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Super Resolution Network Analysis 
Defines the Molecular Architecture 
of Caveolae and Caveolin-1 
Scaffolds
Ismail M. Khater1, Fanrui Meng2, Timothy H. Wong2, Ivan Robert Nabi  2 &  
Ghassan Hamarneh1

Quantitative approaches to analyze the large data sets generated by single molecule localization 
super-resolution microscopy (SMLM) are limited. We developed a computational pipeline and applied 
it to analyzing 3D point clouds of SMLM localizations (event lists) of the caveolar coat protein, 
caveolin-1 (Cav1), in prostate cancer cells differentially expressing CAVIN1 (also known as PTRF), 
that is also required for caveolae formation. High degree (strongly-interacting) points were removed 
by an iterative blink merging algorithm and Cav1 network properties were compared with randomly 
generated networks to retain a sub-network of geometric structures (or blobs). Machine-learning based 
classification extracted 28 quantitative features describing the size, shape, topology and network 
characteristics of ∼80,000 blobs. Unsupervised clustering identified small S1A scaffolds corresponding 
to SDS-resistant Cav1 oligomers, as yet undescribed larger hemi-spherical S2 scaffolds and, only in 
CAVIN1-expressing cells, spherical, hollow caveolae. Multi-threshold modularity analysis suggests that 
S1A scaffolds interact to form larger scaffolds and that S1A dimers group together, in the presence of 
CAVIN1, to form the caveolae coat.

Understanding the structure of macromolecular complexes is critical to understand the function of subcellular 
structures and organelles. X ray crystallography and nuclear magnetic resonance spectroscopy report on pro-
tein structure at the atomic level; recent technical advances in cryo-electron microscopy have enabled structural 
visualization of macromolecular biological complexes at near atomic resolution1. While fluorescence micros-
copy has been extensively used to study subcellular structures and organelles, its application to structural anal-
ysis of macromolecular complexes has been restricted by the diffraction limit of visible light (∼200–250 nm). 
Super-resolution microscopy has broken the diffraction barrier and, of the various super-resolution approaches, 
the best resolution is obtained using single molecule localization microscopy (SMLM). Based on the repeated 
activation (blinking) of small numbers of discrete fluorophores (using, for instance, PALM, dSTORM or GSDIM), 
whose precise localization is determined using a Gaussian fit of the point-spread function (PSF), SMLM pro-
vides ∼20 nm X-Y (lateral) resolution and, with the addition of an astigmatic cylindrical lens into the light path, 
∼40–50 nm Z (axial) resolution2,3.

However, development of analytical tools to interpret the point distributions generated by SMLM is in its 
infancy4. Surface reconstruction and density plots of 3D super-resolution data assume idealistic, noise-free setting 
and lack quantification5. Ripley’s K, L, and H-functions and univariate/bivariate Getis and Franklin local point 
pattern analysis have been used to analyze super-resolution data for different applications6–12. While useful for 
global cluster analysis, these second-order statistics have limited ability to deal with localized shape and size prop-
erties of homogenous clusters. Moreover, calculating the Ripley’s function is computationally intensive making it 
impractical for handling millions of points13. It is also known that Ripley’s function underestimates the number of 
neighbors for points near the boundary of the 2D or 3D study area (known as the edge effect)14. Several correction 
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methods were proposed to solve the edge effect problem but at the expense of even further increase in computa-
tional complexity making it unfeasible to scale to SMLM big-data.

Density-based methods (e.g. DBSCAN, OPTICS) and Bayesian approach combined with Ripley’s func-
tions15,16 retain the inability to deal with varying cluster densities and sensitivity to prior settings and noisy 
events. DBSCAN has several parameters that must be carefully set and its runtime scales quadratically with the 
number of points (e.g. for SMLM data, DBSCAN can take several hours to run)17. Voronoi tessellation depends 
on Voronoi cell areas to segment clusters and has limited multiscale capability13,18. Griffié et al.19,20 proposed a 
parameter-free cluster analysis method that is based on Bayesian prior probabilities. Their method is sensitive to 
the prior settings and processing time to analyze one data set, 30 2D ROIs of size 3 × 3 μm2 each at low density, is 
∼19 hours, and thus does not scale to large SMLM datasets19. Other methods focused on molecular counting by 
studying photoactivatable fluorescent proteins (FPs) and their blinking behavior, which is based on the photoki-
netic model of the FPs21,22. Moreover, Krüger et al.22 used the molecular count per cluster and cluster shape, size, 
and overlap to select a set of clusters from SMLM data for quantitative analysis. Nieuwenhuizen et al.23 proposed a 
method that measures the average number of localizations per fluorophore from spatial image correlation during 
acquisition.

The multiple blinking of a single fluorophore can cause an overcounting artifact that might bias the quan-
tification of SMLM data and consequently lead to misinterpretations of the biological findings. Keller et al.24 
summarize the methods used to mitigate the overcounting artifacts using temporal and spatial grouping tech-
niques. The temporal methods require detailed information about the photokinetic rates and the dark time for 
the fluorophores used and not all the photoswitchable probes are photodetectable21. Annibale et al.25 uses photo-
physical information to combine events that are assumed to be originating from the same fluorophore. Sengupta 
et al.26 proposed a method that combines pair-correlation analysis with PALM to distinguish between spatial 
localizations from a single protein (i.e. nano-clusters) and clusters of proteins. Recently, a method adopted by two 
groups27,28 is based on determining the ratio of clustered area per image and the density of localizations per clus-
tered area at various densities, either by changing the labeling density27 or using temporal accumulation analysis 
of the acquired localizations (blinks)28.

We modeled the SMLM data as a 3D point cloud29–31, a well-established representation used in 3D visual com-
puting. Virtual connections between points transform the point cloud into a network modeled computationally as 
a graph with nodes (or vertices); edges are connections between nodes (points) that weight the distance between 
nodes. Such network representations have been widely and successfully adopted for analysis of brain, social and 
computer networks32–36. Using machine learning approaches, features that distinguish networks are identified and 
used to understand the underlying organization or architecture of the network. Here we apply point cloud net-
work analysis to SMLM data sets to define the molecular architecture of plasma membrane-associated caveolae 
and caveolin-1 (Cav1) scaffolds.

Formation of caveolae, 50–100 nm plasma membrane invaginations, requires both the coat protein Cav1 and 
the adaptor protein polymerase I and transcript release factor (PTRF or CAVIN1)37. Cav1 is also expressed in 
functional non-caveolar domains, or Cav1 scaffolds, that cannot be distinguished from caveolae by fluorescence 
microscopy, as both are smaller than the diffraction limit38. Metastatic PC3 prostate cancer cells express Cav1 
but no CAVIN1 and no caveolae; stable transfection of CAVIN1 (generating PC3-PTRF cells) induces caveo-
lae37. Application of machine learning to point cloud SMLM network analysis of Cav1 distribution in PC3 and 
PC3-PTRF prostate cancer cells has now defined Cav1 localization signatures for scaffolds and caveolae.

Results
Network Analysis of 3D Cav1 Point Clouds. Indirect immunofluorescence labeling of PC3 and PC3-
PTRF cells with anti-Cav1 primary and Alexa647 conjugated secondary antibodies is shown by TIRF and GSD-
TIRF SMLM (Fig. 1A). Quantification of SMLM images identifies larger spots in caveolae-containing PC3-PTRF 
cells (Fig. 1A). We obtained the 3D locations (event list) of individual Cav1 blinks from three training experi-
ments (Fig. 1B) based on Gaussian analysis of the PSF using Leica GSD software. To study clusters or networks 
of representative Cav1 localizations, and not blinks, we assigned Cav1 localizations from the acquired blinks. We 
then applied complex network analysis to assign edges between predicted Cav1 localizations (nodes) and gener-
ate measures that define relationships between nodes. For instance, “degree” is a measure of the number of edges 
incident (connected) to a given node within a certain distance threshold.

The analysis pipeline (Fig. 1C), referred to as 3D SMLM Network Analysis, consists of six computational 
modules: 1) Merging algorithm: Iterative merging of all blinks within the 20 nm resolution limit of SMLM to gen-
erate nodes corresponding to predicted Cav1 localizations; 2) Space partitioning: Dividing the cell into regions of 
interests (ROIs) to facilitate whole network measure analysis via parallel high performance computing (HPC); 3) 
Multi-threshold network analysis: Constructing weighted and unweighted networks at various proximity thresh-
olds to identify features and thresholds that differentiate PC3 and PC3-PTRF ROIs; 4) Background elimina-
tion: Using discriminative network measures to filter out noisy blinks relative to a random point distribution; 5) 
Cluster segmentation: Using the mean shift algorithm39,40 to identify distinct clusters (or blobs) and extracting 
features for each cluster; and 6) Cluster characterization: Defining distinct clusters via unsupervised learning 
methods in PC3 and PC3-PTRF cells.

Multiple, temporally distinct blinks from the same fluorophore or same antibody-labeled Cav1 molecule can 
give rise to blinks with distinct localizations, thereby skewing the data and subsequent network analysis. To gen-
erate a robust method to remove high degree blinks and reconstruct a network of representative Cav1 localiza-
tions, we applied an algorithm that performs iterative merging of blinks within 20 nm, the reported resolution 
limit of the Leica GSD microscope. In short, for every blink, we find neighboring blinks within a 20 nm sphere 
centered around that blink. Starting with the blink with the largest number of neighbors, we replace that blink 
and all its neighbors by a new blink positioned at their average location. Then we continue to process the blink 
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with the second largest number of neighbors and so on. We repeat the procedure until no pair of blinks are within 
20 nm from each other. Note that we use k-d-tree search algorithm to speed up the process of finding the nearest 
neighbors. Running our algorithm takes <1 min to process an input point cloud of more than 1.5 million blinks. 
Application of the merging algorithm to PC3 and PC3-PTRF cells selectively reduces high degree (>50) nodes 
(Fig. 2A). Reduction in the total number of blinks by the merge algorithm varied from 9 to 26% (Fig. 2B).

Statistical Analysis of Features at the ROI Level. To identify the proximity threshold of nodes in 3D 
space that best discriminates between PC3 and PC3-PTRF cells, we constructed weighted and unweighted undi-
rected networks at thresholds from 20 nm to 250 nm. To enable high speed processing of the large data sets, up to 1 
million blinks per image (Fig. 2B), we divided each image into 36 ROIs (3 × 3 × 1 μm3) and extracted 32 weighted 
and unweighted network features at 24 thresholds (i.e. 768 features/ROI; See Supp. Table S1 for a complete list of 
network features). We chose an ROI size of (3 × 3 × 1 μm3) to be significantly larger than the size of the biological 
structure we are studying, caveolae, of about 80–100 nm diameter and yet had manageable memory space.

We applied the nonparametric Mann-Whitney statistical test to find the features and corresponding thresh-
olds at which they discriminate with statistical significance between PC3 and PC3-PTRF cells. Since we have 
a relatively large number of feature and threshold pairs, the chance of getting a significant p-value is high. We 
used Bonferroni multiple comparison correction to avoid getting significant features by chance. P value matri-
ces (32 features ×24 thresholds) were combined by finding the L2-norm of p1, p2, and p3; feature-threshold 
pairs that survived the Bonferroni multiple comparison correction are marked with red X’s (Fig. 3A). We used 
L2-norm to combine the significance of the network measures over three different biological experiments. Any 

Figure 1. Computational network analysis for SMLM. (A) TIRF wide-field imaging of Cav1 and CAVIN1 and 
SMLM GSD imaging of Cav1 in PC3 and PC3-PTRF cells. Spot diameters from the two cell types (Experiment 
1, see B) were binned (Bar: SEM; ***p < 0.001). (B) Details of 4 SMLM experiments imaged using Leica GSD 
microscope. (C) Methodological pipeline to discover signatures of different Cav1 domains: 3D SMLM Network 
Analysis. A GSD image event list is converted to a 3D point cloud. Blinks within 20 nm are merged and the 3D 
point cloud divided into ROIs for multi-threshold network analysis. Network measures filter the 3D point cloud 
to obtain clusters (blobs). Features are extracted for each blob and blob identification achieved via unsupervised 
learning methods.
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non-significant (large) p-value will dominate and make the resultant L2-norm non-significant. By doing so, we 
are being extra-conservative in the selection of features by ensuring that only if a feature is significant over the 
different experiments, will it be used with confidence in our analysis. Significant features grouped into two cat-
egories: degree features (wAvgNDeg, uwAvgNDeg, uwAvgDeg, wAvgDeg) and clustering coefficient features 
(wAvgCC and wMedCC). Degree features are more significant from 40–120 nm (average 80 nm) and clustering 
coefficient features from 120–250 nm (average 180 nm).

Random decision forest41 machine learning classification, using a leave-one-cell-out cross-validation (ROIs 
from each cell are excluded from training and used only in testing) strategy, tested the feature and threshold rank-
ing. We report the classification accuracy of the detected class of (i) each test ROI and (ii) the cell, chosen to be the 
detected class of the majority of the ROIs (Fig. 3B). For both cases, classification accuracy is best for thresholds 
above 50 nm and increases for degree features between 70 and 130 nm (blue curve) and for clustering coefficient 
features between 170 and 250 nm (green curve) (Fig. 3B). Two peaks in the degree features histogram suggest the 
presence of low degree or noisy blinks and high degree or clustered nodes (Fig. S1).

Significant differences between PC3 cells, lacking caveolae, and PC3-PTRF cells, that have caveolae, were 
detected for degree features between 40–120 nm (average 80 nm) and for clustering coefficient features between 
120–250 nm (average 180 nm). We therefore chose 80 and 180 nm thresholds for further analysis. To filter out noisy 
blinks and return clusters in the PC3 and PC3-PTRF data, we used degree features at threshold 80 nm (the mean of 
the significant thresholds) and compared network measures with those of a random graph (Fig. S2). The node is 
retained (i.e. not filtered out) if its degree value (δi) is greater than the average degree value of a random graph (δrand) 
multiplied by a scalar α, i.e. if δ α δ> × mean ( )i rand . The parameter α is user-controlled to determine the extent of 
removal of noisy blinks (Fig. 3C,D). We compared two degree (uwAvgDeg; wAvgNDeg) and one clustering coeffi-
cient (wAvgCC) measures at thresholds 80 and 180 nm (Figs 3D and S3) with network measures of a random graph. 
We tuned α so that δi does not exceed the histogram tail of the random graph degree features (dashed red line) and 
obtained the best filtration with α = 4 (Fig. S3). Degree feature filtering worked better at threshold 80 nm, with 
wAvgNDeg providing stricter filtering that removes tiny clusters. Filtering eliminates background labeling but also 
monomeric Cav1 nodes, such that our analysis selectively includes Cav1 clusters or blobs.

Figure 2. Iterative blink merging to correct multiple blinking of single fluorophores. (A) We utilized an 
iterative merging approach of blinks within T = 20 nm as a preprocessing step to correct for multiple blinking 
of a single fluorophore, blinking from multiple fluorophores on the same antibody, and multiple secondary 
antibody labeling of the same Cav1 molecule and associated drift. Network degree measure images and 
histograms of PC3 and PC3-PTRF cells before and after applying the merge module at 20 nm. (B) The number 
of blinks and the percent reduction of total blinks for each experiment following iterative merging at 20 nm. The 
error bars represent the standard deviation.
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Blob Segmentation, Grouping and Matching. Having removed high degree blinks and filtered-out 
noisy blinks, we then employed the mean-shift algorithm39,40 to segment and separate each blob. Twenty-eight 
measures at 80 nm threshold describing size, shape (spherical, planar, linear) and topology (hollowness, modu-
larity) were extracted for each individual blob (Supp. Table S2). Some of the features were designed particularly 
for this application (e.g. Hollowness), others are standard for describing network (e.g. network features), while 
a third type is a set of features that are common in other fields and that we leveraged in our application. Our 
features describe every 3D point cloud blob by a low-dimensional descriptor that can be used to discriminate the 
blobs using the machine learning approaches. In Supp. Table S2, we categorize the used measures into shape, hol-
lowness and network features and cite published works related to the features so the reader can find the detailed 
descriptions, e.g. equations, for the used features. Notice that we have two groups of features. Features at the ROI 
level are summarized in Supp. Table S1 and at the blob level summarized in Supp. Table S2. The first group is 
comprised of 32 network measures extracted for every ROI at various proximity thresholds (24 thresholds). These 
features are used to filter out the noisy blinks and retain the biological clusters/blobs. The second group of features 
is used as a blob descriptor. We extracted 28 features of every blob to be used for the blob identification step.

Figure 3. Multi-threshold analysis of PC3 and PC3-PTRF data at the ROI level. (A) Multi-threshold statistical 
analysis shows network measures and thresholds that discriminate PC3 and PC3-PTRF 3D point clouds. For 
each experiment, the p-values are calculated by the two-sided non-parametric Mann-Whitney statistical test to 
evaluate the null hypothesis that the network measures of the two populations (PC3 and PC3-PTRF) followed 
the same distribution. p-values (p1, p2, and p3) from Experiments 1–3 (see Fig. 1B) are aggregated via the L2-
norm. We show the results with and without Bonferroni multiple comparisons correction. (B) Random decision 
forest accuracy of classifying the two populations at ROI (top) and cell level (bottom) using the whole feature 
set (red), degree features only (blue), and clustering coefficient features only (green). The error bars represent 
the standard deviation. (C) Filtering-out noisy blinks using unweighted degree at 80 nm via comparison with 
random graphs. (D) Filtering-out noisy blinks at 80 nm for unweighted degree, weighted neighboring degree 
(significant) and weighted clustering coefficient (non-significant). Vertical dashed red lines indicate level of 
noise removal. See Figs S2, S3.
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The X-means42 (unsupervised clustering algorithm) returned the optimal number of groups in each popula-
tion: 2 groups (P1, P2) for PC3 and 4 groups (PP1, PP2, PP3, and PP4) for PC3-PTRF. Unsupervised clustering 
methods gathered similar blobs in the same group and dissimilar blobs in different groups (Fig. 4A). To match 
the groups, we calculated the Euclidean distances between every pair of group centers, a vector of 28 features, in 
a distance matrix (Fig. 4B). By setting the similarity threshold β to 30, we found the most similar groups across 
the two populations. The PC3 P1 group is most similar to PC3-PTRF PP3/PP4 (S1 scaffolds) and P2 most similar 
to PP1 (S2 scaffolds). The PC3-PTRF group most dissimilar to PC3 P1 and P2 groups is PP2, suggesting that it 
corresponds to caveolae. Identical group matching was obtained if the estimated number of molecules feature was 
not included and only the remaining 27 features were used (Fig. 4B). Representative images of the blob groups 
and their abundance in PC3-PTRF and PC3 cells are shown in Fig. 4C.

Blob Signatures. PP2 blobs or caveolae are larger (∼250–300 nm) than S1 (P1/PP3/PP4) and S2 (PP1/P2) 
scaffolds (Fig. 5A). S2 scaffolds are larger than S1 scaffolds and their increased height suggests that S2 scaffolds 
present a non-planar morphology (Fig. 5A). PP2 caveolae are the hollowest structures with an average distance to 
centroid of ∼95 nm and no nodes <60 nm from centroid (Fig. 5B,F). For S1 scaffolds, the minimum distance to 
centroid was 20 nm, indicating that these structures are filled in. S2 scaffolds were also hollow, showing an average 
distance to centroid of 70 nm and no nodes <50 nm from centroid (Fig. 5B,F). PP2 caveolae contain 109 ± 52, 
S1B (PP3) scaffolds 10 ± 6, S1A (PP4) scaffolds 13 ± 7 and S2 (PP1) scaffolds 38 ± 14 nodes, corresponding to 
predicted number of Cav1 molecules (Fig. 5D). S1 scaffolds therefore correspond to SDS-resistant oligomerized 
Cav1 units of 15 Cav1 molecules43 and PP2 blobs approach the predicted 144 ± 39 Cav1’s per caveolae44. S2 scaf-
folds are an as yet unidentified non-planar Cav1 scaffold.

PP2 caveolae show the highest degree, lowest clustering coefficient and shortest characteristic path length and 
have higher modularity (Fig. 5D). We employed the Newman method45 to find the optimal number of modules 
and extract modularity features for each blob at thresholds from 20 to 250 nm. Most of the blobs become one con-
nected component (i.e. all the nodes are connected) at thresholds >50 nm and show a stable modular structure 
between thresholds of 60–140 nm, with PP2 caveolae presenting 5–6 modules per blob (Fig. 5E). Representative 
measures relationship analysis plots for degree vs character path and for hollowness vs sphericity show clear clus-
ters for the four blob groups (Fig. 5F).

For selected S1, S2 scaffolds and caveolae, predicted 3D molecular distribution, network connections at the 
lowest threshold at which connected components equals one, and modular structure are shown in Fig. 6 (See 
animated rotating structures in Supp. Videos S1–4). S1A (P1/PP4) and S1B (PP3) scaffolds are composed of 
10–15 molecules, equivalent to SDS-resistant Cav1 oligomers43 and differ primarily in that S1B scaffolds are more 
elongated and S1A more spherical. The presence of pentagonal sub-modules supports EM data of polygonal 
repeating units in the caveolar cage46. PP1/P2 S2 scaffolds present a hemi-spherical shape and hollow core from 
XYZ cross-sections (Fig. 6B). PP2 caveolar blobs form highly interconnected hollow, spherical networks that 
contain, for the representative blob shown here, 6 modules (Fig. 6C).

To assess whether the approach used could identify single molecules, we coated cover slips with 
Alexa647-conjugated anti-rabbit secondary antibodies. The image obtained using the same Leica GSD micro-
scope that we used to image the PC3 and PC3-PTRF data, the resultant point cloud and filtered point cloud, 
removing background, are shown in Fig. 7A. The blobs are then segmented to get individual blobs and dimen-
sions of every segmented blob are then extracted. Area vs #blinks analysis of blobs in the filtered point cloud 
highlights the presence of small clusters of area less than 100 nm2 that contain at most 6 blinks (Fig. 7B). These 
clusters were removed from the analysis. Changing #blinks and area parameters 6 and 100 nm2 by ± 20% (tested 
{4, 5, 6, 7, 8} blinks and {80, 90, 100, 110, 120 nm2} areas) did not affect the result; changes between the various 
conditions analyzed were <5% with no statistically significant difference (i.e. p ≫ 0.05). To differentiate the single 
antibody blobs from the blobs derived from antibody clusters, we utilized K-means clustering (K = 2) based on 
the extracted blobs’ features (Fig. 7C). We then determined the average standard deviation for the spread of blinks 
for single antibody blobs (X = 19.35, Y = 21.40, Z = 37.48 nm) and antibody cluster blobs (X = 27.24, Y = 30.92, 
Z = 70.08 nm).

SuReSim software simulates imaging data of ground-truth structures with any 3D geometry using specific 
antibody labelling and acquisition parameters47. We used the labeling and acquisition parameters from single 
antibody SMLM labeling to simulate SMLM imaging of a rod of 10 nm length, corresponding to a single antibody, 
using SuReSim (Fig. 7D). A representative blob including 2D and 3D views are shown. Blob dimensions and 
#blinks per blob for both the real data analysis of single antibody labeling and the SuReSim simulation of a 10 nm 
rod closely match and suggest that clusters obtained from single antibody labelling generates a 20 × 20 × 40 nm3 
point cloud.

We then used SuReSim software to simulate SMLM imaging data for a caveolae-like structure. Using the same 
labeling and acquisition parameters as for the 10 nm rod SuReSim simulation (Fig. 7D), we generated an SMLM 
point cloud for a 60 nm sphere, mimicking a caveola (Fig. 8A). We applied our analysis pipeline to the simulated 
data and obtained results (number of predicted molecules, shape, and size features) very similar to what we 
obtained for real data of caveolae structures (Fig. 8B). Future analyses combining improved labeling approaches 
(such as smaller Fab antibody fragments), drift-controlled acquisition and cluster analysis should lead to substan-
tially improved resolution and better definition of molecular architecture.

Discussion
Application of computational network modelling and machine learning based 3D pattern analysis tools to SMLM 
data sets (3D SMLM Network Analysis) has identified plasma membrane-associated Cav1 scaffolds that combine 
to form caveolae and larger scaffolds. S1A scaffolds are equivalent to the 200–600 kD SDS-resistant, 8 S Cav1 
oligomers of 14-15 Cav1 molecules43,48–50. The presence of these structures in our analysis indicates that they can 
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be delivered to the cell surface without assembling into larger structures in the Golgi50. S1A scaffolds dimerize to 
form S1B scaffolds and groupings of 3-4 S1A scaffolds form larger hemi-spherical S2 scaffolds. Biochemical frac-
tionation using sucrose density gradients and mild lysis conditions reported, in addition to 8 S complexes, larger 

Figure 4. Unsupervised learning identifies different blobs. (A) The unsupervised learning framework to build 
the blob identification model based on datasets. Training phase: we used the cells from both populations of the 
first three experiments (Fig. 1B) to build the learning model using the unsupervised clustering. The cells are 
divided into ROIs. A multi-threshold network analysis for each ROI is employed to filter-out the noisy blinks 
and find the clustered nodes. The blobs are generated from the clustered nodes using the mean shift algorithm. 
A new set of features are extracted from each blob and fed into the unsupervised clustering (X-means) to learn 
the different groups. The groups from PC3 and PC3-PTRF populations are matched using the similarity analysis 
to identify the groups’ types. The matched groups are used to label the blobs on the cells. Testing phase: we used 
the built model to identify the blobs of the cells from experiment 4. The cell is passed via the space division to 
get the ROIs. The multi-threshold analysis is applied to filter-out the noisy blinks and return the clustered nodes. 
The blobs are generated using the mean shift algorithm. The same set of features is extracted for each blob. Each 
blob feature vector is tested against the centroid feature vector of the learned groups. The closest distance is the 
most similar group to this blob. The blobs are finally labeled based on the similarity of their feature vector with 
groups’ centroids. (B) After filtering, blob-level feature analysis and segmentation identifies 2 groups (P1, P2) in 
PC3 and 4 groups (PP1, PP2, PP3, PP4) in PC3-PTRF by unsupervised learning. One-to-one group matching 
(box) with distances among feature vector of groups centers used as the similarity measure (closer groups 
are more similar). (C) Each group of blobs (S1 or S2 scaffolds or caveolae) is extracted and shown as different 
channels. Graph shows percent distribution of blobs in PC3-PTRF and PC3 cells.
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70 S complexes, predicted to contain 160 Cav1 molecules and corresponding to Cav1 oligomers of assembled 
caveolae50. Both S1B and S2 scaffolds therefore represent intermediate Cav1 oligomers, that may be unstable upon 
detergent extraction. Regrouping of S1A scaffolds to form larger scaffolds and caveolae is associated with a more 

Figure 5. Digital bio-signatures of caveolae and scaffolds. Of 28 signatures, we present measures for each class 
of blob: (A) Size measures (volume, X-, Y-, Z-range); (B) Hollowness measure: (distance to centroid); (C) Shape 
measures (sphericity, fractional anisotropy, linearity); (D) Network measures (# predicted molecules, degree, 
character path, modularity). (E) Multi-threshold modularity analysis shows the number and average size of 
connected components and modules for PC3-PTRF blobs at different thresholds. (F) 2D relationship between 
features for different PC3-PTRF blobs are shown. The error bars represent the standard deviation. For (A–D), 
the differences for every pair of the groups are statistically significant (p < 0.0001).
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compact Cav1 organization (higher degree, reduced characteristic path) and increased curvature (sphericity). 
The presence of hemispherical S2 scaffolds in PC3 cells suggests that Cav1 oligomerization can induce membrane 
curvature independently of CAVIN1, as reported for Cav1 in bacteria46.

Consistently, 10 Cav1 densities and a decagonal outline has been reported for Cav1-induced caveolae in bac-
teria46. Further, EM tomography of caveolae labeled with MINISog, reports the presence of 12 regularly spaced 
Cav1 densities with a half-maximum width of 8–10 nm and spacing of 10 nm51. A recent model of caveolae based 
on biochemical and cryoEM analysis proposed that caveolae are polygons (dodecahedrons) of Cav1 disks, equiv-
alent to 8 S oligomers52. Our identification of 6-7 caveolae modules in the caveolar coat is consistent with this 
model and suggests that 8 S oligomers, or S1A scaffolds, regroup to form larger scaffolds that combine to form 
a caveolae (Fig. 6C). The striated caveolar coat observed by deep-etching EM and platinum coating53 has been 
suggested to reflect the presence of rod-like cavin oligomers51,54,55, that may form a net around the Cav1 disks52.

Using blinks to define molecular architecture assumes that a blink equals a molecule. However, the same 
fluorophore can blink twice in succeeding acquisition frames56 and the same molecule can be labeled by different 

Figure 6. Visualization of representative blobs from PC3/PC3-PTRF cells. Blob’s molecules and networks 
(including number of connected components and modules) at various thresholds are shown for: (A) S1 
scaffolds (PP3/PP4 blobs); (B) S2 Scaffolds (PP1 blob); and (C) Caveolae (PP2 blob). Cross-sections, XYZ slices 
and surface reconstructions are shown for S2 scaffolds and caveolae. Slice thickness for S2 scaffolds is 20% of the 
whole range of the blob size in each dimension and for caveolae 10%. S2 scaffolds are hemi-spherical and consist 
of 3-4 modules. Caveolae are spherical and hollow and consist of 5-6 modules.
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fluorophores, either on the same secondary antibody or on different secondary antibodies binding to the same 
protein. To address these possibilities, we developed an iterative merging algorithm, in which all blinks within 
a specified distance (the merging threshold) are combined into one average position. The algorithm iteratively 
combines all blinks within the merging threshold, in this study set at 20 nm, and converges when there is no pair 
of blinks within the merging threshold. As such, the merging algorithm allows the interrogation of molecule 
number and organization within the structure.

As SMLM resolution approaches molecular distances between proteins, and particularly at high protein den-
sities, the blinking cycles of individual fluorophores overlap in time such that undersampling and undercounting 

Figure 7. Experimental single antibody blinking data matches simulated data obtained for a 10 nm rod using 
SuReSim software. (A) A super-resolution GSD image of a cover slip coated with Alexa647-conjugated anti-
rabbit secondary antibodies was imaged and the GSD image, unfiltered 3D point cloud and filtered point 
cloud, processed using filtering module 4 of the 3D SMLM Network Analysis pipeline (Fig. 1C) to retain blobs 
and remove noisy blinks, are shown. (B) Segmentation module 5 (Fig. 1C) was applied to the data to obtain 
the individual blobs and plots of #blinks per blob vs blob area are shown. Blobs with area ≤100 nm2 all had 
fewer than 6 blinks (red lines) and we removed all blobs with fewer than 6 blinks and with area ≤100 nm2. (C) 
Single and multiple antibody blobs were identified using K-means clustering (K = 2) based on the extracted 
blobs’ features. By identifying the single antibody blobs, we derive the blinking data from an isolated protein 
experimentally. (D) We used the derived blinking data from the real single antibody blobs to image a rod of 
10 nm length using SuReSim software47. The table shows the average standard deviation for the spread of the 
blinks from the blobs for the experimental data derived from a single antibody and for the simulated (SuReSim) 
imaging of a 10 nm rod.
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is a major concern21. Indeed, our approximation of 110 Cav1 molecules is less than the predicted 145 Cav1 pro-
teins per caveolae or 160 Cav1’s per 70 S oligomer50,57. We used a fixed merge threshold for this study that did not 
take into consideration the differential Z resolution of cylindrical lens-based SMLM. Indeed, analysis of single 

Figure 8. Network analysis of a simulated 60 nm sphere using SuReSim software. (A) A ground truth sphere 
that mimics caveolae-like structures with 60 nm diameter appears in red was used to obtain an SMLM event list 
using SureSim software using labeling and acquisition parameters experimentally derived from single antibody 
blinking data (Fig. 7). The yellow bars represent the epitopes and the white points the acquired blinks. In the 
SuReSim software simulation, we set the lateral precision (XY) to be 20 nm and the axial precision (Z) to be 
38 nm and the epitope density to be 0.012821 nm−2 with labeling efficiency of 100% to match the reported 145 
Cav1 molecules per caveolae57. 3D and 2D views of the imaged point clouds show increased Z spread, reflecting 
the poorer Z resolution relative to XY resolution. (B) Analysis of biological signatures of the simulated SMLM 
data of a 60 nm sphere relative to the real SMLM-imaged caveolae. We analyzed the simulated data using the 
same pipeline (Fig. 1C) used to analyze the real data. We calculated the network degree for the blinks before 
merging then preprocessed the data by merging the blinks at 20 nm and, then, filtered out the noisy blinks. The 
resultant point clouds are shown in 3D and 2D views. The dimensions of the point clouds are similar to the bio-
signatures of the caveolae blobs that we obtained for real data (Fig. 5A–D and Fig. 6C).
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Alexa647-conjugated antibodies coated on a cover slip generated point clouds with approximate XY standard 
deviations close to 20 nm and Z dimension close to 40 nm. Future studies should consider modulation of the 
merge threshold to adapt to labeling conditions, microscope acquisition parameters and the different Z resolution 
of standard SMLM systems.

The ∼250 nm average diameter of caveolae blobs is substantially larger than the size of caveolae; although min-
imum values (X-range: 89.4 nm; Y: 86.8 nm; and Z: 78.2 nm) of the 80,000 blobs analyzed approach the 60–80 nm 
caveolae diameter by EM58. Consistent with our findings, EM analysis of anti-caveolin labeling is cytoplasmic 
and at a distance from the membrane51. In addition, our analysis of simulated SMLM data from a 60 nm sphere, 
resembling a caveolae, generated point cloud distributions of similar sizes to those we observed experimentally 
for real caveolae (Fig. 8). Similarly, the data obtained by SuReSim simulation of a 10 nm rod closely matched that 
of experimentally derived point clouds for isolated Alexa-647 conjugated antibodies (Fig. 7D). Together, these 
analyses validate the obtained bio-signatures of the different structures using the parameters of the 3D SMLM 
Network Analysis pipeline.

Importantly, we are the first to use machine learning algorithms to quantify specific features of blobs and iden-
tify them automatically. We equipped 3D SMLM Network Analysis with a feature extraction module that can be 
used to extract features for individual clusters. The clusters features can be used for further analysis (e.g. retrieval, 
identification, grouping, molecular architecture analysis, etc. of the clusters) by machine learning. Network anal-
ysis, as described here, can therefore be used to reconstruct heterogeneous clusters of different shapes and sizes. 
Further development and refinement of this approach should allow the determination of the molecular architec-
ture of multiple sub-diffraction limit cellular structures. As indicated, 3D SMLM Network Analysis is a fast, 3D, 
scalable, and multi-scale method. Moreover, SMLM Network Analysis is enabled with single cluster visualization 
and can be integrated with different machine learning approaches to extract and automatically identify cluster 
features.

Network analysis has therefore provided us with invaluable insight into the structure of sub-diffraction limited 
Cav1 domains. This analysis has defined three classes of non-caveolar scaffolds, including a heretofore unde-
scribed hemispherical intermediate distinct from the biochemically defined 8 S and 70 S Cav1 complexes50 and 
enhanced our understanding of how Cav1 molecules organize to form a caveolae. Indeed, we argue that point 
cloud network analysis is particularly appropriate for the analysis of the blink distributions generated by SMLM 
allowing super-resolution fluorescence microscopy to define the molecular structure, stoichiometry and archi-
tecture of macromolecular complexes.

3D SMLM Network Analysis is, therefore, an integrated pipeline that consist of various computational mod-
ules for 3D SMLM quantification and analysis. Each module can be replaced by an equivalent module based on 
state-of the art methods and re-integrated into the pipeline. The current pipeline can be further improved and we 
are currently optimizing the implementation such that we can handle the whole cell as one big-ROI. Some other 
improvements that can be added to the current pipeline are the merging, denoising, and segmentation modules. 
The merging module may undercount/overcount. The current denoising module can remove signal (not noise). 
In addition, the segmentation module may over-segment or under-segment and may combine nearby structures 
into one. Finally, the detection of the different domains depends on the extracted network measures and features, 
which in turn depend on the different artifacts of the aforementioned modules. We do not believe that the current 
merge algorithm can distinguish between an active dye that blinks multiple times and multiple fluorophores on a 
single secondary antibody. Indeed, we consider that such blinks all contribute to the non-biological networks and 
our goal is not to distinguish these blinks but rather interpret them to determine the molecular localization that 
gave rise to these non-biological blinks.

Materials and Methods
GSD SMLM Imaging. PC3 and PC3-PTRF cells were cultured in RPMI-1640 medium (Thermo-Fisher 
Scientific Inc.) complemented with 10% fetal bovine serum (FBS, Thermo-Fisher Scientific Inc.) and 2 mM 
L-Glutamine (Thermo-Fisher Scientific Inc.). All cells were tested for mycoplasma using PCR kit (Catalogue# 
G238; Applied Biomaterial, Vancouver, BC, Canada). Cells were plated on cover slips (NO. 1.5 H; coated with 
fibronectin) for 24 h before fixation. Cells were fixed with 3% paraformaldehyde (PFA) for 15 min at room tem-
perature, rinsed with PBS/CM (phosphate buffered saline complemented with 1 mM MgCl2 and 0.1 mM CaCl2), 
permeabilized with 0.2% Triton X-100 in PBS/CM, and blocked with PBS/CM containing 10% goat serum 
(Sigma-Aldrich Inc.) 1% bovine serum albumin (BSA; Sigma-Aldrich Inc.). Then the cells were incubated with 
the primary antibody (rabbit anti-caveolin-1; BD Transduction Labs Inc.) for 12 h at 4 °C and with the secondary 
antibody (Alexa Fluor 647-conjugated goat anti-rabbit; Thermo-Fisher Scientific Inc.) for 1 h at room temper-
ature. The primary and secondary antibodies were diluted in SSC (saline sodium citrate) buffer containing 1% 
BSA, 2% goat serum and 0.05% Triton X-100. Cells were washed extensively after each antibody incubation 
with SSC buffer containing 0.05% Triton X-100. Post-fixation was applied using 3% PFA for 15 min followed by 
extensive washing with PBS/CM. For single antibody cover slip coating, cover slips were incubated with 2.5 μg 
fibronectin for 12 h at 4 °C and then with Alexa647-conjugated anti-rabbit secondary antibody diluted 1:500 in 
PBS/CM for 1 h at room temperature.

Before imaging, the imaging buffer was freshly prepared with 10% glucose (Sigma-Aldrich Inc.), 0.5 mg/ml 
glucose oxidase (Sigma-Aldrich Inc.), 40 μg/mL catalase (Sigma-Aldrich Inc.), 50 mM Tris, 10 mM NaCl and 
50 mM β-mercaptoethylamine (MEA; Sigma-Aldrich Inc.) in double-distilled water2,56. The cells were immersed 
in the imaging buffer and sealed on a glass depression slide.

GSD super-resolution imaging was performed on a Leica SR GSD 3D system using a 160 × objective lens (HC 
PL APO 160 × /1.43, oil immersion), a 642 nm laser line and a EMCCD camera (iXon Ultra, Andor). Full laser 
power was applied to pump the fluorophores to the dark state, and at frame correlation value 25% the imaging 
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program auto-switched to acquisition with 50% laser power. Epi-illumination was applied for the pumping pro-
cess while a TIRF illumination with 100-nm penetration depth was applied for the acquisition step. For cells, 
acquisition was done for 5 min with camera exposure time at 6.43 ms/frame and for single antibody coated cover 
slips for 13 minutes with camera exposure time at 20 ms/frame. The event lists were generated using the Leica SR 
GSD 3D operation software with XY pixel size 20 nm, Z pixel size 25 nm and Z acquisition range +/−400 nm.

Computational Methods. Graph Construction. Each image has dimensions of 18 × 18 × 1 μm3. For 
analysis, each cell is divided (tiled) into 36 ROIs of 3 × 3 × 1 μm3. Each ROI is much greater than subcellular 
structures. Tiling the cell into ROIs is essential to speed up processing time for the whole cell via HPC cluster 
computer.

We represent locations (X,Y,Z) of Cav1 event lists generated by Leica GSD analysis software as a point cloud (a 
set of points in 3D space), a well-established representation used in 3D visual computing29–31. An iterative blink 
merging algorithm merges blinks within 20 nm of each other, the resolution limit of the GSD approach, removing 
high degree (high interacting) points (i.e. from the same fluorophore or clusters of fluorophores). Virtual con-
nections constructed between the resulting 3D points transform the Cav1 point cloud into a network modeled 
computationally as a graph with: nodes (representing a single Cav1 protein); edges (capturing the interaction 
between pairs of proteins); and weights (encoding the distances between nodes, up to an upper threshold limit). 
We calculate network measures (see Table S1 for list of network measures) at multiple distance thresholds to 
identify measures that discriminate between caveolae-containing PC3-PTRF and PC3 cells lacking caveolae. With 
hundreds of thousands to millions of Cav1 localizations (i.e. network nodes), we partitioned the imaged 3D space 
using equal-sized 3D tiles and distributed parallel computations across many nodes of our HPC clusters. A filter-
ing step retained only the sub-networks of nodes or blobs whose properties are different from those of randomly 
generated networks (Fig. S2).

Well-established, quantifiable measures can then be extracted from these networks (Clustering Coefficient; 
Node Density; Connected Components; Degree; Closeness and Betweenness; Small Worldness; etc.) and divided 
into different classes: (spatially) global vs. local; microscopic (node-level) vs. macroscopic (graph-level) vs. meso-
scopic (community-level); network integration vs. segregation; geometrical vs. topological, etc.35. Using machine 
learning approaches, features distinguishing networks can be identified and used to understand the underlying 
organization or architecture of the network.

We represent the nodes (i.e. predicted Cav1 molecular localizations) as graphs (networks), where a graph 
G = (V, E) is a pair of set of vertices or (nodes) V and set of edges E, where | | =V n, | | =E m, n is the number of 
nodes, and m is the number of edges. An edge is connected between a pair of nodes (i, j) ∈ V if the Euclidean dis-
tance between the nodes ≤d Tij , where T is the proximity threshold. The Euclidean distance = = || − ||d d C Cij ji i j 2, 
where Ci is the 3D coordinate of point i (the interaction between node i and node j is symmetric), and hence the 
graph is undirected. We constructed two types of undirected graphs, weighted and unweighted. In the weighted 
undirected graph, the edge weight is set as =wij d

1

ji
, i.e. stronger edges (higher weights) connect more proximate 

nodes.

Modularity Analysis of the Blobs. We employed the Newman method45 to find the optimal number of 
modules (or communities) in a given network. The modules were extracted using the eigenvectors decomposition 
from the adjacency matrix that represents the blob’s network. The modularity is one of the network measures 
that we used to estimate the intra-community similarity and inter-community dissimilarity of the molecules in 
one blob. If the modularity measure is very high, this means that the blob consists of modules (or communities, 
sub-clusters), wherein each module is a highly intra-connected set of molecules.

Group Matching. To match groups of blobs (i.e. hypothesized as being of the same type) from the population 
of PC3 cells to similar groups in PC3-PTRF cell population, we first form an N × M similarity (or affinity) matrix 
Y, in which high similarity between the groups is encoded with small distances. N is the number of groups in the 
first population (PC3) and M is the number of groups in the second population (PC3-PTRF). The entry in the 
i − th row and j − th column of Y is set to = −|| − ||Y eij

y yi j 2, where yi and yj are the feature vectors (Table S2) describ-
ing the centroids of groupi in population1 and groupj in population2, respectively, and || − ||y yi j 2 is the Euclidean 
distance. Then, we match groupi in population1 with the −⁎j th group in population2, where =⁎j argmin Yj ij. We 
apply a matching threshold β to set the minimum value of similarity between the matched groups: If minj Yij > β 
for all j groups, then the groupi is not matched to any of the j − th groups in population2. Note that more than one 
similar group could be returned.

Blink Filtering by Leveraging Random Graphs. To decide whether or not a blink, in an ROI of a real 
cell, is regarded as noisy and hence must be filtered out, we resort to comparing the network properties of that 
node representing the blink with the corresponding properties of nodes of a purely random graph. Those nodes 
with properties similar to those of the purely random graph are regarded as random noise (and filtered out) 
and the remaining nodes are retained. The random graph is constructed with the same number of nodes as in 
the real cell ROI, and each spatial coordinate of the location of its nodes is generated with same distribution of 
the cell ROI blinks. For example, the locations of the blinks in both the X and Y dimensions followed a uniform 
distribution, while the distribution of the blinks in the Z dimension followed a normal (Gaussian) distribution. 
An example of generated random blinks that correspond to a real ROI taken from one of the PC3-PTRF cells in 
our data set (Fig. S2).
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SMLM Simulation Using SuReSim Software. We used the recently published SuReSim software47 to 
simulate SMLM imaging for single molecule (i.e. a 10 nm rod resembling a single antibody) and a sphere with 
diameter of 60 nm to resemble a caveolae. We used the average standard deviation for blinks from the single 
molecule clusters to find the localization precision values. We set the lateral precision (XY) to be 20 nm and the 
axial precision (Z) to be 38 nm. We recorded 40,000 frames and we set the label epitope distance to be 20 nm and 
the epitope density to be 0.012821 nm−2 with labeling efficiency of 100% to match the reported 145 Cav1 mole-
cules per caveolae57. All the SuReSim simulation experiments were performed using the direct simulation work-
flow. The SureSim simulated data event list was processed using 3D SMLM Network Analysis and the obtained 
bio-signatures were compared with real data obtained for caveolae in PC3-PTRF cells.
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