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A better performing algorithm 
for identification of implausible 
growth data from longitudinal 
pediatric medical records
Kylie K. Harrall 1,2*, Sarah M. Bird 2,3, Keith E. Muller 1, Lauren A. Vanderlinden 4, 
Maya E. Payton 5, Anna Bellatorre 2, Dana Dabelea 2,4,6 & Deborah H. Glueck 2,6

Tracking trajectories of body size in children provides insight into chronic disease risk. One measure 
of pediatric body size is body mass index (BMI), a function of height and weight. Errors in measuring 
height or weight may lead to incorrect assessment of BMI. Yet childhood measures of height and 
weight extracted from electronic medical records often include values which seem biologically 
implausible in the context of a growth trajectory. Removing biologically implausible values reduces 
noise in the data, and thus increases the ease of modeling associations between exposures and 
childhood BMI trajectories, or between childhood BMI trajectories and subsequent health conditions. 
We developed open-source algorithms (available on github) for detecting and removing biologically 
implausible values in pediatric trajectories of height and weight. A Monte Carlo simulation experiment 
compared the sensitivity, specificity and speed of our algorithms to three published algorithms. The 
comparator algorithms were selected because they used trajectory information, had open-source 
code, and had published verification studies. Simulation inputs were derived from longitudinal 
epidemiological cohorts. Our algorithms had higher specificity, with similar sensitivity and speed, 
when compared to the three published algorithms. The results suggest that our algorithms should be 
adopted for cleaning longitudinal pediatric growth data.

Errors in measures of pediatric height and weight occur  frequently1–3. Height and weight values abstracted 
from medical records often contain values that seem biologically implausible (See definitions in the Glossary, 
in Table 1)4. Single values may be biologically implausible if they exceed standardized population norms for 
particular ages. Values may also be deemed biologically implausible if they appear anomalous in the context of 
an observed growth trajectory. Examples of biologically implausible values in trajectories include decreases in 
height across periods of growth, or sudden and improbable weight gains or losses.

We describe novel, free, open-source algorithms to remove biologically implausible values in height and 
weight. For clarity when comparing our algorithms to other published algorithms, we will refer to our algorithms 
as the Harrall algorithms. The Harrall algorithms identify anomalous values by using information from the tra-
jectories of growth in height and weight, under four assumptions. First, weight values must be for children over 
2 years of age, although height values can be cleaned starting at birth. Second, the algorithms assume that there 
can be only one true value of height or weight at a single time point. Third, the algorithms assume that height 
must be increasing across childhood. Fourth, the algorithms assume that absolute weight velocity between two 
subsequent weight points cannot exceed the absolute magnitude of slope which would occur if a child moved 
from the  CDC5 97th percentile in weight at the first age considered, to the 97th percentile in weight at the age 
corresponding to the second point. Although the algorithms require no manual curation, the algorithms provide 
data describing biologically implausible and plausible variables, in case investigators wish to review the results.
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The design goal for developing the algorithms was to provide a systematic and reproducible way to clean 
longitudinal measurements of height and weight in pediatric cohorts. The Harrall algorithms are computer-based, 
and require no manual curation. Computer-based algorithms, like the ones we propose, are suitable for rapid pro-
cessing of data with large numbers of participants, large numbers of repeated measures per participant, or both.

Obtaining accurate height and weight values is crucial for studies which seek to link anthropometric measures 
and health conditions. Assessing height and weight in longitudinal epidemiological studies allows computation 
of body mass index (BMI), a measure of body size. Many cohort studies assess associations between prenatal or 
early life exposures and subsequent childhood BMI  trajectories6–9. Examples include assessment of associations 
between gestational  diabetes6, sex  steroids10, or dietary  patterns7 and BMI later in development. Similarly, many 
studies assess associations between childhood BMI trajectories and the development of subsequent health condi-
tions. Cohen et al.11, for example, studied links between BMI growth in early life and hepatic fat in childhood.

To assess accuracy of the Harrall algorithms for cleaning height and weight, we compared the Harrall algo-
rithms to three published algorithms: Daymont et al.1, Shi et al.2 and Phan et al.3 (see Table 2 for a brief descrip-
tion of the three algorithms). Algorithms were included for comparison if the developers provided open-source 
code, provided a verification study, and accounted for longitudinal data. The inclusion criteria meant that many 
algorithms were omitted from the comparison. Several algorithms reviewed by Lawman et al.4 did not take into 
account longitudinal  data12–20 and others did not provide open-source  code21–23. The algorithm by Yang and 
 Hutchon24 had open-source code, but did not validate the cleaning method.

The three algorithms chosen for comparison require some manual curation, make strong assumptions, or 
both. The algorithms described by Shi et al.2 and Phan et al.3 both require manual curation for some issues. Shi 
et al.2 recommend that all flagged values undergo manual inspection before removal from the dataset. Phan et al.3 
require individual trajectories undergo manual inspection if the standard deviation of model residuals exceeds a 
threshold, or if over 40% of values in the individual trajectory are flagged. Manual curation uses human experts 
to assess, flag, and potentially remove biologically implausible values. The algorithms from Daymont et al.1, Shi 
et al.2 and Phan et al.3 are all based on parametric assumptions about the biological models for growth in height 
or weight. Among other checks, the algorithm from Daymont et al.1 evaluates deviations from a weighted mov-
ing average. Comparison to a weighted moving average evaluates distance from a line parallel to the x-axis, with 

Table 1.  Glossary.

Algorithmic cleaning An approach which uses computer code to assess, and flag or remove values which are deemed implausible according to 
pre-specified rules

Biologically implausible value or anomalous value A measure of height or weight which seems to be erroneous, either because (1) it exceeds 
normative values for humans, (2) the value is inconsistent with normative theories of human growth, or (3) both

Body mass index The square of height in meters, divided by weight in kilograms

Cap A potentially biologically implausible value. If sequential points in the trajectory are connected by line segments, the line segment before 
a cap point has a positive slope, and the line segment after a cup point has a decrease in slope

Cup A potentially biologically implausible value. If sequential points in the trajectory are connected by line segments, the line segment before 
a cup point has a negative slope, and the line segment after a cup point has a positive slope

Externally defined limits An approach for defining normative bounds for values in height and weight, by using aggregate population data 
published by organizations

Manual curation An approach which uses human experts to assess, flag, and potentially remove biologically implausible values

Normative bounds Any limit, usually defined from aggregate population data, defined so that observed data which exceeds the limit is consid-
ered to be biologically implausible

Outlier A measure that falls outside of biologically normative bounds. The bounds are usually derived by studying large populations

Repeat An identical measure at two different but consecutive ages

Sensitivity The rate at which an algorithm identifies as correct values which are, in truth, correct

Specificity The rate at which an algorithm identifies as incorrect values which are, in truth, incorrect

Table 2.  Literature review of algorithms to remove biologically implausible data for height and weight, which 
had open-source code, published a verification against a gold standard, and used algorithms which took into 
account longitudinal data.

Anomalies algorithm Approach Testing method

Daymont et al.1

Sequential removal of improbable values from individuals using standard 
deviations exceeding an iteratively determined cut point for each of three 
weighted moving averages. This method accounts for variable intervals from 
the point of interest using inverse-distance weighting. Separate calculations 
handle unit errors and switches, very extreme values, repeats over time, 
duplicates, height decreases of over 3 cm, evaluation of single or pairs of 
measurements, and participants with high error loads

Comparison to a collection of datasets from multiple practices in the 
United States, with implausible values removed, and then errors added, and 
comparison to a smaller dataset independently manually curated by expert 
clinician opinion with consensus discussion to resolve discrepancies

Phan et al.3 Flagging of improbable growth values, followed by robust linear regression, 
with regression diagnostic flagging leading to manual inspection

Comparison to large single dataset, with manual curation using expert clini-
cian opinion

Shi et al.2 Removal of largest of jack-knife studentized residuals from linear models, 
with removal of improbable growth values

Comparison with single large dataset with the addition of simulated outliers 
and implausible values
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the intercept at the value of the weighted average. The algorithm from Shi et al.2 compares z-scores to linear 
models in age, and raw values to square root models in age. Phan et al.3 makes similar parametric assumptions 
about growth, assuming that both height and weight are linear functions of age. All three sets of assumptions 
challenge results by other  authors25,26, who have suggested that growth is better described by non-linear, non-
polynomial ogive models.

Daymont et al.1, Shi et al.2 and Phan et al.3 evaluated their approaches, at least in part, by running their algo-
rithms on either a single large sample of data, or a sample formed by combining data from multiple practices in 
the United States. Daymont et al.1 and Phan et al.3 compared their results to expert clinician opinions. Daymont 
et al.1 and Shi et al.2 evaluated performance in identifying induced errors. Manual curation, as used by Daymont 
et al.1 and Phan et al.3, does not necessarily provide a gold standard. The opinions of experienced curators may 
provide a copper or silver, rather than gold standard. Even with the best training and experience, it is difficult 
to correctly remove erroneous growth records, or to confidently identify accurate measures. Adding simulated 
errors to existing large sample of data, as Shi et al.2 did, provides correct identification of the errors added to the 
large sample of data, but not of errors that were in the original large sample of data.

Our manuscript addresses existing gaps in approach and validation methodology. The Harrall algorithms 
make no global parametric assumptions, and instead implement a semi-parametric approach by applying rules 
of local ordering and smoothness. Additionally, no manual curation is required. The validation study uses Monte 
Carlo simulation to create both correct and anomalous data. Thus, the validation study is able to compare the 
novel and published algorithms to known correct and incorrect values, permitting unbiased estimation of sen-
sitivity and specificity.

This study had three aims. First, describe novel algorithms in  SAS27 and  R28 for computer-based detection 
and removal of improbable values of height and weight across childhood. Second visually illustrate the utility 
of the algorithm by cleaning a longitudinal sample of pediatric growth data, taken from the Exploring Perinatal 
Outcomes among Children (EPOCH)  cohort29. Third, use a Monte Carlo simulation to compare estimates of 
sensitivity, specificity and run time (a measure of computational speed) between the Harrall algorithms, and the 
algorithms suggested by Daymont et al.1, Shi et al.2 and Phan et al.3.

Results
The Harrall algorithm seeks to flag and remove biologically implausible values. To visually illustrate utility of 
the new approach, the algorithm was used to clean height trajectories for participants in the EPOCH  cohort29. 
Trajectories for a single  EPOCH29 participant before (left) and after (right) cleaning appear in Fig. 1. In this 
example, the novel height algorithm removed one of ten observed values. The value which was removed was 
identified because it led to an improbable decrease in height (negative slope), followed by a rapid, and biologically 
implausible increase in height in a short period of time. Removing the biologically implausible value produces 
a smoother trajectory for the participant pictured (Fig. 1, right).

As an additional visual illustration of the utility of the Harrall algorithms, height trajectory values for all 
participants in EPOCH before (left) and after (right) cleaning appear in Fig. 2. The dataset includes data on 604 
participants, with an average of 18 measures of height per participant (range 1–53, s.d. = 8.2). The algorithm 
removed data from 118 of the total 604 participants. Among participants who had points removed, each par-
ticipant had an average of 19 points removed (min = 5, 25th percentile = 12, median = 17, 75th percentile = 24, 
max = 40). Of the points removed, 54% of the records were repeats in height across time. After cleaning, 604 
participants remained, with an average of 14 longitudinal measures of height per participant (range = 1–34, 
s.d. = 5.7). The set of cleaned height trajectories shown in Fig. 2, on the right, shows qualitatively that the novel 
algorithm removes biologically implausible values, as well as rapid decreases and increases in height.

Table 3 gives sensitivity and specificity values for the Monte Carlo experiment comparing the Harrall algo-
rithms to those of Daymont et al.1, Shi et al.2 and Phan et al.3. Sensitivity values for height show little differences 
between the algorithms for the experimental conditions studied, with sensitivities of around 0.99 for the algo-
rithms of Daymont et al.1, Harrall and Shi et al.2 and of about 0.95 for the algorithm of Phan et al.3. By contrast, 
there is a clear ordering in specificity for height, with, in order, the algorithms of Harrall (0.928), and Daymont 
et al.1 (0.903) showing much higher specificity than the algorithms of Phan et al.3 (0.400) and Shi et al.2 (0.332). 
Values for sensitivity for weight appear in a tight range around 0.99 for all algorithms considered. There are clear 
differences in specificity for weight, with, in order, the algorithms of Harrall (0.908), demonstrating higher values 
than the algorithms of Daymont et al.1 (0.786), Shi et al.2 (0.309) and Phan et al.3 (0.127). Multivariate analysis 
of variance results demonstrate significant differences between the four algorithms for height sensitivity, height 
specificity, weight sensitivity, and weight specificity (all p < 0.0001; results not shown).

Table 4 shows results for sensitivity and specificity from the Monte Carlo experiment stratified by the pro-
portion of participants with at least one biologically implausible value. Simulated participants had none, some 
or many biologically implausible values. Details on the experimental conditions appear in the Methods section. 
For all algorithms, for both height and weight, sensitivity and specificity values did not change appreciably with 
the percentage of participants with biologically implausible values, for the experimental conditions considered.

Table 5 shows average run time in seconds for each experimental condition. Run time reflects the clock time 
between starting the algorithm and producing values. Overall, the run time is comparable between the algo-
rithms, with all algorithms taking seconds to run. Run times increase for the Harrall algorithm as the percentage 
of participants with at least one biologically implausible value increases. The increase reflects additional iterative 
cycles of cleaning needed to remove a higher percentage of biologically implausible values. However, the run 
time remains in seconds, no matter the percentage of biologically implausible values. In general, for both height 
and weight, the Shi et al.2 algorithm is fastest, followed, in order, by the algorithms of Harrall, Daymont et al.1 
and Phan et al.3.
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Discussion
In this report, we provided new methods for removing biologically implausible values for height and weight in 
pediatric populations. We also provided free and open-source  R28 and  SAS27 code to implement the algorithms. 
Both a visual demonstration and a simulation study were used to evaluate the utility of the novel algorithms. The 
visual demonstration showed smoother height trajectories after removal of biologically implausible values with 
the Harrall algorithm. The simulation study compared the novel algorithm to three published  algorithms1–3. The 
novel and published algorithms had similar sensitivity values for both height and weight, across all experimental 
conditions examined. However, the Harrall algorithms had better specificity for height, and much better specific-
ity for weight. Run times were similar for the novel and existing algorithms. Because algorithms were compared 
on similar testbeds, with known correct and known biologically implausible data, it was possible to compare the 
algorithms head-to-head against a gold standard.

Figures 1, 2 visually demonstrate the appeal of the Harrall height algorithms. The graph of height data, with 
biologically implausible values removed, shows smoother spaghetti plots of height growth over development, 
both individually (Fig. 1) and for all participants together (Fig. 2). Because the EPOCH data were observed, and 
not simulated, there is no gold standard. The better-looking spaghetti plots are aesthetic improvements, but may 
not represent truly cleaner data.

We did not produce spaghetti plots illustrating the  EPOCH29 weight data for the following reason. Height 
increases monotonically with age. By contrast, weight may fluctuate between consecutive time points, and from 
month to month. Both increases and decreases are plausible. Looking at growth curves for height provides infor-
mation, because it shows the removal of implausible decreases in height. Looking at growth curves for weight 
for a particular example shows little information, as small increases or decreases may reflect changes between 

Figure 1.  Height trajectory for a single participant, before (left) and after (right) cleaning with the Harrall 
algorithm. Biologically implausible values, which were removed are shown in red, with retained values in black.
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true measurements, or may reflect an error or more than one error in measurement. Thus, we reasoned that 
results from the simulation study would provide better overall information about the algorithmic performance.

The Monte Carlo study (Tables 3, 4) shows significant, but not clinically relevant differences between the novel 
and published algorithms in sensitivity for both height and weight. The significance of the hypothesis test results 
reflects the size chosen for the simulation design. Because there are 9000 replicates in the Monte Carlo study, the 
standard deviations are very small, and the p-values achieve significance. Differences in sensitivity in tenths or 
hundredths probably make no difference for scientists. The results for specificity for weight demonstrate both 
statistical and clinical significance. The Harrall algorithm achieved specificity of 0.908 for weight, compared to 
0.309 for Shi et al.2 and 0.127 for Phan et al.3. These differences are both statistically and operationally significant. 
The Harrall algorithm detects about nine in ten incorrect values for weight, compared to about one in three for 
the algorithm of Shi et al.2, and about one in ten for the algorithm of Phan et al.3. For height, Harrall (0.928) and 

Figure 2.  Spaghetti plots of repeated measures of heights from the EPOCH study, before (left) and after (right) 
cleaning with the Harrall algorithm. The removal of biologically implausible values appears to smooth the 
trajectories.

Table 3.  Average sensitivity and specificity, and standard deviation (s.d.) for height and weight. The number of 
replicates for calculations of sensitivity was 9000: for specificity, 6000.

Algorithm

Daymont et al.1 Harrall et al Phan et al.3 Shi et al.2

Height
Average sensitivity (s.d.) 0.996 (2.91 ×  10−3) 0.992 (7.46 ×  10−3) 0.949 (1.85 ×  10−2) 0.995 (3.70 ×  10−3)

Average specificity (s.d.) 0.903 (1.67 ×  10−2) 0.928 (1.44 ×  10−2) 0.400 (3.24 ×  10−2) 0.332 (2.91 ×  10−2)

Weight
Average sensitivity (s.d.) 0.995 (1.82 ×  10−3) 0.999 (1.63 ×  10−3) 0.993 (2.24 ×  10−3) 0.999 (9.78 ×  10−4)

Average specificity (s.d.) 0.786 (7.07 ×  10−2) 0.908 (3.15 ×  10−2) 0.127 (6.85 ×  10−2) 0.309 (4.46 ×  10−2)
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Daymont et al.1 (0.903) algorithms are relatively close in specificity, with both having higher specificity than the 
algorithms of Phan et al.3 (0.400) and Shi et al.2 (0.332).

We used sensitivity and specificity as metrics for the simulation study. Because both sensitivity and specific-
ity are proportions, they describe the percentage of correct values which are correctly kept, and the proportion 
of incorrect values which are correctly removed. For any study, the proportion of incorrect and correct values 
for weight and height may differ. It is impossible to know a priori how many, and what percent of each sort of 
measure will be removed.

Removing biologically implausible values can reduce analytic problems for modeling series of repeated meas-
urements of height and weight. Removing large peaks and dips can increase convergence of models. Removing 
noise improves precision and can remove bias in model results.

The source of errors in measurements in height and weight is not clear, although one can speculate. Errors 
can arise from unit errors, such as measurements in pounds or inches instead of kilograms or centimeters. 
Errors can arise from medical staff skipping height measurements in a busy clinic. Errors can arise from wiggly 
children, bouncing on scales and squirming while being measured. Errors can arise from infrequent calibration 
of scales. Measurement errors can arise from digit preferences by clinic or study staff. And errors can arise from 
transcription, or translation mistakes.

Scientists must make affirmative and transparent choices as to whether to clean or not to clean data. In any 
observed set of data, the probability structure which generated the true data and the errors is impossible to detect. 
Because the probability structure is unknown, it is unclear whether removing biologically implausible values 
will create bias in models fit to the data. Without cleaning data, it is difficult to fit models with pediatric height 
or weight as predictors or outcomes. The high variance of dirty data may lead to difficulties with convergence of 
models. Even if modeling is possible, conclusions from hypothesis testing with dirty data may or may not match 
conclusions from hypothesis testing with cleaned data. If the conclusions do not match, we advocate using the 
clean data, because conclusions drawn from biologically implausible values may be incorrect. If the conclusions 
from clean and dirty data match, we still recommend using the clean data, because the lower variance of cleaned 
data will give tighter confidence intervals. In some cases, it may be reassuring to report the conclusions from 

Table 4.  Algorithm-specific average sensitivity and specificity, by proportion of people with at least one repeat, 
erroneous measurement, or both. Sensitivity and specificity are expressed as fractions to three significant 
figures. Standard deviations (s.d.) are expressed in scientific notation with three significant figures.

Error proportion Algorithm

Daymont et al.1 Harrall et al Phan et al.3 Shi et al.2

Height

Average sensitivity 
(s.d.)

None 0.997 (9.76 ×  10−4)  > 0.999 (2.43 ×  10−4) 0.971 (3.18 ×  10–3) 1.00 (0)

Some 0.995 (2.77 ×  10−3) 0.991 (5.06 ×  10−3) 0.945 (9.45 ×  10−3) 0.995 (1.55 ×  10−3)

High 0.994 (3.56 ×  10−3) 0.986 (6.39 ×  10−3) 0.931 (1.13 ×  10−2) 0.992 (1.88 ×  10−3)

Average specificity 
(s.d.)

None

Some 0.906 (1.74 ×  10−2) 0.931 (1.51 ×  10−2) 0.386 (3.28 ×  10−2) 0.322 (3.13 ×  10−2)

High 0.900 (1.52 ×  10−2) 0.925 (1.31 ×  10−2) 0.414 (2.51 ×  10−2) 0.342 (2.26 ×  10−2)

Weight

Average sensitivity 
(s.d.)

None 0.995 (1.74 ×  10−3)  > 0.999(8.63 ×  10−5) 0.992 (2.25 ×  10−3) 1.00 (0)

Some 0.995 (1.84 ×  10−3) 0.999 (1.86 ×  10−3) 0.993 (2.19 ×  10−3) 0.999 (8.45 ×  10−4)

High 0.995 (1.88 ×  10−3) 0.999 (1.85 ×  10−3) 0.993 (2.18 ×  10−3) 0.999 (1.01 ×  10−3)

Average specificity 
(s.d.)

None

Some 0.787 (7.12 ×  10−2) 0.908 (3.23 ×  10−2) 0.130 (6.94 ×  10−2) 0.307 (4.60 ×  10−2)

High 0.784 (7.01 ×  10−2) 0.894 (3.07 ×  10−2) 0.125 (6.75 ×  10−2) 0.310 (4.30 ×  10−2)

Table 5.  Average timing in seconds per dataset (N participants = 100, average # observations per 
participant = 29.83 (s.e. = 0.0063). Timing is expressed in seconds with three significant figures. Standard 
deviations are expressed in scientific notation with three significant figures, in seconds. Timing reflects run 
time rather than processing time.

Error proportion

Algorithm

Daymont et al.1 Harrall et al Phan et al.3 Shi et al.2

Height

None 10.42 (4.39 ×  10−1) 1.36 (8.07 ×  10−2) 21.26 (9.35 ×  10−1) 2.39 (0.128)

Some 12.11 (5.29 ×  10−1) 9.97 (6.77) 20.66 (1.48) 2.24 (0.207)

High 12.88 (5.51 ×  10−1) 11.57 (7.37) 20.38 (1.28) 2.40 (0.133)

Weight

None 8.46 (4.48 ×  10−1) 1.33 (7.90 ×  10−2) 21.04 (9.46 ×  10−1) 2.38 (0.128)

Some 8.74 (4.26 ×  10−1) 5.06 (4.24) 20.44 (1.49) 2.24 (0.202)

High 8.84 (4.21 ×  10−1) 5.41 (4.16) 20.15 (1.30) 2.39 (0.129)
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the dirty data as a sensitivity analysis. Another possible approach is to fit measurement error models, such as 
the nonlinear models of Caroll et al.30.

The manuscript used Monte Carlo simulation to generate both clean and dirty data. Using simulated data to 
assess algorithm performance relies on opinion. Subjective questions that must be addressed include: Is this an 
appropriate model for the underlying data? Are these appropriate parameters? Does the frequency and regular-
ity of the data represent real-world data? Is this capturing not just underlying patterns of growth but typical 
variation (from minor illnesses, etc.)—and if not, is that important? Does the mechanism for introducing errors 
mimic the type, variety, and severity of errors found in real-world data? Do the features varied during simula-
tion represent all of the important aspects of underlying data or errors that can impact algorithm importance? 
Sometimes the answer to one of these questions is clearly no. But there are no objective criteria to determine 
when the answer is yes.

The manuscript had several limitations. First, good performance on a Monte Carlo study reflects good per-
formance on data generated under certain assumptions, and thus may not guarantee good performance on other 
data. In particular, the simulated data matched observed data from the EPOCH  study29 in terms of the average 
and variance of the number of observations per year of life. The algorithm may not have performed as well in a 
set of data with less frequent measurements. In addition, a Monte Carlo study can only demonstrate superiority 
on the experimental conditions considered, rather than all possible experimental conditions. However, we sought 
to mirror as accurately as possible both normal human growth, and the errors added to the data. We assumed 
a Preece-Baines25 nonlinear growth model, and added repeats, cups and caps at the frequency observed in the 
EPOCH  cohort29. The conditions we selected were representative of real observed data in terms of the percent-
age of participants with at least one repeat or biologically implausible value, the size of the errors, and the total 
number of errors. Second, the algorithm did not use an error tolerance to limit removal of small decreases in 
height. Because of errors in measurements, such decreases may be common. It is possible that future improve-
ments of the algorithm will add this feature. Third, we used percentiles from the  CDC5 clinical growth charts 
for age to flag unreasonable changes in weight across time. Weight thresholds were calculated as the absolute 
magnitude of the difference between the 97th percentile of weight at the age one year after the index age, and the 
97th percentile of weight at the index age, irrespective of the time difference between two subsequent points. The 
threshold used is in some sense arbitrary, as the choice of percentiles was made to remove the most extreme data. 
Fourth, the Harrall algorithms require at least three data points for every participant. Fifth, if there are several 
measurements at the same time point, the algorithm will select the first one, which may subsequently be removed 
if anomalous. A future version of the algorithm may permit better error handling for multiple measures at the 
same time point. Finally, the algorithm is not appropriate to use in cases of severe illness, when skeletal height 
may decrease, or when rapid weight gain or loss is expected, as after bariatric surgery, treatment with GLP1-R 
agonists, or in the context of severe illnesses like cancer.

The Harrall algorithms do not use population quantiles from the CDC to remove single extreme points for 
each participant, although the CDC weight-for-age quantiles are used to generate cutpoints for implausible 
growth velocity in weight. The use of CDC quantiles may represent a limitation, particularly for researchers 
studying populations inside of the United States. Using source data collected outside the study to define biologi-
cally implausible values is often called an externally driven cleaning  approach4. Both the  CDC5 and the World 
Health Organization (WHO)31 organizations provide percentiles of pediatric height and weight by age and sex. 
Our rationale for not using population quantiles to declare single points implausible was based on results from 
Freedman et al., who showed that this method often removed true  values32. Freedman et al.32 tested the validity 
of using WHO percentiles to remove extreme values of childhood height, weight, and BMI in the National Health 
and Nutrition Examination Survey (NHANES) study. The group found two major issues when assessing outli-
ers flagged by the WHO standards. First, almost all of the outliers sat at the upper range of the measurement’s 
distribution. By removing outliers from only the upper range of the distribution, cleaning using quantiles may 
lead to bias in model  inference32. Second, at least 75% of the participants who were identified as having high 
biologically implausible values of height also had leg lengths above the 95th  percentile32, suggesting that the 
removed values may have in fact correctly represented real data from proportionally large youth.

Since the Harrall algorithm cannot identify anomalies at the first or last point of the trajectory, research-
ers may consider using the CDC or WHO population quantiles to flag improbable values prior to running the 
algorithm. In general, we discourage doing that. Our rationale is that the Harrall algorithm removes anomalous 
values in the context of the entire trajectory of growth for a single child. Thus, any values that remain are con-
textually valid, even if apparently improbably large or improbably small, in comparison to population quantiles.

The manuscript also has several strengths. The algorithm is based on very few assumptions. The algorithm 
for height is based on the assumption that skeletal height increases throughout childhood. In addition, the code 
is available, both in  R28 and  SAS27, and released as open-source, copy-left under the  GNU33 public license. This 
means that the code can be used or modified by others, as long as they do not charge for the software. The goal 
is to allow wide use of the software, and application to other datasets involving pediatric height and weight.

Another strength of the Harrall algorithms is that they are computer-based. Because computer-based algo-
rithms are fast, they are increasingly useful in studies with large sample sizes. The increasing use of electronic 
medical records and the rise of large epidemiological groupings of cohorts, such as  ECHO34 and  HELIX35, means 
that sample sizes are increasing. Large sample sizes means that manual curation takes more time, and costs more. 
In addition, computer-based algorithms provide replicable results. By contrast, since manual curation is based on 
expert opinion, rather than an algorithm, two curators, or even the same curator making a second review may 
get a different answer. In addition, manual curation is sometimes conducted by reviewers with little training, 
and thus may not even represent expert opinion.

It is our hope that computer-based algorithmic curation of pediatric height and weight data will improve 
accuracy and reduce the bias in studies of growth. Understanding which data are biologically implausible will 
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allow researchers to design systems to limit the sources of measurement error. We hope to extend the algorithmic 
approach to other longitudinal biological measures in humans, in which rapid changes are improbable.

Methods
Algorithm
Software
Both the height and weight algorithms are available in  SAS27 (Version 9.4, Cary, NC), and  R28. Code and example 
input and output files are provided in Online Supplementary File 2, and available for free download from https:/
github.com/HarrallKK/HarrallAlgorithms.

Multiple measurements at a single time point
For the algorithm, the assumption is made that only one measurement may occur at a single time point. The 
algorithm assesses multiple measurements that co-occur at the same timepoint, and removes all but one of the 
repeated measurements. If the dataset includes measurements from multiple sources, for example research visits 
and medical record abstraction, the algorithm can be set to preferentially select data from one source over the 
others. If no preference is selected, the first observation in the dataset for the timepoint in question is selected.

Identification of repeats, caps or cups
A repeat is an identical measure at two different consecutive ages. Repeats are identified when the slope between 
two consecutive measurements equals zero. If sequential points in the trajectory are connected by line segments, 
the line segment before a cup point has a negative slope, and the line segment after a cup point has a positive 
slope. The line segment before a cap point has a positive slope, and the line segment after a cup point has a 
negative slope.

Flagging of caps and cups
The algorithm cleans data for trajectories with 3 or more points. First, the algorithm identifies the sign and mag-
nitude of the slope of each line segment. It then uses separate subroutines to flag and remove points identified 
as a cup, cap, or repeat. The resulting set of line segments does not usually form a line. What subroutine is used 
depends on the number of points in the trajectory, and the signs and magnitudes of each slope. The subroutines 
are designed so that the maximum absolute slope of the set of slopes computed is the smallest possible. Because 
there are a combinatorial number of possible subroutines, which differ based on the number of points in the 
trajectory, the logic of each subroutine is not described here. The open-source code allows the reader to examine, 
and if desired, adjust each subroutine.

Decision rule for removal of flagged values
Flagged biologically implausible values are handled differently for height and weight trajectories. Based on the 
assumption that children do not decrease in height, all caps and cups are removed from trajectories of height. 
Weight is only removed if the difference exceeds a threshold (Supplementary Table A4). Thresholds were derived 
using  CDC5 clinical growth charts, which specify United States population-based percentiles of weights-for-age. 
Thresholds were computed as the absolute differences between the 97th percentile of weight at the age one year 
after the index age, and the 97th percentile of weight at the index age.

Iterative cleaning
The algorithm is iterative. The first iteration identifies and removes repeats. Subsequent iterations assess for, and 
remove, flagged caps, cups, and additional repeats that arise during the cleaning process. The iterative process 
ends when a maximum number of iterations is completed, or when no further caps, cups, or repeats exceed 
detection thresholds.

EPOCH study
Cohort participants were the offspring of singleton pregnancies, born at a single hospital in Denver, Colorado, 
USA, between 1992 and 2002, who had biological mothers who were members of the Kaiser Permanente of 
Colorado Health plan. Height and weight values were obtained from medical record abstraction, and from two 
in-person research visits at approximately 10 and 16 years of age, at which height and weight were measured 
in light clothing and without shoes by trained staff using standardized, calibrated instruments. The height and 
weight values thus represented a mix of two approaches for obtaining anthropometric data. The study was 
approved by the Colorado Multiple Institutional Review Board. Caregivers provided written informed consent 
and children provided written assent before entering the study. All procedures were performed following the 
relevant guidelines and regulations.

Data simulation methods
Aims, design and number of replicates
Monte Carlo simulation methods were reported using an approach suggested by Morris et al.36. The aim of the 
simulation was to compare average sensitivity and specificity for each algorithm on a testbed with known correct 
and incorrect values. A further aim was to evaluate whether the sensitivity and specificity of the algorithms varied 
with two factors: (1) the proportion of errors, including cups, caps and repeats, and (2) the relative position of 
the population height or weight curve within the percentiles of the  CDC5 clinical growth charts. Three levels 
were chosen for each factor, for a total of 9 = 3* 3 cross-classified levels. The levels are described below. With 1000 
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replicates simulated for each cross classified level, the sample size for the experiment was 9000 = 9*1000. Using 
1,000 realizations made the half width of the asymptotic 95% confidence interval for estimates of sensitivity and 
specificity no more than 0.031.

Simulation of correct height and weight data
Correct data for both height and weight was generated by using the Preece-Baines25 model, with three param-
eter sets described in Supplemental Table A1. Random individual deviations from the population line were 
generated using the  SAS27 software normal function. The number and spacing of the data per year of life were 
simulated to mirror the mean and standard deviation of the number and spacing of the EPOCH data, shown in 
Supplemental Table A2.

Inclusion of known biologically implausible values
The probability of occurrence, number and magnitude of the biologically implausible values were randomly 
varied, as a function of input parameters described in Supplemental Table A3. Caps and cups were included by 
adding (or subtracting) values from simulated correct values. Repeats were included by substituting repeat values 
for previously simulated correct values.

The proportions of errors
In order to mirror errors in an observed data set, we conducted the following analysis of the  EPOCH29 data for 
both height and weight. We used the Harrall algorithms to clean both height and weight data. Comparing the 
resulting cleaned and deleted values allowed estimation of the probabilities of errors shown in Supplemental 
Table A3.

The three levels considered in the simulation experiment corresponded to adding no errors, making the 
probability of at least one error of each sort equivalent to that derived from the  EPOCH29 study and shown in 
Supplemental Table A3, and doubling the probability of at least one of each sort of error. The number of errors, 
given that person had at least one error, and the size of the errors added was held constant.

The relative position of the true height and weight curves
The three sets of parameters for the Preece-Baines25 models shown in Supplemental Table A1 were chosen so 
that the resulting family of curves stayed within the bounds created by the 5th and 95th quantile curves of the 
 CDC5 clinical growth charts, and represented relatively low (i.e., closer to the 5th percentile than the median), 
medium (i.e., close to the median), and high (i.e., closer to the 95th percentile than the median) heights or 
weights respectively.

Sensitivity and specificity
Sensitivity and specificity were computed using the formulae in Table 6. Specificity was only computed if the 
study participant had at least one biologically implausible value. The denominator of specificity is the number 
of biologically implausible values: if this were zero, specificity cannot be calculated, as division by zero is not 
allowed. Average sensitivity and specificity were computed by averaging the sensitivity and specificity computed 
for each replication of the experiment.

Timing
Total run time was assessed on a Dell 5280 Precision tower, with an Intel® Xeon®W 2123 central processing unit, 
3.60 GHz processor with 32.0 GB of RAM (31.7 GB usable), running 64-bit Windows 10 Enterprise.

Statistical methods
We used multivariate analysis of variance (MANOVA) to assess whether the novel approach differed from the 
three previously published  approaches1–3 on six outcomes: (1) sensitivity for height, (2) specificity for height, (3) 
sensitivity for weight, (4) specificity for weight, (5) processing time for cleaning height and 6) processing time 
for cleaning weight. We assessed normality of the jackknifed studentized residuals. Each replicate of the Monte 
Carlo experiment was treated as an independent sampling unit. The total sample size for assessing sensitivity is 
9000. Because the first factor of the experiment introduces no errors, the total sample size for assessing specific-
ity is 6000.

Each separate general linear multivariate model used the respective measures for the four algorithms as 
outcomes, and an intercept as the only predictor. This gave the sample averages as the parameter estimates. We 

Table 6.  Errors and successes in detection for a cleaning algorithm, either overall, or per participant. 
Sensitivity is defined as  N11/(  N11 +  N21). Specificity is defined as  N22/(  N12 +  N22).

Truth

Correct value Incorrect or anomalous value

Algorithmic result
Value declared correct N11 N12

Value declared incorrect N21 N22
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used the Hotelling-Lawley trace statistic to conduct two-sided tests at Bonferroni-corrected Type I error rate 
of 0.05/6 = 0.0083.

Data availability
The code to generate the data and the results are available at https:/github.com/HarrallKK/HarrallAlgorithms. 
Interested researchers who wish to compare their approaches to ours, or to other published approaches are 
encouraged to cite this manuscript, and freely use the code.  De-identified pediatric height and weight data from 
the EPOCH study may be made available, upon reasonable request, and after review of EPOCH publications 
committee, by inquiry to Anna.Bellatorre@cuanschutz.edu.
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