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Power and Promise of Next-Generation
Sequencing in Liquid Biopsies
and Cancer Control
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Abstract
Traditional methods of cancer treatment are usually based on the morphological and histological diagnosis of tumors, and
they are not optimized according to the specific situation. Precision medicine adjusts the existing treatment regimen based
on the patient’s genomic information to make it most suitable for patients. Detection of genetic mutations in tumors is the
basis of precise cancer medicine. Through the analysis of genetic mutations in patients with cancer, we can tailor the
treatment plan for each patient with cancer to maximize the curative effect, minimize damage to healthy tissues, and
optimize resources. In recent years, next-generation sequencing technology has developed rapidly and has become the core
technology of precise targeted therapy and immunotherapy for cancer. From early cancer screening to treatment guidance
for patients with advanced cancer, liquid biopsy is increasingly used in cancer management. This is as a result of the
development of better noninvasive, repeatable, sensitive, and accurate tools used in early screening, diagnosis, evaluation,
and monitoring of patients. Cell-free DNA, which is a new noninvasive molecular pathological detection method, often
carries tumor-specific gene changes. It plays an important role in optimizing treatment and evaluating the efficacy of dif-
ferent treatment options in clinical trials, and it has broad clinical applications.
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Tumorigenesis is characterized by uncontrolled cell growth

leading to cancer.1-3 Normal cells can become cancerous due

to genetic mutations and epigenetic modifications.4-6 Patients

with different cancer have different genetic mutations and epi-

genetic modifications, which increase the complexity and het-

erogeneity of tumors.7,8 In addition, intratumoral heterogeneity

increases over the course of disease development, making the

treatment of tumors particularly challenging.9-12

The development of next-generation sequencing (NGS)

technology and bioinformatics has decoded a large number of

cancer genome data, which has also promoted the development

of targeted therapy and immunotherapy, especially for invasive

cancer types that do not respond to traditional treatment

options13-15 (Figure 1). Through the detection of cell-free DNA

(cfDNA) genetic information in cancer cells, immune cells, or
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liquid biopsy samples by NGS, we can access key genetic

mutations in patients with cancer. Assessment of these muta-

tions can help inform whether patients will respond to targeted

therapy or immunotherapy. Furthermore, new treatment

options can be developed by creating new drugs to target these

mutations.16-18 Immune drugs induce the body’s immune sys-

tem to attack and treat tumors and develop more effective

immunological checkpoint inhibitors or Chimeric Antigen

Receptor T-Cell Immunotherapy(CAR-T) or cancer vac-

cines.19-21

Precision Medicine and Tumor Gene
Detection

Precision medicine is a new term, replacing individualized

medicine. There are many overlaps between precision medi-

cine and individualized medicine.22-24 However, precision

medicine mainly refers to adjusting the existing treatment plan

according to the patient’s genomic information, making it most

suitable for patients, while individualized medicine is often

based on creating new treatment methods or plans based on

the patient’s genomic information.25-27 This process is lengthy

and may not benefit patients with cancer. For this reason, the

National Research Council, which is responsible for the man-

agement of science, technology, engineering, and mathematics

in the United States, recommended replacing “individualized

medicine” with “precision medicine” in 2011.28 In early 2015,

President Barack Obama launched the Precision Medicine pro-

gram. At the same time, at the end of 2015, China also launched

the “Precision Medicine” program and included it in the 13th

Five-Year Plan of China.29

As it pertains to precision medicine for cancer treatment,

detection of genetic aberrations is the basis of developing effec-

tive treatment options.30-32 Through the analysis of genetic

mutations in patients with cancer, we can tailor the treatment

plan for each patient with cancer to maximize the curative effect,

minimize the damage, and optimize the resources.33-36

Next-Generation Sequencing and Precise
Targeting Therapy for Tumors

Next-generation sequencing, also known as large-scale parallel

sequencing, can simultaneously sequence millions or even bil-

lions of DNA molecules, achieving the goal of large-scale,

high-throughput sequencing.37-40 This makes NGS a revolu-

tionary progress following Sanger sequencing (first-

generation sequencing).8,41,42 In recent years, NGS technology

has been developed and applied rapidly, especially in cancer

gene detection. In the United States, medical NGS services

(FMI and MSK) from commercial companies and academic

institutions were approved by Food and Drug Administration

(FDA) in 2017, suggesting that NGS has been formally applied

in clinical practice.43 At the same time, the approval process for

various medical NGS services is also accelerating. In 2017, the

National Cancer Institute launched a National Cancer Precision

Medical Survey, which found that 75.6% of oncologists in the

United States are using NGS gene detection technology to

guide cancer treatment.44

From 2018 to 2019, 5 cancer NGS products were

approved by National Medical Products Administration,

suggesting that NGS has officially entered the stage of clin-

ical application in China.45-47 Currently, the FDA has

approved concomitant diagnostic technologies in oncology,

such as immunohistochemistry (IHC), in situ hybridization

(fluorescence in situ hybridization/chromogenic in situ

hybridization), real-time fluorescence quantitative polymer-

ase chain reaction, and NGS.48 Excluding IHC, the other 3

are gene detection techniques; among them, NGS has

become the core technology of precise targeted therapy and

immunotherapy for cancer.49-52

Figure 1. Time line of major achievements in sequencing technologies.
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The NGS mutation profiles obtained from different tumors

have led to the emergence of targeted therapies for tumors,

which include identifying mutations in signaling pathways and

blocking them with existing or newly developed drugs.53-56

The detected mutations are classified as driver mutations if

they are critical to the maintenance of tumors and passenger

mutations if they have no definite role in the maintenance of

tumors.57-60 This classification therapy led to the development

of imatinib, a constitutive inhibitor of BCR-ABL kinase, for

the treatment of leukemia.61-63

At present, targeted therapeutic drugs include small mole-

cule inhibitors and macromolecular monoclonal antibody

drugs. For drugs with definite targets, it is necessary to use

gene detection before they can be used (Figure 2).

Next-Generation Sequencing
and Immunotherapy for Tumors

In 2018, a study in Nature Medicine showed that when a patient

with metastatic breast cancer did not respond to several kinds

of chemotherapy and had a life expectancy of only a few

months, somatic cell mutations were detected by NGS technol-

ogy, and immunotherapy was administered to completely elim-

inate the tumor.64 Thus, the genomic information of tumors

detected by NGS can identify patients who may respond to

immunotherapy, use immunodrugs to induce the body’s

immune system to attack and treat tumors, or develop more

effective immune checkpoint inhibitors or CAR-T or cancer

vaccines.65-67

Under normal physiological conditions, the immune sys-

tem recognizes and eliminates mutant cells.68 However,

tumors occur when cancer cells escape the immune system

by creating an immunosuppressive environment.69-72 There-

fore, the focus of recent research has shifted from targeted

therapy to immunotherapy, hoping to be used to treat more

patients with cancer. This is as a result of immune escape

being common for all tumors, and restoring the immune sys-

tem can help destroy tumors.

Immunotherapy is not equally effective for all types of

tumors, and the efficacy varies from patient to patient.73-77

The possible reasons are the heterogeneity of T cells and

tumor cells and their complex interactions in the tumor

microenvironment.78-81 Immunogenomics is a relatively

new field of cancer research. The detection and analysis

of whole-genome sequencing (WGS), whole-exome sequen-

cing (WES), and RNA sequencing (RNA-Seq) on T cells

and tumor cells by NGS technology can obtain genome

maps of tumors and immune cells, which can help to cus-

tomize treatment schemes for specific characteristics of

tumors and increase the possibility of success.82-84 At the

same time, NGS technology can be used to evaluate the

changes in biomarkers of immunological checkpoint inhibi-

tors, such as tumor mutational burden (TMB), microsatellite

instability, and PD-L1 amplification and other therapeutic

Figure 2. Epigenetic drugs for cancer therapy. Epigenetic drugs being studied for human cancer are listed.
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effects, drug resistance, and genetic mutations related to

hyperprogression.64,85-87

In cancer vaccines, the immune system is stimulated to

produce antibodies.88 In adoptive T-cell therapy, T cells are

isolated from the body, stimulated and amplified in vitro, and

then infused back into the patient.89-91 Genetic modification

of T cells (CAR-T cells) by chimeric antigen receptors can

improve the immune response of T cells.92 Detection and

analysis of WGS, WES, and RNA-seq in T cells and tumor

cells by NGS technology will help to improve the design of

CAR-T cells and the selection of new antigens. Tumor cells

secrete and express new antigens on the surface of cells to

escape recognition of T cells.93-96 Patient-derived T cells can

grow in vitro and can be stimulated with these new antigens to

elicit a strong T-cell response.97 To further enhance the ability

of T cells to recognize tumors, CAR-encoded DNA was intro-

duced into T cells (CAR-T cell therapy).98 Therefore, once T

cells increase, they will be transferred back to the patient,

where they can now recognize tumor antigens, thereby

improving the effectiveness of inducing cancer cell death and

clearance. Detection and analysis of WGS, WES, and RNA-

seq in T cells and tumor cells by NGS technology will help to

improve the design of CAR-T cells and the selection of

new antigens.

The progress of NGS technology and bioinformatics is

expected to improve the recognition of new antigens and the

effectiveness of cancer vaccines.99-102 Single-cell genomics

will be particularly helpful in revealing the expression, muta-

tion of tumor genes, and the heterogeneity of new immune cells

in the same tumor, which can be used to develop cancer vac-

cines targeting different clonal populations in tumors.103-106

Therefore, NGS technology (WGS, WES, RNA-seq, ChIP-

seq, NGS panel, etc) has become the core development and

application technology of precise targeted therapy and immu-

notherapy for cancer. It can help us better understand tumors,

tumor microenvironment, and T cells and then provide perso-

nalized treatment programs for patients with cancer.

Next-Generation Sequencing and cfDNA
Detection

“Liquid biopsy” is often used to analyze cfDNA in plasma and

other body fluids (such as pleural effusion, ascites, and cere-

brospinal fluid), as well as circulating tumor cells (CTCs) and

other nucleic acids (such as RNA and microRNA) in blood.107-

109 Circulating tumor cells in blood exist at very low concen-

trations, usually less than 10 CTCs per milliliter of blood, even

in patients with metastatic disease.110 This low concentration

characteristic greatly limits the diagnostic and analytical poten-

tial of CTCs. Compared with CTC, the proportion of cfDNA

contributed by cancer cells was significantly higher.111 In

advanced patients with hepatocellular carcinoma (HCC), DNA

fragments carrying cancer-specific mutations account for more

than 50% of cfDNA.105 It is also because the proportion of

cancer-derived DNA in cfDNA is higher than that of CTCs

in nucleated blood cells, and therefore, the analysis of cfDNA

is more widely used in cancer management than that of CTCs.

From early cancer screening to treatment guidance for

patients with advanced cancer, liquid biopsy is increasingly

used in cancer management. Liquid biopsy may overcome the

limitations of tumor markers (mainly proteins or glycoproteins)

in conventional tissue samples.112-115 Cancer-related muta-

tions, including single-nucleotide mutations, copy number

changes, methylation changes, and DNA fragmentation pat-

terns have been detected in cfDNA of patients with various

cancer by NGS technology (Figure 3).74,116-118

Most cancers are relatively asymptomatic in their early

stages.119 As such, most patients are diagnosed with advanced

cancers. In this regard, liquid biopsy can be used for cancer

surveillance and diagnosis. Detection of genetic mutations by

enlarging the target region can improve sensitivity.120 Muta-

tions from tumors can be used to monitor clinical progress and

detect residual lesions after treatment.116,121-123 Abnormal

methylation signals in cfDNA molecules enable detection of

ultra-early tumors, and genome-wide methylation histological

Figure 3. Time line of the main important discoveries of circulating tumor DNA.
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analysis of plasma DNA tissue location can be used as a

“whole-body molecular imaging” method to identify potential

tissue origins of mutations detected in cfDNA.124-127

An important application of cfDNA analysis is to guide

treatment decisions, especially in targeted therapy.128-130 For

example, liquid biopsy to analyze EGFR mutations has been

widely used to guide the use of epidermal growth factor

receptor-tyrosine kinase inhibitors.131 Many studies have

demonstrated that targeted large-scale parallel sequencing can

be used to identify cancer-related driver mutations in the

cfDNA of patients with HCC.132-134 Further studies have

shown that the mutation characteristics of cfDNA reflect the

state of the corresponding tumor tissues.114,135,136 Of course,

the potential of cfDNA mutation analysis for cancer treatment

management should not be underestimated.137 An NGS-based

liquid biopsy provides a noninvasive method for large-scale

assessment of mutation profiles in patients with advanced can-

cer (Figure 4).

Recent studies have shown that TMB can predict the

clinical response of patients to immunotherapy in a variety

of solid tumors.138-140 Tumor mutational burden detection

based on NGS and cfDNA can be used to predict the ther-

apeutic response of patients with non-small-cell lung cancer

to the PD-L1 immunosuppressant atezolizumab, and its

immunotherapeutic effect is independent of the expression

of PD-L1.141-143

Conclusion

Cancer is a relatively heterogeneous disease with multiple

causes and carcinogenic driving events. The analysis of cfDNA

mutations based on NGS can better characterize patients, and it

can be applied to early cancer screening and treatment gui-

dance for patients with advanced cancer. It can optimize

patient’s treatment and evaluate different treatment options in

drug trials.
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