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Abstract

Purpose

To detect the causative mutation for congenital posterior polar cataracts in a five-generation

Chinese family and further explore the potential pathogenesis of this disease.

Methods

Coding exons, with flanking sequences of five candidate genes, were screened using direct

DNA sequencing. The identified mutations were confirmed by restriction fragment length

polymorphism (RFLP) analysis. A full-length wild-type or an Y219*mutant aquaporin0

(AQP0) fused with an N-terminal FLAG tag, was transfected into HEK293T cells. For co-

localization studies, FLAG-WT-AQP0 and Myc-Y219*-AQP0 constructs were co-transfected.

Quantitative real-time RT-PCR, western blotting and immunofluorescence studies were per-

formed to determine protein expression levels and sub-cellular localization, respectively.

Results

We identified a novel nonsense mutation inMIP (c.657 C>G; p.Y219*) (major intrinsic pro-

tein gene) that segregates with congenital posterior polar cataract in a Chinese family. This

mutation altered a highly conserved tyrosine to a stop codon (Y219*) within AQP0.When

FLAG-WT-AQP0 and FLAG-Y219*-AQP0 expression constructs were singly transfected

into HEK 293T cells, mRNA expression showed no significant difference between the wild-

type and the mutant, while Y219*-AQP0 protein expression was significantly lower than

that of wild-type AQP0. Wild-type AQP0 predominantly localized to the plasma membrane,

while the mutated protein was abundant within the cytoplasm of HEK293T cells. However,

when FLAG-WT-AQP0 andMyc-MU-AQP0were co-expressed, both proteins showed high

fluorescence in the cytoplasm.
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Conclusions

The novel nonsense mutation in theMIP gene (c.657 C>G) identified in a Chinese family

may cause posterior polar cataracts. The dominant negative effect of the mutated protein

on the wild-type protein interfered with the trafficking of wild-type protein to the cell mem-

brane and both the mutant and wild-type protein were trapped in the cytoplasm. Conse-

quently, both wild-type and mutant protein lost their function as a water channel on the cell

membrane, and may result in a cataract phenotype. Our data also expands the spectrum of

knownMIPmutations.

Background
Congenital cataracts are eye diseases characterized by an opacity of the lens, presenting at birth
or shortly thereafter [1], and are responsible for the majority of visual impairment cases in chil-
dren worldwide, despite improvements in surgical techniques in recent years [2]. Approxi-
mately 8.3–25% of congenital cataracts are inherited [3]. The nonsyndromic form of
congenital cataract displays a mostly autosomal dominant inheritance pattern with complete
penetrance [4].

Congenital cataractis a phenotypically and genetically heterogeneous disorder [4]. A num-
ber of such cataract phenotypes have been recognized, such as: whole lens, anterior polar, pos-
terior polar, cortical, nuclear, lamellar, cerulean (or blue dot), coralliform, sutural, and
pulverulent cataract [5, 6]. Although this disease shows highly variable expressivity, it is be-
lieved that there is a certain genotype-phenotype correlation to some extent [3]. More than 35
independent loci and 25 cataract-related genes have been identified that were associated with
nonsyndromic autosomal dominant congenital cataract (ADCC) [7].

TheMIP gene encodes a major intrinsic protein, also known as aquaporin0 (AQP0), which
acts as a water channel [8]. Several studies have confirmed that aquaporins are functionalonly
in the tetrameric form in the membrane [9–12] and thatonly aquaporinsin the form of tetra-
mers can conduct water [13]. AQP0 is proposed to facilitate water removal [14] and it plays a
critical role in controlling the water content of lens fiber cells [15]. AQP0 forms not only water
pores, but also ‘thin lens junctions’ that AQP0 may also be involved in fiber-fiber adhesion
[16]. AQP0 compacts highly ordered gamma-crystallins in lens fibers [17], and minimizes ex-
tracellular space to maintain an elevated refractive index for transparency.

Methods

1 Study participants
A five-generation family with autosomal dominant posterior polar cataract, living in the Liao-
ning province of China, was invited to participate in our study except the ones in first genera-
tion, who had passed at the time of examination (Fig. 1A). Each participant’s affected status
was determined by their medical history or a detailed ocular examination, including visual acu-
ity, anterior segment examination by slit lamp, and fundus examination with dilated pupils. A
total of 200 unrelated participants, without a family history of congenital cataracts, were re-
cruited as controls. Informed consent was obtained from all participants. This study adhered to
the tenets of the Declaration of Helsinki and was approved by the Ethics Committee of Shengj-
ing Hospital. Written informed consent was obtained from each patient, and we obtain written
informed consent from the guardians on behalf of the children enrolled in our study.
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2 Mutation screening
Blood samples were collected from both affected and unaffected family members as shown in
Fig. 1A. Genomic DNA was extracted from peripheral blood samples using the QlAamp DNA
Blood Mini Kit (Qiagen; Valencia, CA, USA).

Five functional candidate genes that are mostly involved in posterior polar ADCC were se-
lected as determined from the Online Mendelian Inheritance in Man (OMIM) database.

Fig 1. Clinical evaluation. A: Pedigree of the five-generation Chinese family with autosomal dominant congenital cataract (ADCC). Squares and
circles indicate males and females, respectively. Filled symbols indicate affected members and empty symbols indicate unaffected individuals. The diagonal
line indicates a deceased family member and the arrow indicates the proband. Family members whose DNA was analyzed by sequencing and restriction
enzyme digestion are indicated by asterisks.B: Photograph of the right eye of the proband. The photograph (diffuse illumination) of the proband (V: 1)
before surgery shows a posterior polar cataract with cotton-like opacities in the posterior subcapsular cortex. The same phenotype was noted bilaterally.

doi:10.1371/journal.pone.0119296.g001
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Polymerase chain reaction (PCR) was employed to amplify all coding exons and exon-intron
flanking regions of the candidate genes: CRYAA, CRYAB, PITX3, CHMP4B, andMIP, using
previously published primer sequences and cycling conditions [1, 18, 19]. PCR products ob-
tained from the proband and one unaffected family member were sequenced.

3 Restriction fragment length polymorphism (RFLP) analysis
RFLP demonstrated that the c.657 C>G substitution in theMIP gene abolished an RsaI restric-
tion site. DNA sequences from all members of the family and 200 unrelated controls were am-
plified by PCR using the primers: 5’-TCTACAGGTGTACTGGGTAGG-3’ (forward) and
5’-GCCTGGGTGTTCAGTTCAACA-3’ (reverse). PCR product (10 μL) was digested with
RsaI(New England Biolabs; Ipswich, MA, USA) at 37°C for 30min and separated on a 2.5%
agarose gel, along with a DL2,000 DNAMarker (TaKaRa; Dalian, China).

4 Human AQP0 cDNA and expression constructs
4.1 Wild-type (WT) AQP0. The coding sequence of wild-typeMIP (AQP0) was amplified

by PCR from human kidney first-strand cDNA (Human multiple tissuescDNA panels; BD Bio-
sciences; Palo Alto, CA, USA). The forward primer used in PCR contained a BamHI site (5’-
CGCTGGATCCATGTGGGAACTGCGATCAGC-3’), and reverse primer contained an XhoI
site (5’-CCGACTCGAGCTACAGGGCCTGGGTGTTCA-3’).

4.2 Mutant (Y219�) AQP0. To introduce the mutation (c.657 C>Gp.Y219�) into AQP0,
site-directed mutagenesis was used with the following oligonucleotide primer and its comple-
ment: sense primer, 5’-GGGCAGCCTCCTGTAGGACTTTCTTCTCTTC-3’; antisense prim-
er, 5’-GAAGAGAAGAAAGTCCTACAGGAGGCTGCCC-3’.

4.3 Plasmid construction. To create FLAG-AQP0 and Myc-AQP0 fusion proteins, the
PCR products of WT-AQP0 and Y219�-AQP0 were digested with BamHI and XhoI restriction
enzymes, respectively, purified with a PCR purification kit (Tiangen Biotech, Beijing, China),
and subsequently cloned into the digested mammalian expression vector, pCMV-3Tag-6(Agi-
lent Technologies, Shanghai, China), which contained an N-terminal triple FLAG epitope tag;
and pCMV-3Tag-7 (Agilent Technologies, Shanghai, China), which contained an N-terminal
tripleMyc epitope tag. All of the constructs were verified by direct sequencing.

5 Cell culture and transient transfection
Human embryonic kidney 293T (HEK 293T) cells were cultured in Dulbecco’s Modified Ea-
gle’s Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) in a humidified at-
mosphere containing 5% CO2 at 37°C. Wild-type (WT-AQP0), mutant AQP0 (Y219�-AQP0),
and control plasmids (empty pCMV-3Tag-6 orpCMV-3Tag-7) with FLAG or Myc tag were
transfected, respectively, or cotransfected into HEK 293T cells in comparable amounts using
Lipofectamine 2000 (Invitrogen Corporation, Carlsbad, CA, USA).

6 Relative mRNA expression
For the MIP expression analysis, quantitative real-time RT-PCR was appliedto detect therela-
tive mRNA expression of both wild-type and mutant. Total RNA was isolated from the
HEK293T cells 24h after transfection. RNA samples were treated withRecombinant RNase-
Free DNase (TaKaRa; Dalian, China). The first strands of cDNA were transcribed with
GoScript Reverse TranscripionSysterm (Promega; Madison, USA) according to the manufac-
turer’s protocol. Quantitative PCR was carried out using SYBR Premix Ex Taq (TaKaRa;
Dalian, China)withprimers for MIP(Forward: 5’- GGAAACCTAGCACTCAACACG-3’;
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Reverse: 5’- CTCGTCGTATGTGGCAAAGAT-3’) andβ-actin (Forward: 5’-
CATGTACGTTGCTATCCAGGC-3’; Reverse: 5’-CTCCTTAATGTCACGCACGAT-3’). Re-
actions were run in the Rotor-Gene 6000 real-time rotary analyzer (Corbett Life Science) at
95°C for 6 min and then 40 cycles of 95°C for 10 s, 60°C for 15 s and 72°C for 20 s. All samples
were analyzed in four replicates and normalized to median β-actin expression. The quantitative
real-time RT-PCR experiments were repeated three times.

7 Proteinexpression
HEK 293T cells were harvested 24 h after transfection and analyzed by Western blotting for
the expression of FLAG-WT-AQP0 and FLAG-Y219�-AQP0. HEK 293T cells were lysed in
RIPA lysisbuffer and total cell extracts were separated by 15% SDS-PAGE gel electrophoresis,
transferred to PVDF membranes and then incubated with mouse M2 monoclonal anti-Flag
and anti-β-actin IgG (Sigma-Aldrich, Saint Louis, USA) at 1:1000 dilution in TBST buffer (10
mMTris, pH 7.5, 150 mMNaCl and 0.5% Tween-20) containing 5% nonfat dried milk at 4°-
Covernight, followed by HRP-conjugated goat anti-mouse IgG(1:3000; Pierce, Rockford,
USA). Membranes were treated with enhanced chemiluminescence (ECL) reagents (Super Sig-
nal West Femto maximum sensitivity substrate, Thermo Fisher Scientific, Rockford, USA), fol-
lowed by exposure to X-ray films. All samples were normalized relative to β-actin
protein expression.

8 Subcellular localization
Wild-type and mutant AQP0 with FLAG tag were transfected separately into HEK 293T cells.
For co-localization studies, FLAG-WT-AQP0 and Myc-Y219�-AQP0 constructs were co-
transfected. Immunofluorescence studies were performed as described by Varadaraj et al [20].
Briefly, 24 h after transfection, cells cultured on glass coverslips were fixed in buffer containing
4% paraformaldehyde, and then counterstained with the nucleus-staining dye, DAPI. HEK
293T cells were subjected to immunofluorescence staining using c-Myc (9E 10) mouse mono-
clonal IgG (Santa Cruz Biotechnology, Shanghai, China) and rabbit anti-FLAG IgG(MEDICAL
& BIOLOGICAL LABORATORIES CO.,LTD., Beijing, China), followed by Dylight 594 goat
anti-mouse IgG and Dylight 488 goat anti-rabbitIgG(Earthox, San Francisco, CA,USA). All
samples were analyzed by Olympus IX81 confocal fluorescence microscopy. Images were digi-
tized and merged using FV1000 Viewer (Ver.3.0a) software (Olympus). Cells expressing the
pCMV-3Tag-6or pCMV-3Tag-7 expression plasmid were used as negative controls. The assay
was repeated three times.

Results

1 Clinical evaluation
We identified a five-generation Chinese family with a clear diagnosis of posterior polar ADCC
(Fig. 1A). The proband (V: 1) was a 3-month-old boy with a complaint of opacity in both
lenses shortly after birth. He presented with bilateral posterior polar cataracts showing cotton-
like opacities in the posterior subcapsular cortex (Fig. 1B). No other ocular or systemic abnor-
malities, or symptoms, were detected. The child underwent surgery shortly afterwards.

Several members of the child’s family showed similar congenital cataracts. Autosomal domi-
nant inheritance was supported by the presence of affected individuals in each generation. The
best corrected visual acuity of the affected patients ranged from 0.1 to 0.4, without complaint
of decreased visual acuity.
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2 Mutation analysis
By directly sequencing candidate genes, previously identified to cause nonsyndromic posterior
polar ADCC, we identified a heterozygous nucleotide change, C> G, at position 657 (c.657C> G)
of theMIP gene (Fig. 2A). Aquaporin0 (AQP0), also known as the lens’s major intrinsic protein, is
encoded by theMIP gene (Fig. 2B). The nucleotide change altered a highly conserved tyrosine
(TAC) to a stop codon (TAG) at the 219th amino acid position (p.Y219�) of AQP0.

RFLP analysis demonstrated that the c.657C> G substitution abolished an RsaI restriction
site confirming the mutation, and that the nucleotide substitution co-segregated with the

Fig 2. A novel nonsensemutation (c.657C>G; p.Y219*) inMIP/AQP0 in a Chinese family with posterior polar ADCC. A: DNA sequences ofMIP in
unaffected and affected individuals. The upper chromatogram of the DNA sequence from an unaffected individual (III: 3) shows only the wild-type AQP0
allele, which encodes tyrosine (TAC) at codon 219. The lower sequence chromatogram from the affected proband (V: 1) shows both C and G (S) at position
657 (arrow); thus, the mutant allele contained a C to G transition, which altered the Tyr to a stop codon (TAG).B: A schematic diagram showing the
presumedmembrane topology of aquaporin0 (AQP0). The depicted mutated portion (gray circles) illustrates the premature truncation of the protein.
Amino acid residue 219 is located within the 6th transmembrane domain (blue arrow). C: RFLP analysis shows the C>G transversion, which co-
segregated with disease in a family. The PCR product was 187bp in length and contained two RsaI sites (GTAC). The unaffected allele yielded three
fragments (12bp, 45bp, and 130bp) after RsaI digestion, whereas the affected allele yielded four (12bp, 45bp, 130bp, and 175bp). Only the affected allele
displayed the 175bp band (arrow). M indicates the DNA ladder.

doi:10.1371/journal.pone.0119296.g002
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disease phenotype (Fig. 2C). The c.657C> G substitution was present in all affected individu-
als who underwent DNA analysis (Fig. 2C), but was not observed in unaffected family mem-
bers or in 200 unrelated controls (data not shown).

3 Expression levels of FLAG-WT-AQP0 and FLAG-Y219*-AQP0 in
cultured cells
There was no significant difference between wild-type and the mutant in mRNA level by quan-
titative real-time RT-PCR (Fig. 3).

The MIP gene encodes the major intrinsic protein, also known as aquaporin0 (AQP0).
AQP0 is inserted into the plasma membrane and acts as a water channel. Wild-type
WT-AQP0 or mutant Y219�-AQP0 proteins with FLAG tags were expressed in HEK 293T
cells. Protein expression levels were assessed by immunoblot analysis of total cell extracts using
anti-FLAG. In cells transfected with FLAG-WT-AQP0, a 30 kDa band was detected, which cor-
responded to the size of the full length AQP0 plus the Flag protein (Fig. 4). A band was also de-
tected in cells transfected with FLAG-Y219�-AQP0, but was less abundant and demonstrated

Fig 3. Quantitative analysis ofMIP gene expression in HEK 293T cells.Cells transfected with wild-type (WT) or mutated (Y219*) AQP0 expression
constructs show a similar relativeMIPmRNA expression level. All samples were analyzed in four replicates and normalized to median β-actin expression.

doi:10.1371/journal.pone.0119296.g003
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slightly faster electrophoretic mobility compared to the wild-type protein, indicating a less ex-
pressed truncated protein (Fig. 4). Expression levels of the β-actin loading control in both cell
extracts were comparable. These results indicate that in transfected cells, the Y219� mutation
reduced protein levels of the AQP0, which appeared to have lower MW.

4 Subcellular localization of WT- AQP0 and Y219*-AQP0
The subcellular localization of wild-type FLAG-WT-AQP0 or mutated FLAG-Y219�-AQP0 in
transfected HEK 293T cells was determined by confocal fluorescence microscopy (Fig. 5A). As
expected, wild-type AQP0 was predominantly localized in the plasma membrane, while the
mutated AQP0 was localized abundantly in the cytoplasm of HEK 293T cells. Green fluores-
cence was not detected in HEK 293T cells transfected with empty vector pCMV-3Tag-6 (data
not shown). These images suggest that the truncated protein (mutated AQP0), with a deletion
of its C-terminus, impaired the trafficking of the expressed mutant protein to the
plasma membrane.

Moreover, when FLAG-WT-AQP0 andMyc-MU-AQP0were co-expressed, both proteins
showed high flurescencein the cytoplasm (Fig. 5B). The merged image of FLAG-WT-AQP0
and Myc-MU-AQP0 taken from the same cell showed co-localization of the wild-type and

Fig 4. Protein expression levels of WT- and Y219*-AQP0 transfected into HEK 293T cells.Western blots were performed with the anti-FLAG as
indicated.β-actin was used as the loading control. Cells with the mutated (Y219*) AQP0 construct showed an 87% reduction in AQP0 protein level compared
to cells with wild-type AQP0. ***P<0.01

doi:10.1371/journal.pone.0119296.g004
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mutant proteins. Therefore, not only the mutant but the wild-type failed to properly traffic to
the plasma membrane.

Discussion
In this study, we identified a novel nonsense mutation (c.657C> G; p.Y219�) inMIP/AQP0 in
a Chinese family with posterior polar ADCC. Our study supports the hypothesis that this mu-
tation causes the posterior polar ADCC phenotype in this family.

AQP0 is a member of the aquaporin family of proteins that function as water channels and
adhesion molecules within eye lens cells. In 2000, Berryet et al [21] identified the first mutation
affecting the AQP0/MIP gene. To date, 14 mutations in AQP0/MIP have been identified, in-
cluding: nine missense mutations [1, 21–29]; two splicing mutations [30, 31]; and one small de-
letion [32]. These mutations mainly caused nuclear, lamellar, sutural and posterior polar
cataract. AQP0 is the most abundant membrane protein in the posterior pole and nuclear

Fig 5. Subcellular localization of WT-AQP0 and Y219*-AQP0in HEK 293T cells, 24 h after transient transfection. Bar 5μm. A: Localization of singly
transfected FLAG-tagged wild-type (WT) andmutated (219*) AQP0 proteins. Photomicrographs show the distribution of immunoreactive FLAG-tagged
AQP0 (green) and DAPI-stained nuclei (blue)B: Localization of co-transfected FLAG-WT-AQP0 and Myc-219*-AQP0 proteins. Photomicrographs show
the distribution of immunoreactiveMyc-tagged 219*-AQP0 (red), FLAG-taggedWT-AQP0 (green) and DAPI-stained nuclei (blue)

doi:10.1371/journal.pone.0119296.g005
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fibers of the lens. This could well explain why the opacity caused by mutations inMIP is mainly
present in the nucleus and posterior of the lens.

In the present study, we examined the localization, dominant negative effect of the mutant
protein produced by c. 657C> G, p.Y219� mutation in theMIP gene. Our results suggest that
the c. 657C> G, p.Y219� mutation has several consequences that may contribute to the patho-
genesis of ADCC in the family studied.

When FLAG-WT-AQP0 and FLAG-Y219�-AQP0 expression constructs were singly trans-
fected into HEK 293T cells, we observed that mRNA expression showed no significant differ-
ence between the wild-type and the mutant, while Y219�-AQP0 protein expression was
significantly lower than that of wild-type AQP0,similar to that found for the G165D mutation
[25]. On the other hand, the immunofluorescence result of truncated mutant protein indicated
that there really were cells that showed considerable expression as shown in Fig. 5A. These re-
sults implied that the truncated protein (mutated AQP0) was made and then rapidly degraded.

However, the phenotype cannot be only attributed to the decrease in the expression level of
the protein. When FLAG-WT-AQP0 andMyc-Y219�-AQP0 expression constructs were cotrans-
fected into HEK 293T cells, not only the mutant but the wild-type AQP0 were trapped in cyto-
plasm and failed to reach its target-cell membranes—to perform the function. Phosphorylation of
AQP0 at serine235 and 245, serving as a sorting signal [33, 34], was lost in the truncated mutant
protein, which explains our observation that the mutant protein was retained in the cytoplasm.
Altogether, trafficking problems had also previously been observed for G165D and G213Vfs�46
mutated AQP0, which were both retained in the endoplasmic reticulum (ER) [25, 32]. Aquapor-
ins are synthesized as monomers, folded and assembled as a pack of AQP0 tetramers in the ER
before transported and inserted into the plasma membrane [35, 36]. Kumar et al [20] suggested
that the retention of the aggregation of conformationally unstable proteins in the ER may trigger
ER stress. Our data indicated that bothWT-AQP0 andY219�-AQP0 were trapped in the cyto-
plasm and also the level of Y219�-AQP0 protein was significantly decreased. These observations
might be supportive evidence for the notion above suggested by Kumar et al [20].

AQP0 is a major permeability pathway for water in the lens [37]. As the lens is an avascular
tissue, it relies heavily on a unique transport system to maintain its high protein concentration
and low water content to keep it transparent and homeostatic [38]. We therefore postulated
that the trafficking problem caused by Y219� mutation would severely decrease the number of
available water channels in the plasma membrane and subsequently affect its water permeabili-
ty. This may prevent the lens from maintaining the appropriate water content for homeostasis
and decrease the transparency of hydrophobic lens fiber cells.

Besides of acting as water channel, AQP0 plays a major role as an adhesion molecule in the
stacking of lens fiber cells. The lack of this function causes loss of stacking order and thus a tur-
bidity of the lens, which is cataract [39].

In summary, we have described a novel nonsense mutation inMIP causing autosomal dom-
inant congenital cataracts in a Chinese family. We showed that a Y219� mutation in AQP0 re-
sulted in the loss of the entire intracellular C-terminus of AQP0 and the formation of a
premature truncated protein. Both the mutant and wild-type protein were trapped in the cyto-
plasm. Consequently, both wild-type and mutant protein lost their function as a water channel
on the cell membrane, and may result in a cataract phenotype. Our data also expands the spec-
trum of knownMIPmutations.
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