

Note: GLCM, Gray Level Co-occurence Matrix; GLRLM, Gray Level Run Length Matrix;
GLSZM, Gray Level Size Zone Matrix; L, low; H, high
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greater than 0.05 were excluded by the select k best on each
sequence (in-phase: n = 362; out-phase: n = 408; T2WI: n =
454; DWI: n = 318). On the basis of these results, LASSO
exported the optimal value of the LASSO tuning parameter
(α), and features (in-phase: n = 22; out-phase: n = 24; T2WI:
n = 34; DWI: n = 24) corresponding to the optimal α were
derived following coefficients. A radiomics set was built
using the derived features on in-phase T1WI (Fig. 3),
out-phase T1WI (Fig. 4), T2WI (Fig. 5), and DWI (Fig. 6).
ROC analysis was used to evaluate the diagnostic per-

formance of radiomics (Table 2). In comparison, the
combined sequences showed optimal diagnostic per-
formance. In the training set, the AUC was 0.86 (sensi-
tivity: 0.76; specificity: 0.78), and in the testing set, the
AUC was 0.89 (sensitivity: 0.822; specificity: 0.714).
We summarized the diagnostic performance of single

sequence where the AUC was greater than or equal to
0.75 and found that when the random forest classifier
was used for classification and training with features in
T2WI, the AUC was 0.76 (95% CI: 0.72–0.85; sensitivity,
0.90; and specificity, 0.68). For out-phase images, the
random forest classifier yielded an AUC of 0.78 (95% CI:

0.70–0.85; sensitivity, 0.79; and specificity, 0.77). With
logistic regression, the AUC in T2WI was 0.80 (95% CI:
0.74–0.80; sensitivity, 0.82; and specificity, 0.78) and that
in out-phase images was 0.77 (95% CI: 0.70–0.84; sensi-
tivity, 0.74; and specificity, 0.79). For in-phase,
out-phase, T2W and DW images, classifications by the
decision tree or K nearest neighbours yielded AUCs less
than 0.75. When combining the four sequences’ diagnos-
tic model, logistic regression showed better diagnostic
performance with AUC of 0.89 (sensitivity, 0.822; and
specificity, 0.714).
During the conventional qualitative analysis for classi-

fication of HCC and HH, the radiologist 1 (with 2 years
of experience) achieved the diagnostic performance with
AUC of 0.702 (95% CI: 0.65–0.75; sensitivity, 0.625; and
specificity, 0.779). The radiologist 2 (with 10 years of ex-
perience) achieved the diagnostic performance with
AUC of 0.908 (95% CI: 0.88–0.94; sensitivity, 0.915; and
specificity, 0.901). The AUC value for radiologist 1 was
significantly lower (AUC = 0.702) than that for radiolo-
gist 2 and the optimal radiomics-based combined model
(AUC = 0.908, and 0.89, respectively; p < 0.05).

Fig. 3 LASSO model on in-phase images. The optimal value of the lasso tuning parameter (alpha = 1.738) is found. And 22 features which are
correspond to the optimal alpha value are extracted following coefficients on in-phase images
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Furthermore, the AUC for radiologist 2 and the optimal
radiomics-based combined model had no statistic differ-
ence (p>0.05).

Discussion
With the recent developments in precise medicine, iden-
tification of new quantitative and radiomics-based
noninvasive imaging biomarkers has become a new
research hotspot in radiological research [15]. The aim
of our study was to develop a radiomics based system to
quantitatively distinguish HCC and HH using precon-
trast MR-based radiomics signatures. The diagnostic
power derived from various sequences and classifiers
was further calculated and compared. Our results
revealed that radiomics signatures could distinguish
HCC and HH. The combination of four sequences with lo-
gistic regression showed improved diagnostic performance,
and its AUC value (AUC= 0.89) was significantly higher
than that for the less experienced radiologist (2-years ex-
perience) (AUC= 0.702). The diagnostic performances were

almost equal between the radiomics-based combined
model and the experienced radiologist (10-years experi-
ence) (AUC= 0.89, and 0.908, respectively; p>0.05).
The first step in building the radiomics signatures

involves imaging segmentation, which may be automat-
ically or manually performed. Here, we reviewed the
detection and segmentation of abdominal organs or le-
sions. In order to distinguish each organ and lesion from
surrounding tissues, most computers auto-recognize the
edge of the target by three-dimensional space technology
and simultaneously combine the shape and size to
obtain the targets’ location, which is equivalent to the
atlas- and landmark-based processes [22–24]. While
automatic segmentation methods may greatly facilitate
lesion segmentation, hepatic lesions may be associated
with peripheral pathological damage, atypical shapes,
and indistinct borders, which may reduce the accuracy
and reproducibility of automatic segmentation [25].
There is a widespread consensus among several scholars
that manual input may achieve higher reproducibility

Fig. 4 LASSO model on out-phase images. The optimal value of the lasso tuning parameter (alpha =1.823) is found. And 24 features which are
correspond to the optimal alpha value are extracted following coefficients on out-phase images
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[26]. Since segmentation is critical and directly affects
the subsequent processes, we were more inclined to
obtain a manual sketch of lesions by two experienced
radiologists.
Next, extraction of multiple features that can quantita-

tively represent the lesion information is of importance,
which is also the core principle of radiomics [27].
Feature extraction refers to the selection of a feature
subset containing the most effective features from all
samples, which simplifies the classifier and also prevents
the model from over-fitting. Feature extraction plays a
significant role in data mining and analysis. With the
explosive growth of data in recent years, large-scale and
high-dimensional data have become the primary objects
in computing. Gradually improving the quality of data,
speeding up data analysis, and removing irrelevant and
redundant features from big data have become the
hotspots in data research [28, 29]. Thus, simplifying the
data generation process, making models more consistent
with most of the data, and reducing the possibility of
over-fitting have been common goals for experts. In this
study, by decreasing the dimensionality from

high-throughput radiomic features, we obtained an opti-
mal feature set which may more closely reflect the infor-
mation for HCC and HH lesions. Analysis of these
features showed that the shape features were the most
inefficient, with only two out of 22 features on in-phase
images, three out of 24 features on out-phase images,
one out of 34 features on T2WI, and two out of 24
features on DWI being extracted. At present, no
researcher considers shape as a reliable basis for identifi-
cation. We considered that shape and volume may
change over different stages during disease progression.
In contrast, the higher-order statistic features occupy a
significant position and may provide more valuable
information for images.
Next, we elaborated on the feature set in T2WI, which

showed the best performance by classification with logis-
tic regression on single sequence. Combining the phys-
ical interpretations of radiomic features, we obtained
some valuable information. For example, the uncertainty
/ randomness (entropy, GLCM – Difference entropy),
flatness (kurtosis), asymmetry (skewness, GLCM – cluster
shade), variation (standard deviation, GLRLM – run

Fig. 5 LASSO model on T2WI images. The optimal value of the lasso tuning parameter (alpha = 1.920) is found. And 34 features which are
correspond to the optimal alpha value are extracted following coefficients on T2WI images
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Fig. 6 LASSO model on DWI images. The optimal value of the lasso tuning parameter (alpha = 1.903) is found. And 24 features which are
correspond to the optimal alpha value are extracted following coefficients on DWI images

Table 2 ROC analysis by the four classifiers in testing set

Decision Tree Random Forest

Images AUC Sensitivity Specificity Images AUC Sensitivity Specificity

In-phase 0.63 0.67 0.64 In-phase 0.74 0.83 0.62

Out-phase 0.73 0.83 0.68 Out-phase 0.78 0.79 0.77

T2WI 0.68 0.72 0.68 T2WI 0.76 0.90 0.68

DWI 0.63 0.69 0.62 DWI 0.73 0.81 0.66

Combined 0.76 0.80 0.69 Combined 0.86 0.82 0.786

K Nearest Neighbours Logistic Regression

Images AUC Sensitivity Specificity Images AUC Sensitivity Specificity

In-phase 0.66 0.73 0.57 In-phase 0.72 0.81 0.64

Out-phase 0.58 0.57 0.60 Out-phase 0.77 0.74 0.79

T2WI 0.63 0.69 0.56 T2WI 0.80 0.82 0.78

DWI 0.65 0.69 0.62 DWI 0.65 0.83 0.47

Combined 0.76 0.778 0.653 Combined 0.89 0.822 0.714

AUC, area under receiver-operating characteristic curve; T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging
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variance), groupings of voxels with similar greylevels
(GLCM – cluster tendency), heterogeneity(GLSZM –
zone entropy) in ROIs were potential identification
sources in radiomics. Moreover, some of these findings
were consistent with the findings of previous similar re-
search [30]. These results maybe strongly related to the
discrepant microscopic features of HCC and HH. The
HH was more inclined to be uniform because of the
multiple vascular channels present in it, and HCC was
nonuniform with cytological atypia and heterogeneity of
tumour cells.
In order to obtain the best model based on the feature

set, we analysed four classifiers on in-phase, out-phase,
T2WI and DWI sequences respectively. We found AUC
greater than 0.75 in the T2W and out-phase images in
all models. We would like to discuss the reason why
T2WI and out-phase T1WI showed better performance.
Pathologically, HCC consists of hepatic cancer cells that
are sometimes accompanied by bleeding, calcification,
necrosis, and adipose tissue [31]. In contrast, HH contains
rich sinusoids and occasionally shows scar tissue and
thrombus [32]. In our study, we found the out-phase
T1WI showed the performance for classification of HCC
and HH, this can be explained by the presence of intrale-
sional fat for HCC. Furthermore, we found the classifica-
tion performances of in- and out-phase images were
different, which may result from the different signal of fat
tissue on in- and out-phase images (the signal of tissue
containing fat is significantly attenuated on out-phase
images, and is not attenuated on in-phase images), and
the random errors such as measuring, segmentation, and
ROI drawing may also cause differences between in- and
out-phase images. T2WI shows a decreased signal for the
lipid-containing part by using fat suppression technology
and a higher signal for necrosis. Furthermore, with the
echo time extension, HH signals on T2WI will be higher
since the sinusoids of HH are full of blood. DWI, a
functional imaging technology, can noninvasively detect
the Brownian motion of water molecules in living tissue.
Since the DWI signal is affected by the T2 relaxation time,
the degree of diffusion and differential diagnosis are
mostly dependent on the apparent diffusion coefficient
value [33, 34]. Thus, we speculate that it’s reasonable to
obtain better performance on T2WI and out-phase im-
ages. Furthermore, we comprehensively analyzed the
information of the four sequences (in-phase, out-phase
T1WI, T2WI, DWI) and found that when the image infor-
mation of all sequences is integrated, the characteristics of
the lesions can be more accurately described by radiomics
features, thus providing a more reliable basis for differential
diagnosis. Further, we found the radiomics-based model
with logistic regression showed significantly higher diagnos-
tic performance than that for the less experienced radiolo-
gist (2-years experience), and the diagnostic performances

were almost equal between the radiomics-based combined
model and the experienced radiologist (10-years
experience).

Conclusions
This study collected the radiomics features set and sug-
gested that the logistic regression classifier showed better
predictive ability by combining four sequences. Thus,
radiomics-based assessments could be used to distinguish
between HCC and HH on precontrast images, thereby
allowing noninvasively efficient identification and minim-
izing errors from visual inspection. The notable findings
of our study can be summarized as follows: (1) we
assessed various radiomics features including first-,
second-, and higher-order statistics and shape-related
features. (2) we analysed the frequently used precontrast
MRI sequences in clinical practice. For these sequences,
both intra- and inter-group performances were compared,
which yielded an optimal model. (3) the radiomics features
were developed to identify HCC and HH without invasive
methods. (4) the diagnostic performance for the
radiomics-based combined model with logistic regression
outperformed the less experienced radiologist (2-years ex-
perience), and was nearly equal to the experienced radi-
ologist (10-years experience).However, there are still
several limitations in the radiomics research field, includ-
ing the insufficient number of patients, and further studies
should be performed to optimize the performance of the
predictor and verify its utility.
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